Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biomarkers
2.1. Organ-Nonspecific
2.1.1. Anti-PD(L)1-Based Regimen
Autoantibodies
Biomarker | Anti-PD(L)1-Based Regimen | Anti-CTLA-4 Monotherapy |
---|---|---|
Autoantibodies | ||
Any autoantibodies | Positive predictor [11,12,13,14] | Not predictive [15] |
Anti-nuclear antibody | Conflicting result: Positive predictor [14,16,17,18,19] Not predictive [20,21,22,23,24,25,26,27] | |
Rheumatoid factor | Conflicting result: Positive predictor [13] Not predictive [22] | |
Raw cell counts | ||
Absolute lymphocyte count | Conflicting result: Positive predictor: ≥1500 [28], >2000 [29,30], >2600 [31], >820 2-week post treatment [32], >2000 1-month post treatment [30], no specific cutoff [33,34,35] Negative predictor: >1450 [36] Not predictive [12,37,38] | |
Absolute neutrophil count | Conflicting result: Negative predictor: no specific cutoff [34,35,38] Not predictive [37] | Not predictive [39] |
Absolute eosinophil count | Conflicting result: Positive predictor: >45 [40], >175 [41], no specific cutoff [30] Not predictive [12,42,43] | Not predictive [39] |
White blood cell count | Conflicting result: Positive predictor: >27% increased from baseline [44] Negative predictor: no specific cutoff [34] Not predictive [33,35] | Not predictive [39,45] |
Red blood cell count | Conflicting result: Positive predictor: no specific cutoff [34] Not predictive [35] | |
Platelet count | Conflicting result: Positive predictor: >145,000 [31] Negative predictor: no specific cutoff [33,34] Not predictive [35,41] | |
Cell type ratios | ||
Neutrophil–lymphocyte ratio | Conflicting result: Positive predictor: >2.3 [36], ≥4.3 [46], >6 [47] Negative predictor: >2.86 [48], ≥3 [42,49], ≥3.2 [33], ≥5 [50], >5.3 [31], no specific cutoff [34,38,51] Not predictive [29,32,35,37,40,46,52,53,54] | Not predictive [45] |
Platelet–lymphocyte ratio | Conflicting result: Positive predictor: >165 [36] Negative predictor: ≥180 [54], >300 [52], >534 [31], no specific cutoff [38] Not predictive [29,33,35,40,51] | Not predictive [45] |
Lymphocyte subset characteristics | ||
B cell | Conflicting result: Positive predictor: ≥30% reduction in total B cell count plus at least 2-fold increase in CD21 low-expressing cells or plasmablasts [55] Not predictive [41,56] | |
T-cell subpopulation count | CD8+ T-cell count: reduced risk [41], not predictive [56] CD4+ T-cell, regulatory T-cell count: not predictive [41,56] CD8+CD38+Ki67+ T-cell expansion: positive predictor in NSCLC, but not in malignant melanoma [57] Ki67+ Treg-cell expansion: positive predictor in malignant melanoma, but not in NSCLC [57] | CD3+ and CD3+/CD4+ T-cell proportion: increased risk [58] Total T-cell count: not predictive [39] |
T-cell diversity | T-cell receptor diversity [56] TCRB haplotype group 2: protective of grade ≥3 irAE [59] | T-cell receptor β-chain sequencing with ≥55 CD8+ T-cell clones or early increased number of T-cell clones [60,61] |
Cytokines/Chemokines | Conflicting result: Positive predictor: IL6 [62], IL8, sLAG3, sPDL2, sHVEM, sCD137, sCD27, sICAM-1 [63], CXCL10 [57,64], CXCL13 [64], soluble CD163 (6s week post treatment) [65], CCL5 (4 weeks post treatment) [66] Negative predictor: IL10 [57], CXCL9, CXCL10, CXCL11, CCL19 [67] No correlation: IL6 [68], IL6, IL8, IL10 [37] | Positive predictor: IL17 [69], soluble CTLA-4 > 200 pg/mL [70] Negative predictor: IL6 [39], soluble MICA [71] |
HLA | Positive predictor: HLA-B*35:01, HLA-B*40:02 [34], HLA-A3, HLA-DRB1*04:01 [29] Negative predictor: HLA-B*54:01 [34] | |
SNPs | Positive predictor: IFNW1 (rs10964859), IFNL4 (rs12979860), PD-L1 (rs4143815), and CTLA-4 (rs3087243, rs11571302, and r27565213) [72] GARBP, DSC2, BAZ2B, SEMA5A, and TYK2 SNPs [73] TMEM162 (rs541169) [34] MAPK1 (rs3810610), ADAD1 (rs17388568) [74] Negative predictor: UNG (rs246079) [72] miRNA-146a (rs2910164) CC genotype [75,76] PTPRC (rs6428474), IL6 (rs1800796) [74] OSBPL6, AGPS, RGMA, ANKRD42, PACRG, FAR2, ROBO1, GLIS3, PVT1, PACRG, PREX2, HLA-DRB1, HLA-DQA1, HLA-DQA2, and TNFAIP3 SNPs [73] No association: PDCD1 (rs2227981) [77] | Positive predictor: SYK (rs7036417) [78] |
Other | ||
Frameshift neoantigen antibodies | Predictive of irAE [79] | |
ctDNA alteration | CEBPA, FGFR4, MET, and KMT2B alterations: associated with irAE [80] | |
RNA expression | Positive predictor: LCP1 and ADPGK [56] | |
PD-L1 expression | Positive predictor: PD-L1 expression ≥50% [36,81] Not predictive [37] | Negative predictor: PD-1 expression on CD4+ and CD8+ T-cells [58] |
Mean platelet volume change | Negative predictor: decrease of ≤−0.2 fL [82] | |
C-reactive protein | Positive predictor: >10 [83] |
Raw Cell Counts
Cell Type Ratios
Lymphocyte Subset Characteristics
Cytokines and Chemokines
Human Leukocyte Antigen (HLA)
Single-Nucleotide Polymorphisms (SNPs)
Other Biomarkers
2.1.2. Anti-CTLA-4 Therapy Monotherapy
2.2. Organ-Specific
2.2.1. Endocrine System
Organ System | Biomarker | Association |
---|---|---|
Endocrinologic | ||
Any | Absolute eosinophil count >240 | ↑ risk [43] |
Relative eosinophil count >3.2% | ↑ risk [43] | |
HLA-B*35:01 | ↑ risk [34] | |
Thyroid | Any autoantibodies | ↑ risk for hypo/hyperthyroid but not hypothyroid alone [11] |
Antithyroid antibodies (antithyroid peroxidase or antithyroglobulin) | Positive seroconversion associated with thyroiditis [15] Pre-existing antibody associated with thyroid dysfunction [14,26,89,90,91,92,93] | |
Antithyroid peroxidase | Pre-existing antibody [23,94,95,96] and post-treatment antibody [97] associated with thyroid dysfunction | |
Antithyroglobulin | Pre-existing antibody [23,94,95,98,99] and post-treatment antibody [96,97] associated with thyroid dysfunction | |
Thyroid-stimulating hormone | Elevated level: ↑ risk [73,90,92,96,98,99,100,101] Reduced level: associated with hyperthyroidism [98] | |
Pretreatment IL1β, IL2, and GM-CSF | Elevated levels: ↑ risk [97] | |
4-week post-treatment G-CSF, IL8, and MCP-1 levels | Reduced levels: ↑ risk [97] | |
Neutrophil-lymphocyte ratio | Reduced level: ↑ risk [100] | |
HLA-B*35:01 | ↑ risk [34] | |
Type 1 diabetes mellitus | HLA-C*01:02, HLA-DPA1*02:02, and HLA-DPB1*05:01, HLA-DQB1*04:01, HLA-DRB1*04:05, and HLA-DR4 | ↑ risk [102,103] |
Germline NLRC5 and CEMIP2 mutations | ↑ risk [104] | |
Adrenocorticotropic hormone deficiency | Anti-pituitary antibody | ↑ risk [105] |
HLA-Cw12, HLA-DR15, HLA-DQ7, and HLA-DPw9 | ↑ risk [105] | |
Hypophysitis | Anti-GNAL and anti-TIM2B | ↑ risk [106] |
Anti-pituitary antibody | ↑ risk [105] | |
HLA-Cw12 and HLA-DR15 | ↑ risk [105] | |
