Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Planning
2.3. Follow-Up and Statistical Analysis
3. Results
3.1. Patients
3.2. Treatment Planning
3.3. Treatment Effects
3.4. Adverse Events
4. Discussion
4.1. Radiation Therapy for Central NSCLC
4.2. Tumor Control
4.3. CIRT Safety
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Perrot, M.; Licker, M.; Reymond, M.A.; Robert, J.; Spiliopoulos, A. Influence of age on operative mortality and long-term survival after lung resection for bronchogenic carcinoma. Eur. Respir. J. 1999, 14, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. ESMO Guidelines Committee. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), iv1–iv21. [Google Scholar] [CrossRef]
- Howington, J.A.; Blum, M.G.; Chang, A.C.; Balekian, A.A.; Murthy, S.C. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. S5), e278S–e313S. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Hiraoka, M.; Shibata, T.; Onishi, H.; Kokubo, M.; Karasawa, K.; Shioyama, Y.; Onimaru, R.; Kozuka, T.; Kunieda, E.; et al. Prospective Trial of Stereotactic Body Radiation Therapy for Both Operable and Inoperable T1N0M0 Non-Small Cell Lung Cancer: Japan Clinical Oncology Group Study JCOG0403. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 989–996. [Google Scholar] [CrossRef]
- Tandberg, D.J.; Tong, B.C.; Ackerson, B.G.; Kelsey, C.R. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review. Cancer 2018, 124, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.D.; Hu, C.; Michalski, J.M. Bradley JC, Galvin J, Johnstone DW, Choy H. Long-term Results of Stereotactic Body Radiation Therapy in Medically Inoperable Stage I Non-Small Cell Lung Cancer. JAMA Oncol. 2018, 4, 1287–1288. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.D.; Hu, C.; Michalski, J.M.; Bradley, J.C.; Galvin, J.; Johnstone, D.W.; Straube, W.L.; Nedzi, L.A.; McGarry, R.C.; Robinson, C.G.; et al. Stereotactic Body Radiation Therapy for Operable Early-Stage Lung Cancer: Findings From the NRG Oncology RTOG 0618 Trial. JAMA Oncol. 2018, 4, 1263–1266. [Google Scholar] [CrossRef]
- Qu, R.; Ping, W.; Hao, Z.; Cai, Y.; Zhang, N.; Fu, X. Surgical outcomes of segmental bronchial sleeve resection in central non-small cell lung cancer. Thorac. Cancer 2020, 11, 1319–1325. [Google Scholar] [CrossRef]
- Berthet, J.P.; Paradela, M.; Jimenez, M.J.; Molins, L.; Gómez-Caro, A. Extended sleeve lobectomy: One more step toward avoiding pneumonectomy in centrally located lung cancer. Ann. Thorac. Surg. 2013, 96, 1988–1997. [Google Scholar] [CrossRef]
- Timmerman, R.; McGarry, R.; Yiannoutsos, C.; Papiez, L.; Tudor, K.; DeLuca, J.; Ewing, M.; Abdulrahman, R.; DesRosiers, C.; Williams, M.; et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J. Clin. Oncol. 2006, 24, 4833–4839. [Google Scholar] [CrossRef]
- Chang, J.Y.; Li, Q.Q.; Xu, Q.Y.; Allen, P.K.; Rebueno, N.; Gomez, D.R.; Balter, P.; Komaki, R.; Mehran, R.; Swisher, S.G.; et al. Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: How to fly in a “no fly zone”. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 1120–1128. [Google Scholar] [CrossRef]
- Modh, A.; Rimner, A.; Williams, E.; Foster, A.; Shah, M.; Shi, W.; Zhang, Z.; Gelblum, D.Y.; Rosenzweig, K.E.; Yorke, E.D.; et al. Local control and toxicity in a large cohort of central lung tumors treated with stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1168–1176. [Google Scholar] [CrossRef]
- Roach, M.C.; Robinson, C.G.; DeWees, T.A.; Ganachaud, J.; Przybysz, D.; Drzymala, R.; Rehman, S.; Kashani, R.; Bradley, J.D. Stereotactic Body Radiation Therapy for Central Early-Stage NSCLC: Results of a Prospective Phase I/II Trial. J. Thorac. Oncol. 2018, 13, 1727–1732. [Google Scholar] [CrossRef]
- Aoki, S.; Yamashita, H.; Haga, A.; Ota, T.; Takahashi, W.; Ozaki, S.; Nawa, K.; Imae, T.; Abe, O.; Nakagawa, K. Stereotactic body radiotherapy for centrally-located lung tumors with 56 Gy in seven fractions: A retrospective study. Oncol. Lett. 2018, 16, 4498–4506. [Google Scholar] [CrossRef]
- Bezjak, A.; Paulus, R.; Gaspar, L.E.; Timmerman, R.D.; Straube, W.L.; Ryan, W.F.; Garces, Y.I.; Pu, A.T.; Singh, A.K.; Videtic, G.M.; et al. Safety and Efficacy of a Five-Fraction Stereotactic Body Radiotherapy Schedule for Centrally Located Non-Small-Cell Lung Cancer: NRG Oncology/RTOG 0813 Trial. J. Clin. Oncol. 2019, 37, 1316–1325. [Google Scholar] [CrossRef]
- Arnett, A.L.H.; Mou, B.; Owen, D.; Park, S.S.; Nelson, K.; Hallemeier, C.L.; Sio, T.; Garces, Y.I.; Olivier, K.R.; Merrell, K.W. Long-term Clinical Outcomes and Safety Profile of SBRT for Centrally Located NSCLC. Adv. Radiat. Oncol. 2019, 4, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.; Sio, T.T. Stereotactic body radiotherapy (SBRT) for central and ultra-central node-negative lung tumors. J. Thorac. Dis. 2020, 12, 7024–7031. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Furusawa, Y.; Fukutsu, K.; Itsukaichi, H.; Eguchi-Kasai, K.; Ohara, H. Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. Radiat. Res. 1997, 147, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Ertner, D.; Tsujii, H. Particle radiation therapy using proton and heavier ion beams. J. Clin. Oncol. 2007, 25, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Kanematsu, N.; Inaniwa, T. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Phys. Med. Biol. 2017, 62, 1062–1075. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Imaoka, T.; Masunaga, S.; Ogata, T.; Okayasu, R.; Takahashi, A.; Kato, T.A.; Kobayashi, Y.; Ohnishi, T.; Ono, K.; et al. Recent advances in the biology of heavy-ion cancer therapy. J. Radiat. Res. 2010, 51, 365–383. [Google Scholar] [CrossRef]
- Blakely, E.A.; Kronenberg, A. Heavy-ion radiobiology: New approaches to delineate mechanisms underlying enhanced biological effectiveness. Radiat. Res. 1998, 150 (Suppl. S5), S126–S145. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Yamamoto, N.; Nishimura, H.; Koto, M.; Tsujii, H.; Mizoe, J.E.; Hirasawa, N.; Sugawara, T.; Yamamoto, N.; Koto, M.; et al. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J. Thorac. Oncol. 2007, 2, 916–926. [Google Scholar] [CrossRef]