HLA-DQB1*06:02 and HLA-DRB4*01:01 | ↑ risk [107] | |
HLA-DRB4*01:03 | ↓ risk [107] | |
Pituitary | HLA-B52, HLA-Cw12, HLA-DRB1*15:02, and HLA-DR15 | ↑ risk [108] |
Dermatologic | ||
Any | Antinuclear antibody | Conflicting: No association [14,15] ↑ risk [19] |
Rheumatoid factor | ↑ risk [14] | |
Platelet count and neutrophil–lymphocyte ratio | Conflicting: No association [43] Elevated level: ↓ risk [100] | |
Baseline plasma Ang-1 and CD40L | Elevated level: ↑ risk [109] | |
Anti-BP180 IgG | ↑ risk [110] | |
MAPK1 SNP (rs3810610) | ↑ risk [74] | |
Vitiligo | White blood cell count | ↑ risk [43] |
Pruritus | HLA-DRB1*11:01 | ↑ risk [111] |
Gastrointestinal | ||
Any | Elevated relative white blood cell and lymphocyte counts | ↑ risk [44] |
HLA-DQB1*03:01 | ↓ risk [29] | |
HLA-B*35:01 | ↑ risk [34] | |
Colitis | Elevated CD4+ T-cell count and reduced Treg cell % | ↑ risk [112] |
Elevated IL6, IL8, and sCD25 | ↓ risk [112] | |
Elevated IL17 and sCTLA-4 > 200 pg/mL | ↑ risk [69,70] | |
Overexpression of CD177, CEACAM1, IGHA1, IGHA2, IGHG1, and IGHV4-31 at 3 weeks post treatment | ↑ risk [113] | |
Antinuclear antibody | ↑ risk [25] | |
White blood cell and absolute neutrophil counts | ↑ risk [114] | |
HLA-DQB1*03:01 | ↑ risk [111] | |
HLA-A homozygosity | ↑ risk [114] | |
Hepatitis | Neutrophil | Elevated level: ↓ risk [100] |
White blood cell count | ↑ risk [114] | |
Autoimmune hepatitis autoantibodies | No association [115] | |
Pancreatitis | White blood cell and absolute neutrophil counts | ↑ risk [114] |
HLA-A homozygosity | ↑ risk [114] | |
SMAD3 small sequence variations | ↑ risk [114] | |
Hyperbilirubinemia | HLA-A*26:01 | ↑ risk [116] |
Rheumatologic | ||
Any | HLA-DRB1*15:01 | ↓ risk [29] |
HLA-B*35:01 | ↑ risk [34] | |
Rheumatoid factor | Pre-existing antibody: ↑ risk [117] | |
Inflammatory arthritis | HLA-DRB1*04:05 | ↑ risk [118] |
Rheumatoid factor and anti-cyclic citrullinated peptide | No association [15] ↓ risk [118] | |
Pulmonary | ||
Pneumonitis | Absolute eosinophil count ≥125 | ↑ risk [119] |
White blood cell count | ↑ risk [120] | |
Absolute neutrophil count | ↓ risk [120] | |
Neutrophil–lymphocyte ratio | No association [120], ↓ risk [100] | |
Low IFN-γ | ↑ risk [121] | |
IL17 and anti-CD74 levels | Conflicting results: ↑ risk [106,109] Not associated [64] | |
HLA-B35 and HLA-DRB1*11 haplotype | ↑ risk [122] | |
HLA-B*35:01 | ↑ risk [34] | |
Anti-GAD | Pre-existing antibody associated with interstitial pneumonitis [23] | |
Neurologic | ||
Any | MCP-1 and BDNF levels | ↑ risk [123] |
Autoimmune encephalitis | HLA-B*27:05 | ↑ risk [124] |
Brain-reactive autoantibodies | No association [125] | |
Neuromuscular disease | Neuromuscular autoantibodies | ↑ risk [125] |
Cardiac | ||
Myocarditis | Absolute lymphocyte count | ↓ risk [126] |
Neutrophil–lymphocyte ratio | ↑ risk [126] | |
Hematologic | ||
Thrombocytopenia | HLA-DRB3*01:01 | ↑ risk [116] |
Anemia and leukopenia | HLA-DPB1*04:02 | ↑ risk [116] |
Other | ||
Vogt–Koyanagi–Harada-like uveitis | HLA-DRB1*04:05 | ↑ risk [127] |
Thyroid Dysfunction
Other Endocrinologic Dysfunctions
Endocrine irAE from Anti-CTLA-4 Monotherapy
2.2.2. Dermatologic
2.2.3. Gastrointestinal (GI)
Colitis
Hepatobiliary and Pancreatic Dysfunction
2.2.4. Rheumatologic
2.2.5. Pulmonary
2.2.6. Other Organ Systems
3. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Zhang, X.; Ning, J.; Zhang, M. Immune checkpoint inhibitors as first-line therapy for non-small cell lung cancer: A systematic evaluation and meta-analysis. Hum. Vaccin. Immunother. 2023, 19, 2169531. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Garcia, J.A.; Faltas, B.; Grivas, P.; Barata, P.; Shoag, J.E. Immune Checkpoint Inhibitors and Long-term Survival of Patients With Metastatic Urothelial Cancer. JAMA Netw. Open 2023, 6, e237444. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.P.-Y.; Hsu, C.-Y.; Berry, L.; Bunn, P.; Shyr, Y. Analysis of Cancer Survival Associated With Immune Checkpoint Inhibitors after Statistical Adjustment: A Systematic Review and Meta-analyses. JAMA Netw. Open 2022, 5, e2227211. [Google Scholar] [CrossRef]
- Alturki, N.A. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J. Clin. Med. 2023, 12, 4301. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wu, L.; Han, L.; Zheng, X.; Tong, R.; Li, L.; Bai, L.; Bian, Y. Immune-related adverse events of immune checkpoint inhibitors: A review. Front. Immunol. 2023, 14, 1167975. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, S.C.; Pisetsky, D.S. Mechanisms of immune-related adverse events during the treatment of cancer with immune checkpoint inhibitors. Rheumatology 2019, 58, vii59–vii67. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.R.; Pritzl, S.L.; Yu, W.; Bara, I.; Thanarajasingam, G.; Kaul, M.D.; Williams, K.A.; Dueck, A.C.; Mansfield, A.S. The Timing, Trajectory, and Incidence of Immune-Related Adverse Events in NSCLC Treated With Atezolizumab. JTO Clin. Res. Rep. 2023, 4, 100611. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Min, L. Immune-related endocrine disorders in novel Immune checkpoint inhibition therapy. Genes. Dis. 2016, 3, 252–256. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Daban, A.; Gonnin, C.; Phan, L.; Saldmann, A.; Granier, C.; Lillo-Lelouet, A.; Le Beller, C.; Pouchot, J.; Weiss, L.; Tartour, E.; et al. Preexisting autoantibodies as predictor of immune related adverse events (irAEs) for advanced solid tumors treated with immune checkpoint inhibitors (ICIs). Oncoimmunology 2023, 12, 2204754. [Google Scholar] [CrossRef]
- Les, I.; Martínez, M.; Narro, A.; Pérez, I.; Sánchez, C.; Puntí, L.; Anaut, P.; Eguiluz, S.; Herrera, A.; Domínguez, S. Association of immune-related adverse events induced by nivolumab with a battery of autoantibodies. Ann. Med. 2021, 53, 762–769. [Google Scholar] [CrossRef]
- Takada, H.; Yamashita, K.; Osawa, L.; Komiyama, Y.; Muraoka, M.; Suzuki, Y.; Sato, M.; Kobayashi, S.; Yoshida, T.; Takano, S.; et al. Significance of the autoantibody assay in predicting the development of immune-related adverse events in patients receiving atezolizumab plus bevacizumab combination therapy for unresectable hepatocellular carcinoma. Hepatol. Res. 2023, 54, 162–173. [Google Scholar] [CrossRef]
- Toi, Y.; Sugawara, S.; Sugisaka, J.; Ono, H.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Aso, M.; Tsurumi, K.; et al. Profiling Preexisting Antibodies in Patients Treated With Anti-PD-1 Therapy for Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 376–383. [Google Scholar] [CrossRef]
- de Moel, E.C.; Rozeman, E.A.; Kapiteijn, E.H.; Verdegaal, E.M.E.; Grummels, A.; Bakker, J.A.; Huizinga, T.W.J.; Haanen, J.B.; Toes, R.E.M.; van der Woude, D. Autoantibody Development under Treatment with Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2019, 7, 6–11. [Google Scholar] [CrossRef]
- Castel-Ajgal, Z.; Goulvestre, C.; Zaibet, S.; Arrondeau, J.; Bretagne, M.; Peyromaure, M.; Batteux, F.; Alexandre, J.; Goldwasser, F.; Huillard, O. Preexisting Autoantibodies and Immune Related Adverse Events in Metastatic Urothelial Carcinoma Patients Treated by Pembrolizumab. Clin. Genitourin. Cancer 2022, 20, e362–e368. [Google Scholar] [CrossRef]
- Giannicola, R.; D’Arrigo, G.; Botta, C.; Agostino, R.; Del Medico, P.; Falzea, A.C.; Barbieri, V.; Staropoli, N.; Del Giudice, T.; Pastina, P.; et al. Early blood rise in auto-antibodies to nuclear and smooth muscle antigens is predictive of prolonged survival and autoimmunity in metastatic-non-small cell lung cancer patients treated with PD-1 immune-check point blockade by nivolumab. Mol. Clin. Oncol. 2019, 11, 81–90. [Google Scholar] [CrossRef]
- Hsu, S.J.; Chao, Y.C.; Lin, X.H.; Liu, H.H.; Zhang, Y.; Hong, W.F.; Chen, M.P.; Xu, X.; Zhang, L.; Ren, Z.G.; et al. Antinuclear antibody (ANA) status predicts immune-related adverse events in liver cancer patients undergoing anti-PD-1 therapy. Clin. Exp. Immunol. 2023, 212, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shi, Y.; Liu, X.; Liu, J.; Xu, Y.; Zhao, J.; Zhong, W.; Käsmann, L.; Hakozaki, T.; Provencio, M.; et al. Safety and efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients with preexisting antinuclear antibodies: A retrospective cohort study. Transl. Lung Cancer Res. 2022, 11, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Alserawan, L.; Anguera, G.; Zamora Atenza, C.; Serra López, J.; Martínez-Martínez, L.; Riudavets Melià, M.; Sullivan, I.; Barba Joaquin, A.; Majem Tarruella, M.; Vidal, S. Association between Changes in the Patterns of Antinuclear Autoantibodies during Immune Checkpoint Inhibition Therapy and the Development of Severe Immune Related Adverse Events. Int. J. Mol. Sci. 2022, 23, 12641. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.A.; Stanzer, S.; Spiegelberg, J.; Bauernhofer, T.; Absenger, G.; Posch, F.; Lipp, R.; Halm, M.; Szkandera, J.; Balic, M.; et al. Evaluation of autoantibodies as predictors of treatment response and immune-related adverse events during the treatment with immune checkpoint inhibitors: A prospective longitudinal pan-cancer study. Cancer Med. 2022, 11, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Postow, M.; Zhu, C.; Jannat-Khah, D.; Li, Q.Z.; Vitone, G.; Chan, K.K.; Bass, A.R. Lower baseline autoantibody levels are associated with immune-related adverse events from immune checkpoint inhibition. J. Immunother. Cancer 2022, 10, e004008. [Google Scholar] [CrossRef] [PubMed]
- Izawa, N.; Shiokawa, H.; Onuki, R.; Hamaji, K.; Morikawa, K.; Saji, H.; Ohashi, H.; Kasugai, S.; Hayakawa, N.; Ohara, T.; et al. The clinical utility of comprehensive measurement of autoimmune disease-related antibodies in patients with advanced solid tumors receiving immune checkpoint inhibitors: A retrospective study. ESMO Open 2022, 7, 100415. [Google Scholar] [CrossRef] [PubMed]
- Mouri, A.; Kaira, K.; Yamaguchi, O.; Hashimoto, K.; Miura, Y.; Shiono, A.; Shinomiya, S.; Akagami, T.; Imai, H.; Kobayashi, K.; et al. Efficacy and Feasibility of Programmed Death-1/Programmed Death Ligand-1 Blockade Therapy in Non-Small Cell Lung Cancer Patients With High Antinuclear Antibody Titers. Front. Oncol. 2021, 11, 610952. [Google Scholar] [CrossRef] [PubMed]
- Sakakida, T.; Ishikawa, T.; Chihara, Y.; Harita, S.; Uchino, J.; Tabuchi, Y.; Komori, S.; Asai, J.; Narukawa, T.; Arai, A.; et al. Safety and efficacy of PD-1/PD-L1 blockade in patients with preexisting antinuclear antibodies. Clin. Transl. Oncol. 2020, 22, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Geng, R.; Xu, X.; Wang, Y.; Zhou, J.; Zhang, S.; Zhao, L.; Guan, M.; Bai, C. Safety and Efficacy of PD-1/PD-L1 Inhibitors in Cancer Patients With Preexisting Autoantibodies. Front. Immunol. 2022, 13, 893179. [Google Scholar] [CrossRef]
- Yoneshima, Y.; Tanaka, K.; Shiraishi, Y.; Hata, K.; Watanabe, H.; Harada, T.; Otsubo, K.; Iwama, E.; Inoue, H.; Masuda, S.; et al. Safety and efficacy of PD-1 inhibitors in non-small cell lung cancer patients positive for antinuclear antibodies. Lung Cancer 2019, 130, 5–9. [Google Scholar] [CrossRef]
- Isono, T.; Kagiyama, N.; Takano, K.; Hosoda, C.; Nishida, T.; Kawate, E.; Kobayashi, Y.; Ishiguro, T.; Takaku, Y.; Kurashima, K.; et al. Outcome and risk factor of immune-related adverse events and pneumonitis in patients with advanced or postoperative recurrent non-small cell lung cancer treated with immune checkpoint inhibitors. Thorac. Cancer 2021, 12, 153–164. [Google Scholar] [CrossRef]
- Abed, A.; Law, N.; Calapre, L.; Lo, J.; Bhat, V.; Bowyer, S.; Millward, M.; Gray, E.S. Human leucocyte antigen genotype association with the development of immune-related adverse events in patients with non-small cell lung cancer treated with single agent immunotherapy. Eur. J. Cancer 2022, 172, 98–106. [Google Scholar] [CrossRef]
- Diehl, A.; Yarchoan, M.; Hopkins, A.; Jaffee, E.; Grossman, S.A. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. Oncotarget 2017, 8, 114268–114280. [Google Scholar] [CrossRef]
- Michailidou, D.; Khaki, A.R.; Morelli, M.P.; Diamantopoulos, L.; Singh, N.; Grivas, P. Association of blood biomarkers and autoimmunity with immune related adverse events in patients with cancer treated with immune checkpoint inhibitors. Sci. Rep. 2021, 11, 9029. [Google Scholar] [CrossRef]
- Egami, S.; Kawazoe, H.; Hashimoto, H.; Uozumi, R.; Arami, T.; Sakiyama, N.; Ohe, Y.; Nakada, H.; Aomori, T.; Ikemura, S.; et al. Absolute Lymphocyte Count Predicts Immune-Related Adverse Events in Patients With Non-Small-Cell Lung Cancer Treated With Nivolumab Monotherapy: A Multicenter Retrospective Study. Front. Oncol. 2021, 11, 618570. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Q.; Zhou, Y.; Yang, M.; Yu, Y. The Predictive Model Construction for Immune-Related Adverse Events in Non-Small Cell Lung Cancer Patients Receiving Immunotherapy. Technol. Cancer Res. Treat. 2023, 22, 15330338231206705. [Google Scholar] [CrossRef]
- Sung, C.; An, J.; Lee, S.; Park, J.; Lee, K.S.; Kim, I.H.; Han, J.Y.; Park, Y.H.; Kim, J.H.; Kang, E.J.; et al. Integrative analysis of risk factors for immune-related adverse events of checkpoint blockade therapy in cancer. Nat. Cancer 2023, 4, 844–859. [Google Scholar] [CrossRef]