- Yamamoto, N.; Miyamoto, T.; Nakajima, M.; Karube, M.; Hayashi, K.; Tsuji, H.; Tsujii, H.; Kamada, T.; Fujisawa, T. A Dose Escalation Clinical Trial of Single-Fraction Carbon Ion Radiotherapy for Peripheral Stage I Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, 673–680. [Google Scholar] [CrossRef]
- Ono, T.; Yamamoto, N.; Nomoto, A.; Nakajima, M.; Isozaki, Y.; Kasuya, G.; Ishikawa, H.; Nemoto, K.; Tsuji, H. Long Term Results of Single-Fraction Carbon-Ion Radiotherapy for Non-small Cell Lung Cancer. Cancers 2020, 13, 112. [Google Scholar] [CrossRef]
- Lodeweges, J.E.; van Rossum, P.S.N.; Bartels, M.M.T.J.; van Lindert, A.S.R.; Pomp, J.; Peters, M.; Verhoeff, J.J.C. Ultra-central lung tumors: Safety and efficacy of protracted stereotactic body radiotherapy. Acta Oncol. 2021, 60, 1061–1068. [Google Scholar] [CrossRef]
- Guillaume, E.; Tanguy, R.; Ayadi, M.; Claude, L.; Sotton, S.; Moncharmont, C.; Magné, N.; Martel-Lafay, I. Toxicity and efficacy of stereotactic body radiotherapy for ultra-central lung tumours: A single institution real life experience. Br. J. Radiol. 2022, 95, 20210533. [Google Scholar] [CrossRef]
- Xiao, Y.; Papiez, L.; Paulus, R.; Timmerman, R.; Straube, W.L.; Bosch, W.R.; Michalski, J.; Galvin, J.M. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: Stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1235–1242. [Google Scholar] [CrossRef]
- Lindberg, K.; Grozman, V.; Karlsson, K.; Lindberg, S.; Lax, I.; Wersäll, P.; Persson, G.F.; Josipovic, M.; Khalil, A.A.; Moeller, D.S.; et al. The HILUS-Trial-a Prospective Nordic Multicenter Phase 2 Study of Ultracentral Lung Tumors Treated With Stereotactic Body Radiotherapy. J. Thorac. Oncol. 2021, 16, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Furukawa, T.; Inaniwa, T.; Zenklusen, S.; Nakao, M.; Shirai, T.; Noda, K. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy. Med. Phys. 2013, 40, 031720. [Google Scholar] [CrossRef]
- Kong, F.M.; Ritter, T.; Quint, D.J.; Senan, S.; Gaspar, L.E.; Komaki, R.U.; Hurkmans, C.W.; Timmerman, R.; Bezjak, A.; Bradley, J.D.; et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: Atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1442–1457. [Google Scholar] [CrossRef]
- Minohara, S.; Kanai, T.; Endo, M.; Noda, K.; Kanazawa, M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Shirai, T.; Takei, Y.; Furukawa, T.; Inaniwa, T.; Matsuzaki, Y.; Kumagai, M.; Murakami, T.; Noda, K. Patient handling system for carbon ion beam scanning therapy. J. Appl. Clin. Med. Phys. 2012, 13, 3926. [Google Scholar] [CrossRef] [PubMed]
- Karger, C.P.; Peschke, P. RBE and related modeling in carbon-ion therapy. Phys. Med. Biol. 2017, 63, 01TR02. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf (accessed on 15 January 2024).
- 2020 Global Initiative for Chronic Obstructive Lung Disease, Inc. 2011. Available online: https://goldcopd.org/wp-content/uploads/2020/11/GOLD-REPORT-2021-v1.1-25Nov20_WMV.pdf (accessed on 15 January 2024).