- Xu, H.; Feng, H.; Zhang, W.; Wei, F.; Zhou, L.; Liu, L.; Zhao, Y.; Lv, Y.; Shi, X.; Zhang, J.; et al. Prediction of immune-related adverse events in non-small cell lung cancer patients treated with immune checkpoint inhibitors based on clinical and hematological markers: Real-world evidence. Exp. Cell Res. 2022, 416, 113157. [Google Scholar] [CrossRef] [PubMed]
- Egami, S.; Kawazoe, H.; Hashimoto, H.; Uozumi, R.; Arami, T.; Sakiyama, N.; Ohe, Y.; Nakada, H.; Aomori, T.; Ikemura, S.; et al. Peripheral blood biomarkers predict immune-related adverse events in non-small cell lung cancer patients treated with pembrolizumab: A multicenter retrospective study. J. Cancer 2021, 12, 2105–2112. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.T.; Zhang, Q.; Zhang, Z.; He, X.; Zhou, M.; Guo, Y.; Wang, X. Eosinophil and IFN-γ associated with immune-related adverse events as prognostic markers in patients with non-small cell lung cancer treated with immunotherapy. Front. Immunol. 2023, 14, 1112409. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Y.; Ma, F.; Sun, B.; Wang, Y.; Luo, J.; Liu, M.; Luo, Z. Peripheral Blood Markers Associated with Immune-Related Adverse Effects in Patients Who Had Advanced Non-Small Cell Lung Cancer Treated with PD-1 Inhibitors. Cancer Manag. Res. 2021, 13, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Valpione, S.; Pasquali, S.; Campana, L.G.; Piccin, L.; Mocellin, S.; Pigozzo, J.; Chiarion-Sileni, V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J. Transl. Med. 2018, 16, 94. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, X.; Wang, J.; Wu, S.; Wang, J.; Cao, B. Absolute eosinophil count may be an optimal peripheral blood marker to identify the risk of immune-related adverse events in advanced malignant tumors treated with PD-1/PD-L1 inhibitors: A retrospective analysis. World J. Surg. Oncol. 2022, 20, 242. [Google Scholar] [CrossRef]
- Bai, R.; Chen, N.; Chen, X.; Li, L.; Song, W.; Li, W.; Zhao, Y.; Zhang, Y.; Han, F.; Lyu, Z.; et al. Analysis of characteristics and predictive factors of immune checkpoint inhibitor-related adverse events. Cancer Biol. Med. 2021, 18, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Eun, Y.; Kim, I.Y.; Sun, J.-M.; Lee, J.; Cha, H.-S.; Koh, E.-M.; Kim, H.; Lee, J. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci. Rep. 2019, 9, 14039. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Tanaka, R.; Maruyama, H.; Ishitsuka, Y.; Okiyama, N.; Watanabe, R.; Fujimoto, M.; Fujisawa, Y. Correlation between blood cell count and outcome of melanoma patients treated with anti-PD-1 antibodies. Jpn. J. Clin. Oncol. 2019, 49, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Yoshino, K.; Otsuka, A.; Funakoshi, T.; Fujimura, T.; Yamamoto, Y.; Hata, H.; Gosho, M.; Tanaka, R.; Yamaguchi, K.; et al. Fluctuations in routine blood count might signal severe immune-related adverse events in melanoma patients treated with nivolumab. J. Dermatol. Sci. 2017, 88, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Khoja, L.; Atenafu, E.G.; Templeton, A.; Qye, Y.; Chappell, M.A.; Saibil, S.; Hogg, D.; Butler, M.O.; Joshua, A.M. The full blood count as a biomarker of outcome and toxicity in ipilimumab-treated cutaneous metastatic melanoma. Cancer Med. 2016, 5, 2792–2799. [Google Scholar] [CrossRef]
- Takada, S.; Murooka, H.; Tahatsu, K.; Yanase, M.; Umehara, K.; Hashishita, H.; Toru, H.; Satoru, M.; Sagawa, T.; Fujikawa, K.; et al. Identifying Early Predictive Markers for Immune-Related Adverse Events in Nivolumab-Treated Patients with Renal Cell Carcinoma and Gastric Cancer. Asian Pac. J. Cancer Prev. 2022, 23, 695–701. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Jiang, N.; Song, X.; Xu, J.; Zhu, X.; Chen, C.; Kong, C.; Wang, X.; Zong, D.; et al. Association of Blood Biochemical Indexes and Antibiotic Exposure With Severe Immune-related Adverse Events in Patients With Advanced Cancers Receiving PD-1 Inhibitors. J. Immunother. 2022, 45, 210–216. [Google Scholar] [CrossRef]
- Fujimoto, A.; Toyokawa, G.; Koutake, Y.; Kimura, S.; Kawamata, Y.; Fukuishi, K.; Yamazaki, K.; Takeo, S. Association between pretreatment neutrophil-to-lymphocyte ratio and immune-related adverse events due to immune checkpoint inhibitors in patients with non-small cell lung cancer. Thorac. Cancer 2021, 12, 2198–2204. [Google Scholar] [CrossRef]
- Lee, P.Y.; Oen, K.Q.; Lim, G.R.; Hartono, J.L.; Muthiah, M.; Huang, D.Q.; Teo, F.S.; Li, A.Y.; Mak, A.; Chandran, N.S.; et al. Neutrophil-to-Lymphocyte Ratio Predicts Development of Immune-Related Adverse Events and Outcomes from Immune Checkpoint Blockade: A Case-Control Study. Cancers 2021, 13, 1308. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Y.; Liu, F.; Qiu, X.; Zhang, X.; Fang, C.; Qian, X.; Li, Y. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol. Immunother. 2020, 69, 1813–1822. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, T.; Qi, C.; Zhang, X.; Shen, L.; Peng, Z. Peripheral Blood Biomarkers Predictive of Efficacy Outcome and Immune-Related Adverse Events in Advanced Gastrointestinal Cancers Treated with Checkpoint Inhibitors. Cancers 2022, 14, 3736. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Özbek, U.; Jethra, H.; Jun, T.; Marron, T.U.; Saeed, A.; Huang, Y.H.; Muzaffar, M.; Pinter, M.; Balcar, L.; et al. Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio appear predictive of immune treatment related toxicity in hepatocellular carcinoma. World J. Gastrointest. Oncol. 2023, 15, 1900–1912. [Google Scholar] [CrossRef]
- Shimozaki, K.; Sukawa, Y.; Sato, Y.; Horie, S.; Chida, A.; Tsugaru, K.; Togasaki, K.; Kawasaki, K.; Hirata, K.; Hayashi, H.; et al. Analysis of risk factors for immune-related adverse events in various solid tumors using real-world data. Future Oncol. 2021, 17, 2593–2603. [Google Scholar] [CrossRef]
- Pavan, A.; Calvetti, L.; Dal Maso, A.; Attili, I.; Del Bianco, P.; Pasello, G.; Guarneri, V.; Aprile, G.; Conte, P.; Bonanno, L. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors. Oncologist 2019, 24, 1128–1136. [Google Scholar] [CrossRef]
- Das, R.; Bar, N.; Ferreira, M.; Newman, A.M.; Zhang, L.; Bailur, J.K.; Bacchiocchi, A.; Kluger, H.; Wei, W.; Halaban, R.; et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Investig. 2018, 128, 715–720. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, J.; Ye, Y.; Pan, L.; Deng, H.; Wang, Y.; Yang, Y.; Diao, L.; Lin, S.H.; Mills, G.B.; et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 2020, 11, 4946. [Google Scholar] [CrossRef]