- Nishio, T.; Kunieda, E.; Shirato, H.; Ishikura, S.; Onishi, H.; Tateoka, K.; Hiraoka, M.; Narita, Y.; Ikeda, M.; Goka, T. Dosimetric verification in participating institutions in a stereotactic body radiotherapy trial for stage I non-small cell lung cancer: Japan clinical oncology group trial (JCOG0403). Phys. Med. Biol. 2006, 51, 5409–5417. [Google Scholar] [CrossRef] [PubMed]
- Onimaru, R.; Onishi, H.; Ogawa, G.; Hiraoka, M.; Ishikura, S.; Karasawa, K.; Matsuo, Y.; Kokubo, M.; Shioyama, Y.; Matsushita, H.; et al. Final report of survival and late toxicities in the Phase I study of stereotactic body radiation therapy for peripheral T2N0M0 non-small cell lung cancer (JCOG0702). Jpn. J. Clin. Oncol. 2018, 48, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Milano, M.T.; Chen, Y.; Katz, A.W.; Philip, A.; Schell, M.C.; Okunieff, P. Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother. Oncol. 2009, 91, 301–306. [Google Scholar] [CrossRef]
- Song, S.Y.; Choi, W.; Shin, S.S.; Lee, S.W.; Ahn, S.D.; Kim, J.H.; Je, H.U.; Park, C.I.; Lee, J.S.; Choi, E.K. Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer 2009, 66, 89–93. [Google Scholar] [CrossRef]
- Haasbeek, C.J.; Lagerwaard, F.J.; Slotman, B.J.; Senan, S. Outcomes of stereotactic ablative radiotherapy for centrally located early-stage lung cancer. J. Thorac. Oncol. 2011, 6, 2036–2043. [Google Scholar] [CrossRef]
- Rowe, B.P.; Boffa, D.J.; Wilson, L.D.; Kim, A.W.; Detterbeck, F.C.; Decker, R.H. Stereotactic body radiotherapy for central lung tumors. J. Thorac. Oncol. 2012, 7, 1394–1399. [Google Scholar] [CrossRef]
- Tekatli, H.; Spoelstra, F.O.B.; Palacios, M.; van Sornsen de Koste, J.; Slotman, B.J.; Senan, S. Stereotactic ablative radiotherapy (SABR) for early-stage central lung tumors: New insights and approaches. Lung Cancer 2018, 123, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Haseltine, J.M.; Rimner, A.; Gelblum, D.Y.; Modh, A.; Rosenzweig, K.E.; Jackson, A.; Yorke, E.D.; Wu, A.J. Fatal complications after stereotactic body radiation therapy for central lung tumors abutting the proximal bronchial tree. Pract. Radiat. Oncol. 2016, 6, e27–e33. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Swanick, C.W.; Allen, P.K.; Gomez, D.R.; Welsh, J.W.; Liao, Z.; Balter, P.A.; Chang, J.Y. Stereotactic ablative radiotherapy (SABR) using 70 Gy in 10 fractions for non-small cell lung cancer: Exploration of clinical indications. Radiother. Oncol. 2014, 112, 256–261. [Google Scholar] [CrossRef]
- Wang, C.; Rimner, A.; Gelblum, D.Y.; Dick-Godfrey, R.; McKnight, D.; Torres, D.; Flynn, J.; Zhang, Z.; Sidiqi, B.; Jackson, A.; et al. Analysis of pneumonitis and esophageal injury after stereotactic body radiation therapy for ultra-central lung tumors. Lung Cancer 2020, 147, 45–48. [Google Scholar] [CrossRef]
- Jones, B.; Dale, R.G.; Deehan, C.; Hopkins, K.I.; Morgan, D.A. The role of biologically effective dose (BED) in clinical oncology. Clin. Oncol. 2001, 13, 71–81. [Google Scholar]