- Nuñez, N.G.; Berner, F.; Friebel, E.; Unger, S.; Wyss, N.; Gomez, J.M.; Purde, M.T.; Niederer, R.; Porsch, M.; Lichtensteiger, C.; et al. Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors. Med 2023, 4, 113–129. [Google Scholar] [CrossRef]
- Damuzzo, V.; Solito, S.; Pinton, L.; Carrozzo, E.; Valpione, S.; Pigozzo, J.; Arboretti Giancristofaro, R.; Chiarion-Sileni, V.; Mandruzzato, S. Clinical implication of tumor-associated and immunological parameters in melanoma patients treated with ipilimumab. Oncoimmunology 2016, 5, e1249559. [Google Scholar] [CrossRef] [PubMed]
- Stephen, B.; Hajjar, J.; Sarda, S.; Duose, D.Y.; Conroy, J.M.; Morrison, C.; Alshawa, A.; Xu, M.; Zarifa, A.; Patel, S.P.; et al. T-cell receptor beta variable gene polymorphism predicts immune-related adverse events during checkpoint blockade immunotherapy. J. Immunother. Cancer 2023, 11, e007236. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.K.; Aparicio, A.; Gao, J.; Zurita, A.J.; Araujo, J.C.; Logothetis, C.J.; Tahir, S.A.; Korivi, B.R.; Slack, R.S.; Vence, L.; et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl. Acad. Sci. USA 2016, 113, 11919–11924. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Cham, J.; Zhang, L.; Fong, G.; Kwek, S.S.; Klinger, M.; Faham, M.; Fong, L. Immune Toxicities Elicted by CTLA-4 Blockade in Cancer Patients Are Associated with Early Diversification of the T-cell Repertoire. Cancer Res. 2017, 77, 1322–1330. [Google Scholar] [CrossRef]
- Tanaka, R.; Okiyama, N.; Okune, M.; Ishitsuka, Y.; Watanabe, R.; Furuta, J.; Ohtsuka, M.; Otsuka, A.; Maruyama, H.; Fujisawa, Y.; et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity. J. Dermatol. Sci. 2017, 86, 71–73. [Google Scholar] [CrossRef]
- Botticelli, A.; Cirillo, A.; Pomati, G.; Cortesi, E.; Rossi, E.; Schinzari, G.; Tortora, G.; Tomao, S.; Fiscon, G.; Farina, L.; et al. Immune-related toxicity and soluble profile in patients affected by solid tumors: A network approach. Cancer Immunol. Immunother. 2023, 72, 2217–2231. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Motoshima, T.; Anami, T.; Yano, H.; Mito, R.; Pan, C.; Urakami, S.; Kinowaki, K.; Tsukamoto, H.; Kurahashi, R.; et al. Predictive value of CXCL10 for the occurrence of immune-related adverse events in patient with renal cell carcinoma. Microbiol. Immunol. 2023, 67, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Sato, Y.; Tanita, K.; Kambayashi, Y.; Otsuka, A.; Fujisawa, Y.; Yoshino, K.; Matsushita, S.; Funakoshi, T.; Hata, H.; et al. Serum levels of soluble CD163 and CXCL5 may be predictive markers for immune-related adverse events in patients with advanced melanoma treated with nivolumab: A pilot study. Oncotarget 2018, 9, 15542–15551. [Google Scholar] [CrossRef] [PubMed]
- Oyanagi, J.; Koh, Y.; Sato, K.; Mori, K.; Teraoka, S.; Akamatsu, H.; Kanai, K.; Hayata, A.; Tokudome, N.; Akamatsu, K.; et al. Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab. Lung Cancer 2019, 132, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, S.A.; Luo, X.; Fattah, F.J.; Saltarski, J.; Gloria-McCutchen, Y.; Lu, R.; Xie, Y.; Li, Q.; Wakeland, E.; et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br. J. Cancer 2019, 120, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Park, C.K.; Chung, C.; Oh, I.J.; Kim, Y.C.; Park, D.; Kim, J.; Kwon, G.C.; Kwon, I.; Sun, P.; et al. Baseline Serum Interleukin-6 Levels Predict the Response of Patients with Advanced Non-small Cell Lung Cancer to PD-1/PD-L1 Inhibitors. Immune Netw. 2020, 20, e27. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.A.; Zahoor, H.; Lin, Y.; Malhotra, U.; Sander, C.; Butterfield, L.H.; Kirkwood, J.M. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 2015, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Pistillo, M.P.; Fontana, V.; Morabito, A.; Dozin, B.; Laurent, S.; Carosio, R.; Banelli, B.; Ferrero, F.; Spano, L.; Tanda, E.; et al. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: An Italian melanoma intergroup study. Cancer Immunol. Immunother. 2019, 68, 97–107. [Google Scholar] [CrossRef]
- Felix, J.; Cassinat, B.; Porcher, R.; Schlageter, M.H.; Maubec, E.; Pages, C.; Baroudjian, B.; Homyrda, L.; Boukouaci, W.; Tamouza, R.; et al. Relevance of serum biomarkers associated with melanoma during follow-up of anti-CTLA-4 immunotherapy. Int. Immunopharmacol. 2016, 40, 466–473. [Google Scholar] [CrossRef]
- Refae, S.; Gal, J.; Ebran, N.; Otto, J.; Borchiellini, D.; Peyrade, F.; Chamorey, E.; Brest, P.; Milano, G.; Saada-Bouzid, E. Germinal Immunogenetics predict treatment outcome for PD-1/PD-L1 checkpoint inhibitors. Investig. New Drugs 2020, 38, 160–171. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Diab, A.; Yu, R.K.; Futreal, A.; Criswell, L.A.; Tayar, J.H.; Dadu, R.; Shannon, V.; Shete, S.S.; Suarez-Almazor, M.E. Genetic determinants of immune-related adverse events in patients with melanoma receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 1939–1949. [Google Scholar] [CrossRef]
- Xin, Z.; You, L.; Na, F.; Li, J.; Chen, M.; Song, J.; Bai, L.; Chen, J.; Zhou, J.; Ying, B. Immunogenetic variations predict immune-related adverse events for PD-1/PD-L1 inhibitors. Eur. J. Cancer 2023, 184, 124–136. [Google Scholar] [CrossRef]
- Ivanova, E.; Asadullina, D.; Rakhimov, R.; Izmailov, A.; Izmailov, A.; Gilyazova, G.; Galimov, S.; Pavlov, V.; Khusnutdinova, E.; Gilyazova, I. Exosomal miRNA-146a is downregulated in clear cell renal cell carcinoma patients with severe immune-related adverse events. Noncoding RNA Res. 2022, 7, 159–163. [Google Scholar] [CrossRef]
- Marschner, D.; Falk, M.; Javorniczky, N.R.; Hanke-Müller, K.; Rawluk, J.; Schmitt-Graeff, A.; Simonetta, F.; Haring, E.; Dicks, S.; Ku, M.; et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 2020, 5, e132334. [Google Scholar] [CrossRef]
- Bins, S.; Basak, E.A.; El Bouazzaoui, S.; Koolen, S.L.W.; Oomen-de Hoop, E.; van der Leest, C.H.; van der Veldt, A.A.M.; Sleijfer, S.; Debets, R.; van Schaik, R.H.N.; et al. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients. Br. J. Cancer 2018, 118, 1296–1301. [Google Scholar] [CrossRef]
- Ferguson, R.; Chat, V.; Morales, L.; Simpson, D.; Monson, K.R.; Cohen, E.; Zusin, S.; Madonna, G.; Capone, M.; Simeone, E.; et al. Germline immunomodulatory expression quantitative trait loci (ieQTLs) associated with immune-related toxicity from checkpoint inhibition. Eur. J. Cancer 2023, 189, 112923. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Brown, J.R.; Johnston, S.A.; Altan, M.; Sykes, K.F. Predicting response and toxicity to immune checkpoint inhibitors in lung cancer using antibodies to frameshift neoantigens. J. Transl. Med. 2023, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Chen, D.L.; Wang, F.; Yang, C.P.; Chen, X.X.; You, J.Q.; Huang, J.S.; Shao, Y.; Zhu, D.Q.; Ouyang, Y.M.; et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors. Mol. Cancer 2020, 19, 154. [Google Scholar] [CrossRef] [PubMed]
- Sugisaka, J.; Toi, Y.; Taguri, M.; Kawashima, Y.; Aiba, T.; Kawana, S.; Saito, R.; Aso, M.; Tsurumi, K.; Suzuki, K.; et al. Relationship between Programmed Cell Death Protein Ligand 1 Expression and Immune-related Adverse Events in Non-small-cell Lung Cancer Patients Treated with Pembrolizumab. JMA J. 2020, 3, 58–66. [Google Scholar] [CrossRef]
- Li, M.; Zhao, S.; Lopez, G.; Secor, A.; Das, P.; Surya, N.; Grogan, M.; Patel, S.; Chakravarthy, K.; Miah, A.; et al. Mean platelet volume, thrombocytosis, and survival in non-small cell lung cancer patients treated with first-line pembrolizumab alone or with chemotherapy. Cancer Immunol. Immunother. 2023, 72, 2067–2074. [Google Scholar] [CrossRef]
- Onodera, R.; Chiba, S.; Nihei, S.; Fujimura, I.; Akiyama, M.; Utsumi, Y.; Nagashima, H.; Kudo, K.; Maemondo, M. High level of C-reactive protein as a predictive factor for immune-related adverse events of immune checkpoint inhibitors in non-small cell lung cancer: A retrospective study. J. Thorac. Dis. 2023, 15, 4237–4247. [Google Scholar] [CrossRef]
- Khan, U.; Ghazanfar, H. T Lymphocytes and Autoimmunity. Int. Rev. Cell Mol. Biol. 2018, 341, 125–168. [Google Scholar] [CrossRef]
- Hampe, C.S. B Cell in Autoimmune Diseases. Scientifica 2012, 2012, 215308. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Gough, S.C.; Simmonds, M.J. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef]
- Del Rivero, J.; Cordes, L.M.; Klubo-Gwiezdzinska, J.; Madan, R.A.; Nieman, L.K.; Gulley, J.L. Endocrine-Related Adverse Events Related to Immune Checkpoint Inhibitors: Proposed Algorithms for Management. Oncologist 2020, 25, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Iwama, S.; Kobayashi, T.; Ando, M.; Arima, H. Risk of Thyroid Dysfunction in PD-1 Blockade Is Stratified by the Pattern of TgAb and TPOAb Positivity at Baseline. J. Clin. Endocrinol. Metab. 2023, 108, e1056–e1062. [Google Scholar] [CrossRef] [PubMed]
- Luongo, C.; Morra, R.; Gambale, C.; Porcelli, T.; Sessa, F.; Matano, E.; Damiano, V.; Klain, M.; Schlumberger, M.; Salvatore, D. Higher baseline TSH levels predict early hypothyroidism during cancer immunotherapy. J. Endocrinol. Investid. 2021, 44, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Maekura, T.; Naito, M.; Tahara, M.; Ikegami, N.; Kimura, Y.; Sonobe, S.; Kobayashi, T.; Tsuji, T.; Minomo, S.; Tamiya, A.; et al. Predictive Factors of Nivolumab-induced Hypothyroidism in Patients with Non-small Cell Lung Cancer. In Vivo 2017, 31, 1035–1039. [Google Scholar] [CrossRef]
- Brilli, L.; Danielli, R.; Campanile, M.; Secchi, C.; Ciuoli, C.; Calabrò, L.; Pilli, T.; Cartocci, A.; Pacini, F.; Di Giacomo, A.M.; et al. Baseline serum TSH levels predict the absence of thyroid dysfunction in cancer patients treated with immunotherapy. J. Endocrinol. Investig. 2021, 44, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Masaki, K.; Miyazaki, M.; Kakimoto, H.; Fukiage, Y.; Fukue, H.; Nakashima, A.; Imakyure, O. Incidence and Timing of Immune-Related Adverse Events in Immune-Checkpoint Inhibitor-Treated Patients: A Retrospective Observational Study. J. Clin. Med. 2023, 12, 7564. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Yang, X.; Hou, B.; Qiao, H. Immunosensitivity mediated by downregulated AKT1-SKP2 induces anti-PD-1-associated thyroid immune injury. Int. Immunopharmacol. 2023, 121, 110452. [Google Scholar] [CrossRef]
- Yoon, J.H.; Hong, A.R.; Kim, H.K.; Kang, H.C. Characteristics of Immune-Related Thyroid Adverse Events in Patients Treated with PD-1/PD-L1 Inhibitors. Endocrinol. Metab. 2021, 36, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, C.; Inaba, H.; Ariyasu, H.; Iwakura, H.; Ueda, Y.; Uraki, S.; Takeshima, K.; Furukawa, Y.; Morita, S.; Yamamoto, Y.; et al. Predictive and sensitive biomarkers for thyroid dysfunctions during treatment with immune-checkpoint inhibitors. Cancer Sci. 2020, 111, 1468–1477. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Y.; Wang, X.; Cheng, X.; Zhang, Y.; Wang, Y.; Fan, X.; Zhao, H.; Liu, H.; Chai, X.; et al. Thyroid dysfunction after immune checkpoint inhibitor treatment in a single-center Chinese cohort: A retrospective study. Endocrine 2023, 81, 123–133. [Google Scholar] [CrossRef]
- Kimbara, S.; Fujiwara, Y.; Iwama, S.; Ohashi, K.; Kuchiba, A.; Arima, H.; Yamazaki, N.; Kitano, S.; Yamamoto, N.; Ohe, Y. Association of antithyroglobulin antibodies with the development of thyroid dysfunction induced by nivolumab. Cancer Sci. 2018, 109, 3583–3590. [Google Scholar] [CrossRef]
- Madjar, K.; Mohindra, R.; Durán-Pacheco, G.; Rasul, R.; Essioux, L.; Maiya, V.; Chandler, G.S. Baseline risk factors associated with immune related adverse events and atezolizumab. Front. Oncol. 2023, 13, 1138305. [Google Scholar] [CrossRef]
- Pollack, R.M.; Kagan, M.; Lotem, M.; Dresner-Pollak, R. Baseline Tsh Level Is Associated with Risk of Anti-Pd-1-Induced Thyroid Dysfunction. Endocr. Pract. 2019, 25, 824–829. [Google Scholar] [CrossRef]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef]
- Inaba, H.; Kaido, Y.; Ito, S.; Hirobata, T.; Inoue, G.; Sugita, T.; Yamamoto, Y.; Jinnin, M.; Kimura, H.; Kobayashi, T.; et al. Human Leukocyte Antigens and Biomarkers in Type 1 Diabetes Mellitus Induced by Immune-Checkpoint Inhibitors. Endocrinol. Metab. 2022, 37, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, J.I.; Aizenbud, L.; Perdigoto, A.L.; Meffre, E.; Jilaveanu, L.; Michalek, D.A.; Rich, S.S.; Aizenbud, Y.; Adeniran, A.; Herold, K.C.; et al. Germline genetic variants are associated with development of insulin-dependent diabetes in cancer patients treated with immune checkpoint inhibitors. J. Immunother. Cancer 2023, 11, e006570. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Iwama, S.; Sugiyama, D.; Yasuda, Y.; Okuji, T.; Ito, M.; Ito, S.; Sugiyama, M.; Onoue, T.; Takagi, H.; et al. Anti-pituitary antibodies and susceptible human leukocyte antigen alleles as predictive biomarkers for pituitary dysfunction induced by immune checkpoint inhibitors. J. Immunother. Cancer 2021, 9, 002493. [Google Scholar] [CrossRef] [PubMed]