- Onishi, H.; Araki, T.; Shirato, H.; Nagata, Y.; Hiraoka, M.; Gomi, K.; Yamashita, T.; Niibe, Y.; Karasawa, K.; Hayakawa, K.; et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: Clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 2004, 101, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Kanemoto, A.; Okumura, T.; Ishikawa, H.; Mizumoto, M.; Oshiro, Y.; Kurishima, K.; Homma, S.; Hashimoto, T.; Ohkawa, A.; Numajiri, H.; et al. Outcomes and prognostic factors for recurrence after high-dose proton beam therapy for centrally and peripherally located stage I non-small-cell lung cancer. Clin. Lung Cancer 2014, 15, e7–e12. [Google Scholar] [CrossRef]
- Nakamura, N.; Hotta, K.; Zenda, S.; Baba, H.; Kito, S.; Akita, T.; Motegi, A.; Hojo, H.; Nakamura, M.; Parshuram, R.V.; et al. Hypofractionated proton beam therapy for centrally located lung cancer. J. Med. Imaging Radiat. Oncol. 2019, 63, 552–556. [Google Scholar] [CrossRef]
- Katagiri, Y.; Jingu, K.; Yamamoto, T.; Matsushita, H.; Umezawa, R.; Ishikawa, Y.; Takahashi, N.; Takeda, K.; Tasaka, S.; Kadoya, N. Differences in patterns of recurrence of squamous cell carcinoma and adenocarcinoma after radiotherapy for stage III non-small cell lung cancer. Jpn. J. Radiol. 2021, 39, 611–617. [Google Scholar] [CrossRef]
- Wang, B.Y.; Huang, J.Y.; Chen, H.C.; Lin, C.H.; Lin, S.H.; Hung, W.H.; Cheng, Y.F. The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J. Cancer Res. Clin. Oncol. 2020, 146, 43–52. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lin, S.H.; Dong, W.; Liao, Z.; Gandhi, S.J.; Gay, C.M.; Zhang, J.; Chun, S.G.; Elamin, Y.Y.; Fossella, F.V.; et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: An open-label, randomised, phase 2 trial. Lancet 2023, 402, 871–881. [Google Scholar] [CrossRef]
- Nakajima, M.; Yamamoto, N.; Hayashi, K.; Karube, M.; Ebner, D.K.; Takahashi, W.; Anzai, M.; Tsushima, K.; Tada, Y.; Tatsumi, K.; et al. Carbon-ion radiotherapy for non-small cell lung cancer with interstitial lung disease: A retrospective analysis. Radiat. Oncol. 2017, 12, 144. [Google Scholar] [CrossRef]
- Rosca, F.; Kirk, M.; Soto, D.; Sall, W.; McIntyre, J. Reducing the low-dose lung radiation for central lung tumors by restricting the IMRT beams and arc arrangement. Med. Dosim. 2012, 37, 280–286. [Google Scholar] [CrossRef]
- Devpura, S.; Feldman, A.M.; Rusu, S.D.; Mayyas, E.; Movsas, A.; Brown, S.L.; Cook, A.; Simoff, M.J.; Sun, Z.; Lu, M.; et al. An Analysis of Clinical Toxic Effects and Quality of Life as a Function of Radiation Dose and Volume After Lung Stereotactic Body Radiation Therapy. Adv. Radiat. Oncol. 2021, 6, 100815. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.B.; Hung, L.C.; Cheng, C.Y.; Chien, Y.A.; Lee, C.H.; Huang, C.C.; Chou, T.W.; Ko, M.H.; Lai, Y.C.; Liu, M.T.; et al. Prognostic significance of lung radiation dose in patients with esophageal cancer treated with neoadjuvant chemoradiotherapy. Radiat. Oncol. 