- Tahir, S.A.; Gao, J.; Miura, Y.; Blando, J.; Tidwell, R.S.S.; Zhao, H.; Subudhi, S.K.; Tawbi, H.; Keung, E.; Wargo, J.; et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc. Natl. Acad. Sci. USA 2019, 116, 22246–22251. [Google Scholar] [CrossRef]
- Quandt, Z.; Kim, S.; Villanueva-Meyer, J.; Coupe, C.; Young, A.; Kang, J.H.; Yazdany, J.; Schmajuk, G.; Rush, S.; Ziv, E.; et al. Spectrum of Clinical Presentations, Imaging Findings, and HLA Types in Immune Checkpoint Inhibitor-Induced Hypophysitis. J. Endocr. Soc. 2023, 7, bvad012. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Ashida, K.; Sakamoto, R.; Sakaguchi, C.; Ogata, M.; Maruyama, K.; Sakamoto, S.; Ikeda, M.; Ohe, K.; Akasu, S.; et al. Human leucocyte antigen DR15, a possible predictive marker for immune checkpoint inhibitor-induced secondary adrenal insufficiency. Eur. J. Cancer 2020, 130, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Tyan, K.; Baginska, J.; Brainard, M.; Giobbie-Hurder, A.; Severgnini, M.; Manos, M.; Haq, R.; Buchbinder, E.I.; Ott, P.A.; Hodi, F.S.; et al. Cytokine changes during immune-related adverse events and corticosteroid treatment in melanoma patients receiving immune checkpoint inhibitors. Cancer Immunol. Immunother. 2021, 70, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Hasan Ali, O.; Bomze, D.; Ring, S.S.; Berner, F.; Fässler, M.; Diem, S.; Abdou, M.-T.; Hammers, C.; Emtenani, S.; Braun, A.; et al. BP180-specific IgG is associated with skin adverse events, therapy response, and overall survival in non-small cell lung cancer patients treated with checkpoint inhibitors. J. Am. Acad. Dermatol. 2020, 82, 854–861. [Google Scholar] [CrossRef]
- Hasan Ali, O.; Berner, F.; Bomze, D.; Fässler, M.; Diem, S.; Cozzio, A.; Jörger, M.; Früh, M.; Driessen, C.; Lenz, T.L.; et al. Human leukocyte antigen variation is associated with adverse events of checkpoint inhibitors. Eur. J. Cancer 2019, 107, 8–14. [Google Scholar] [CrossRef]
- Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017, 28, 1368–1379. [Google Scholar] [CrossRef]
- Shahabi, V.; Berman, D.; Chasalow, S.D.; Wang, L.; Tsuchihashi, Z.; Hu, B.; Panting, L.; Jure-Kunkel, M.; Ji, R.-R. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J. Transl. Med. 2013, 11, 75. [Google Scholar] [CrossRef]
- Wölffer, M.; Battke, F.; Schulze, M.; Feldhahn, M.; Flatz, L.; Martus, P.; Forschner, A. Biomarkers Associated with Immune-Related Adverse Events under Checkpoint Inhibitors in Metastatic Melanoma. Cancers 2022, 14, 302. [Google Scholar] [CrossRef] [PubMed]
- Purde, M.T.; Niederer, R.; Wagner, N.B.; Diem, S.; Berner, F.; Hasan Ali, O.; Hillmann, D.; Bergamin, I.; Joerger, M.; Risch, M.; et al. Presence of autoantibodies in serum does not impact the occurrence of immune checkpoint inhibitor-induced hepatitis in a prospective cohort of cancer patients. J. Cancer Res. Clin. Oncol. 2022, 148, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Yu, Y.; Zhang, M.; Tang, Y.; Wu, D.; Wang, S.; Fang, Y.; Zhang, Y.; Meng, L.; Li, Y.; et al. Association between germ-line HLA and immune-related adverse events. Front. Immunol. 2022, 13, 952099. [Google Scholar] [CrossRef] [PubMed]
- Mathias, K.; Rouhani, S.; Olson, D.; Bass, A.R.; Gajewski, T.F.; Reid, P. Association Between Rheumatic Autoantibodies and Immune-Related Adverse Events. Oncologist 2023, 28, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, L.C.; Dorak, M.T.; Bettinotti, M.P.; Bingham, C.O.; Shah, A.A. Association of HLA-DRB1 shared epitope alleles and immune checkpoint inhibitor-induced inflammatory arthritis. Rheumatology 2019, 58, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhao, J.; Zhou, J.; Zhou, F.; Jiang, T.; Jiang, S.; Sun, X.; You, X.; Wu, F.; Ren, S.; et al. Association of baseline peripheral-blood eosinophil count with immune checkpoint inhibitor-related pneumonitis and clinical outcomes in patients with non-small cell lung cancer receiving immune checkpoint inhibitors. Lung Cancer 2020, 150, 76–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Cao, S.; Wang, Y.; Ling, X.; Zhou, Y.; Zhong, H. A nomogram model for predicting the risk of checkpoint inhibitor-related pneumonitis for patients with advanced non-small-cell lung cancer. Cancer Med. 2023, 12, 15998–16010. [Google Scholar] [CrossRef]
- Hirashima, T.; Kanai, T.; Suzuki, H.; Yoshida, H.; Matsushita, A.; Kawasumi, H.; Samejima, Y.; Noda, Y.; Nasu, S.; Tanaka, A.; et al. The Levels of Interferon-gamma Release as a Biomarker for Non-small-cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Anticancer Res. 2019, 39, 6231–6240. [Google Scholar] [CrossRef]
- Correale, P.; Saladino, R.E.; Giannarelli, D.; Sergi, A.; Mazzei, M.A.; Bianco, G.; Giannicola, R.; Iuliano, E.; Forte, I.M.; Calandruccio, N.D.; et al. HLA Expression Correlates to the Risk of Immune Checkpoint Inhibitor-Induced Pneumonitis. Cells 2020, 9, 1964. [Google Scholar] [CrossRef]
- Möhn, N.; Mahjoub, S.; Duzzi, L.; Narten, E.; Grote-Levi, L.; Körner, G.; Seeliger, T.; Beutel, G.; Bollmann, B.A.; Wirth, T.; et al. Monocyte chemoattractant protein 1 as a potential biomarker for immune checkpoint inhibitor-associated neurotoxicity. Cancer Med. 2023, 12, 9373–9383. [Google Scholar] [CrossRef]
- Chang, H.; Shin, Y.W.; Keam, B.; Kim, M.; Im, S.A.; Lee, S.T. HLA-B27 association of autoimmune encephalitis induced by PD-L1 inhibitor. Ann. Clin. Transl. Neurol. 2020, 7, 2243–2250. [Google Scholar] [CrossRef]
- Müller-Jensen, L.; Knauss, S.; Ginesta Roque, L.; Schinke, C.; Maierhof, S.K.; Bartels, F.; Finke, C.; Rentzsch, K.; Ulrich, C.; Mohr, R.; et al. Autoantibody profiles in patients with immune checkpoint inhibitor-induced neurological immune related adverse events. Front. Immunol. 2023, 14, 1108116. [Google Scholar] [CrossRef]
- Drobni, Z.D.; Zafar, A.; Zubiri, L.; Zlotoff, D.A.; Alvi, R.M.; Lee, C.; Hartmann, S.; Gilman, H.K.; Villani, A.C.; Nohria, A.; et al. Decreased Absolute Lymphocyte Count and Increased Neutrophil/Lymphocyte Ratio With Immune Checkpoint Inhibitor-Associated Myocarditis. J. Am. Heart Assoc. 2020, 9, e018306. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Meguro, A.; Nakamura, J.; Chikagawa, R.; Osada, R.; Shibuya, E.; Hasumi, Y.; Yamada, N.; Ishihara, M.; Mizuki, N. HLA-DRB1*04:05 is involved in the development of Vogt-Koyanagi-Harada disease-like immune-related adverse events in patients receiving immune checkpoint inhibitors. Sci. Rep. 2023, 13, 13580. [Google Scholar] [CrossRef] [PubMed]
- Dougan, M. Checkpoint Blockade Toxicity and Immune Homeostasis in the Gastrointestinal Tract. Front. Immunol. 2017, 8, 1547. [Google Scholar] [CrossRef] [PubMed]
- Coutzac, C.; Adam, J.; Soularue, E.; Collins, M.; Racine, A.; Mussini, C.; Boselli, L.; Kamsukom, N.; Mateus, C.; Charrier, M.; et al. Colon Immune-Related Adverse Events: Anti-CTLA-4 and Anti-PD-1 Blockade Induce Distinct Immunopathological Entities. J. Crohns Colitis 2017, 11, 1238–1246. [Google Scholar] [CrossRef]
- Baraka, B.; Abosheaishaa, H.; Nassar, M. Immunotherapy-induced thyroid dysfunction: An updated review. Egypt. J. Intern. Med. 2023, 35, 48. [Google Scholar] [CrossRef]
- Mazzarella, L.; Giugliano, F.; Nicolo, E.; Esposito, A.; Crimini, E.; Tini, G.; Uliano, J.; Corti, C.; D’Amico, P.; Aliaga, P.T.; et al. Immune-Related Adverse Event Likelihood Score Identifies “Pure” IRAEs Strongly Associated With Outcome in a Phase I-II Trial Population. Oncologist 2024, 29, e266–e274. [Google Scholar] [CrossRef]
- Zhukova, N.; Orlova, R.; Malkova, A.; Kaledina, E.; Demchenkova, A.; Naimushina, P.; Nazarov, V.; Mazing, A.; Lapin, S.; Belyak, N.; et al. The Novel Diagnostic Index Based on HLA-DRB1 Genotype and PD-L1 Expression can Predict Severe irAEs in Patients with Metastatic Melanoma Taking Immune Checkpoint Inhibitors. Results Pilot Study 2022, 42, 1–9. [Google Scholar] [CrossRef]
- Khan, Z.; Di Nucci, F.; Kwan, A.; Hammer, C.; Mariathasan, S.; Rouilly, V.; Carroll, J.; Fontes, M.; Ley Acosta, S.; Guardino, E.; et al. Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 12288–12294. [Google Scholar] [CrossRef]
- Khan, Z.; Hammer, C.; Carroll, J.; Di Nucci, F.; Acosta, S.L.; Maiya, V.; Bhangale, T.; Hunkapiller, J.; Mellman, I.; Albert, M.L.; et al. Genetic variation associated with thyroid autoimmunity shapes the systemic immune response to PD-1 checkpoint blockade. Nat. Commun. 2021, 12, 3355. [Google Scholar] [CrossRef]
- Friedlander, P.; Wood, K.; Wassmann, K.; Christenfeld, A.M.; Bhardwaj, N.; Oh, W.K. A whole-blood RNA transcript-based gene signature is associated with the development of CTLA-4 blockade-related diarrhea in patients with advanced melanoma treated with the checkpoint inhibitor tremelimumab. J. Immunother. Cancer 2018, 6, 90. [Google Scholar] [CrossRef]
- Lim, S.Y.; Lee, J.H.; Gide, T.N.; Menzies, A.M.; Guminski, A.; Carlino, M.S.; Breen, E.J.; Yang, J.Y.H.; Ghazanfar, S.; Kefford, R.F.; et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy. Clin. Cancer Res. 2019, 25, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Chen, X.; Li, K.; Liu, Y.; Zhang, Z.; Chen, Y.; Liu, Y.; Wang, Y.; Lin, S.H.; Diao, L.; et al. Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. J. Immunother. Cancer 2022, 10, e003779. [Google Scholar] [CrossRef] [PubMed]
- Lasagna, A.; Mascaro, F.; Figini, S.; Basile, S.; Gambini, G.; Klersy, C.; Lenti, M.V.; Di Sabatino, A.; Di Benedetto, A.; Calvi, M.; et al. Impact of proton pump inhibitors on the onset of gastrointestinal immune-related adverse events during immunotherapy. Cancer Med. 2023, 12, 19530–19536. [Google Scholar] [CrossRef]
- Sieber, B.; Strauss, J.; Li, Z.; Gatti-Mays, M.E. Concomitant Medication Effects on Immune Checkpoint Inhibitor Efficacy and Toxicity. Front. Oncol. 2022, 12, 836934. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, A.; D’Alessio, A.; Cleary, S.; Buti, S.; Bersanelli, M.; Bordi, P.; Tonini, G.; Vincenzi, B.; Tucci, M.; Russo, A.; et al. Type 2 Diabetes Mellitus and Efficacy Outcomes from Immune Checkpoint Blockade in Patients with Cancer. Clin. Cancer Res. 2023, 29, 2714–2724. [Google Scholar] [CrossRef]
- Guan, M.C.; Ding, Q.; Ning, J.; Zhu, H. Metformin as a booster or obstacle of immunotherapy in patients with non-small cell lung cancer and diabetes mellitus. Cancer 2024, 130, 322–323. [Google Scholar] [CrossRef] [PubMed]
- Moradian, S.; Ghasemi, S.; Boutorabi, B.; Sharifian, Z.; Dastjerdi, F.; Buick, C.; Lee, C.T.; Mayo, S.J.; Morita, P.P.; Howell, D. Development of an eHealth Tool for Capturing and Analyzing the Immune-related Adverse Events (irAEs) in Cancer Treatment. Cancer Inform. 2023, 22, 11769351231178587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Shen, L.; Zhu, D.; Ma, S.; Cong, L. Efficiency of Electronic Health Record Assessment of Patient-Reported Outcomes after Cancer Immunotherapy: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e224427. [Google Scholar] [CrossRef] [PubMed]
Organ System | Frequency (%) |
---|---|
PD(L)1-inhibitors | |
Colitis | <1–3 |
Pulmonary | <1–5 |
Skin | <1–16 |
Neurological | 0.3 |
Endocrinopathy | 7–23 |
Hepatic | <1–10 |
Renal | 0–2 |
CTLA-4 inhibitors | |
Colitis | 7–15 |
Skin | 19–34 |
Neurological | <1–4 |
Endocrinopathy | 7–37 |
Hepatic | 3–24 |
PD(L)1-inhibitors with CTLA-4 inhibitors | |
Colitis | 1–13 |
Pulmonary | 3–7 |
Skin | 16–30 |
Endocrinopathy | 12–34 |
Hepatic | 3–33 |
Renal | <1–7 |
PD1-inhibitors with LAG-3 inhibitors (from RELATIVITY-047 trial) | |
Colitis | 7 |
Pulmonary | 4 |
Skin | 9 |
Endocrinopathy | 31 |
Hepatic | 5 |
Renal | 2 |
Scoring System | Association |
---|---|
6-item clinical likelihood score [131] | Score > 5: associated with higher risk of irAE |
3-item clinicopathological score [132] | Score > 2: associated with severe irAE |
Psoriasis-associated polygenic risk scores for dermatologic irAEs [133] | Higher score: associated with higher risk of dermatologic irAE |
140-gene germline polygenic risk score [134] | Higher score: associated with thyroid irAE |
859-gene germline variant, HLA alleles, and blood counts, deep neural network model [34] | Predictive of each organ-specific irAE |
16-gene RNA expression signature [135] | Higher score at 30 days after treatment: increased risk of colitis |
Combined 11 cytokine (CYTOX) score [136] | Higher score: associated with higher risk of any irAE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponvilawan, B.; Khan, A.W.; Subramanian, J.; Bansal, D. Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors. Cancers 2024, 16, 1225. https://doi.org/10.3390/cancers16061225
Ponvilawan B, Khan AW, Subramanian J, Bansal D. Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors. Cancers. 2024; 16(6):1225. https://doi.org/10.3390/cancers16061225
Chicago/Turabian StylePonvilawan, Ben, Abdul Wali Khan, Janakiraman Subramanian, and Dhruv Bansal. 2024. "Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors" Cancers 16, no. 6: 1225. https://doi.org/10.3390/cancers16061225
APA StylePonvilawan, B., Khan, A. W., Subramanian, J., & Bansal, D. (2024). Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors. Cancers, 16(6), 1225. https://doi.org/10.3390/cancers16061225