2019, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Duijm, M.; Schillemans, W.; Aerts, J.G.; Heijmen, B.; Nuyttens, J.J. Dose and Volume of the Irradiated Main Bronchi and Related Side Effects in the Treatment of Central Lung Tumors with Stereotactic Radiotherapy. Semin. Radiat. Oncol. 2016, 26, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, M.; Ma, S.J.; Hennon, M.; Nwogu, C.; Dexter, E.; Picone, A.; Demmy, T.; Yendamuri, S.; Yu, H.; Fung-Kee-Fung, S.; et al. Exceeding Radiation Dose to Volume Parameters for the Proximal Airways with Stereotactic Body Radiation Therapy Is More Likely for Ultra-central Lung Tumors and Associated with Worse Outcome. Cancers 2021, 13, 3463. [Google Scholar] [CrossRef]
- Kubo, N.; Saitoh, J.I.; Shimada, H.; Shirai, K.; Kawamura, H.; Ohno, T.; Nakano, T. Dosimetric comparison of carbon ion and X-ray radiotherapy for Stage IIIA non-small cell lung cancer. J. Radiat. Res. 2016, 57, 548–554. [Google Scholar] [CrossRef]
- Ebara, T.; Shimada, H.; Kawamura, H.; Shirai, K.; Saito, J.; Kawashima, M.; Tashiro, M.; Ohno, T.; Kanai, T.; Nakano, T. Dosimetric analysis between carbon ion radiotherapy and stereotactic body radiotherapy in stage I lung cancer. Anticancer Res. 2014, 34, 5099–5104. [Google Scholar] [PubMed]
Age (y) | median (range) | 75 (55–85) |
Gender | Male/Female | 21/9 |
ECOG performance status | 0/1 | 24/6 |
Operability | Yes/No | 10/20 |
Severity of COPD: GOLD score | 1/2/3/4 | |
Hypertension | Yes/No | 13/17 |
Diabetes mellitus | Yes/No | 5/25 |
Cardiovascular disease | Yes/No | 6/24 |
Histology | Adeno | 15 |
Squamous | 13 | |
Others | 2 | |
c-Stage (UICC 8th) | 1A | 8 |
1B | 12 | |
2A | 6 | |
2B | 4 | |
Most constrained OAR | Main bronchus | 4 |
Lobar bronchus | 23 | |
Others | 3 | |
Baseline pulmonary function | FEV1 (liter, median) | 1.7 (0.4–2.8) |
FEV1% (median) | 73.8 (28.3–90.0) | |
VC (liter, median) | 2.6 (1.2–4.5) | |
VC% (median) | 87.8 (65.6–138.1) | |
Age (y) | median (range) | 75 (55–85) |
OARs | Dose Parameters | Total Dose (Median [Range]) |
---|---|---|
Lung | V5_% | 15.2 (10.2–24.1) |
V20_% | 10.4 (4.1–18.2) | |
MLD_Gy | 5.6 (2.7–10.9) | |
PBT | Dmax_Gy | 65.6 (3.8–71.2) |
D0.2cc_Gy | 58.8 (2.8–70.7) | |
D0.5cc_Gy | 52.8 (2.7–69.2) | |
D1cc_Gy | 39.5 (2.4–68.6) | |
D2cc_Gy | 10.0 (0.2–51.6) | |
Esophagus | Dmax_Gy | 9.9 (1.8–60.7) |
D0.2cc_Gy | 4.2 (1.4–37.5) | |
D0.5cc_Gy | 3.6 (0.8–30.9) | |
D1cc_Gy | 3.0 (0.7–23.5) | |
Spinal cord | Dmax_Gy | 2.4 (0–18.2) |
D0.2cc_Gy | 1.5 (0.0–17.4) |
No. of Patients | OS | |||
---|---|---|---|---|
5y (%) | p-Value | |||
Age | ≤75 | 14 | 85.1 | 0.047 * |
>75 | 16 | 46.4 | ||
Gender | Male | 21 | 50.3 | 0.18 |
Female | 9 | 88.9 | ||
PS | 0 | 24 | 73.8 | 0.088 |
1 | 6 | 33.3 | ||
Severity of COPD | GOLD1,2 | 24 | 67.7 | 0.16 |
GOLD3,4 | 6 | 41.7 | ||
c-Stage | 1 | 20 | 74.7 | 0.75 |
2 | 10 | 40.5 | ||
Histology | Squamous | 13 | 36.9 | 0.015 * |
the others | 17 | 84.7 |
Acute Adverse Events | Grade2 | Grade3 | Grade4–5 |
---|---|---|---|
Pneumonitis | 3 (10.0%) | 0 | 0 |
Dermatitis | 0 | 0 | 0 |
Esophagitis | 0 | 0 | 0 |
Late Adverse Events | Grade2 | Grade3 | Grade4–5 |
Pneumonitis | 2 (6.7%) | 2 (6.7%) | 0 |
Dermatitis | 0 | 0 | 0 |
Esophagitis | 0 | 0 | 0 |
Chest wall pain | 0 | 0 | 0 |
Bronchial stenosis | 1 (3.3%) | 0 | 0 |
Author (Year) | Disease | No. of pts | Prescription (Gy/Fr) | BED10 (Gy) | Follow (m) | LC (%) | OS (%) | Toxicity | Details of G5 Toxicity | |
---|---|---|---|---|---|---|---|---|---|---|
G ≥ 3 (%) | G5 (%) | |||||||||
Timmerman (2006) [13] | T1–2N0 | 70 | 60–66/3 | 180–211.2 | 18 | 95 (2 y) | 54.7 (2 y) | 20 | 8.6 | 1 hemorrhage, 1 peripheral effusion 4 pneumonias |
Milano (2009) [39] | T1–3N0 or M1 | 53 | 30–63 (2.5–5 Gy/Fr) | 39–82.5 | 10 | 73 (2 y) | 44 (2 y) | 11 (n = 45) | 8.9 | 3 pulmonary declines, 1 hemoptysis |
Song (2009) [40] | T1–2aN0 | 32 | 40–60/4–6 | 80–180 | 27 | 85.3 (2 y) | 38.5 (2 y) | 33.3 (n = 9) | 11.1 | 1 hemorrhage |
Haasbeek (2011) [41] | T1–3N0 | 63 | 60/8 | 105 | 35 | 92.6 (3 y) | 64.3 (3 y) | 20.6 | 14.3 | 9 cardiopulmonary causes |
Rowe (2012) [42] | T1–2N0 or M1 | 47 | 50/4 | 76 (60–151.2) | 11 | 94 (2 y) | N/R | 10.6 | 2.2 | 1 hemorrhage |
Modh (2014) [15] | T1–4N0 or M1 | 125 | 30–60/2–5 | 85.5 (43–180) | 17 | 79 (2 y, BED ≥ 80) | 64 (2 y, BED ≥ 80) | 8 | 6 | 1 hemorrhage |
Tekatli (2015) [43] | stage 1A-4 | 80 | 60/8 | 105 | 45 | 62 (2 y), 53 (3 y) | N/R | 13.8 (n = 78) | 7.5 | 3 respiratory failures, 2 hemorrhages, 1 sudden death |
Aoki (2018) [14] | T1–3N0 or M1 | 35 | 56/7 | 100.8 | 13.1 | 96 (2 y) | 40.4 (2 y) | 26 | 5.7 | 1 hemorrhage, 1 pneumonia |
Bezjak (2019) [15] | T1–2N0 | 71 | 57.5–60/5 | 123.6, 132 | 33 | 89.4, 87.9 (2 y) | 67.9, 72.7 (2 y) | 21 | 5.6 | 3 hemorrhages, 1 esophageal ulcer |
Lindberg. K (2021) [29] | ≤5 cm (NSCLC/LM) | 65 | 56/8 | 95.2 | 24 | 83 (2 y) | 58 (2 y) | 39.3 | 17.9 | 8 hemorrhage, 1 pneumonitis, 1 fistula |
Current study | T1–3N0 | 30 | 68.4/12 | 107.4 | 42 | 88.7 (3 y, 5 y) | 72.4 (3 y), 63.3 (5 y) | 6.7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, S.; Ishikawa, H.; Nakajima, M.; Yamamoto, N.; Mori, S.; Wakatsuki, M.; Okonogi, N.; Murata, K.; Tada, Y.; Mizobuchi, T.; et al. Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study. Cancers 2024, 16, 933. https://doi.org/10.3390/cancers16050933
Aoki S, Ishikawa H, Nakajima M, Yamamoto N, Mori S, Wakatsuki M, Okonogi N, Murata K, Tada Y, Mizobuchi T, et al. Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study. Cancers. 2024; 16(5):933. https://doi.org/10.3390/cancers16050933
Chicago/Turabian StyleAoki, Shuri, Hitoshi Ishikawa, Mio Nakajima, Naoyoshi Yamamoto, Shinichiro Mori, Masaru Wakatsuki, Noriyuki Okonogi, Kazutoshi Murata, Yuji Tada, Teruaki Mizobuchi, and et al. 2024. "Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study" Cancers 16, no. 5: 933. https://doi.org/10.3390/cancers16050933
APA StyleAoki, S., Ishikawa, H., Nakajima, M., Yamamoto, N., Mori, S., Wakatsuki, M., Okonogi, N., Murata, K., Tada, Y., Mizobuchi, T., Yoshino, I., & Yamada, S. (2024). Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study. Cancers, 16(5), 933. https://doi.org/10.3390/cancers16050933