Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Short History of Immune Effector Cell Therapy
3. Chimeric Antigen Receptor T-Cell Development
4. Approved CAR T-Cell Products
4.1. Tisagenlecleucel (Kymriah®)
4.2. Axicabtagene Ciloleucel (Yescarta®)
4.3. Brexucabtagene Autoleucel (Tecartus®)
4.4. Idecabtagene Vicleucel (Abecma®)
4.5. Lisocabtagene Maraleucel (Breyanzi®)
4.6. Ciltacabtagene Autoleucel (Carvykti®)
5. Treatment-Related Adverse Events
5.1. Immune Effector Cell-Associated Hematotoxicity (ICAHT)/Hemophagocytic Lymphohistiocytosis (HLH)/Macrophage Activation Syndrome (MAS) after CAR T-Cell Therapy
5.2. Cytokine Release Syndrome (CRS)
5.3. Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)
6. CAR T-Cell Therapy in Solid Oncology
7. Obstacles and Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef] [PubMed]
- Fenis, A.; Demaria, O.; Gauthier, L.; Vivier, E.; Narni-Mancinelli, E. New immune cell engagers for cancer immunotherapy. Nat. Rev. Immunol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Fanouriakis, A.; Kostopoulou, M.; Alunno, A.; Aringer, M.; Bajema, I.; Boletis, J.N.; Cervera, R.; Doria, A.; Gordon, C.; Govoni, M.; et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Penack, O.; Marchetti, M.; Ruutu, T.; Aljurf, M.; Bacigalupo, A.; Bonifazi, F.; Ciceri, F.; Cornelissen, J.; Malladi, R.; Duarte, R.F.; et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies: Updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020, 7, e157–e167. [Google Scholar] [CrossRef] [PubMed]
- Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet 2019, 394, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.-E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef]
- Kolb, H.J.; Schattenberg, A.; Goldman, J.M.; Hertenstein, B.; Jacobsen, N.; Arcese, W.; Ljungman, P.; Ferrant, A.; Verdonck, L.; Niederwieser, D.; et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995, 86, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.J.; Mittermüller, J.; Clemm, C.; Holler, E.; Ledderose, G.; Brehm, G.; Heim, M.; Wilmanns, W. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990, 76, 2462–2465. [Google Scholar] [CrossRef]
- O’Neill, A.T.; Chakraverty, R. Graft Versus Leukemia: Current Status and Future Perspectives. J. Clin. Oncol. 2021, 39, 361–372. [Google Scholar] [CrossRef]
- Schmid, C.; Kuball, J.; Bug, G. Defining the Role of Donor Lymphocyte Infusion in High-Risk Hematologic Malignancies. J. Clin. Oncol. 2021, 39, 397–418. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Approval Axicabtagene Ciloleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel (accessed on 5 February 2024).
- U.S. Food and Drug Administration. FDA Approval Brexucabtagene Autoleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel (accessed on 5 February 2024).
- U.S. Food and Drug Administration. FDA Approval Ciltacabtagene Autoleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/carvykti (accessed on 5 February 2024).
- U.S. Food and Drug Administration. FDA Approval Idecabtagene Vicleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/abecma-idecabtagene-vicleucel (accessed on 5 February 2024).
- U.S. Food and Drug Administration. FDA Approval Lisocabtagene Maraleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 5 February 2024).
- U.S. Food and Drug Administration. FDA Approval Tisagenlecleucel. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Axicabtagene Ciloleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/yescarta (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Brexucabtagene Autoleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tecartus (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Ciltacabtagene Autoleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/carvykti (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Idecabtagene Vicleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/abecma (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Lisocabtagene Maraleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/breyanzi (accessed on 5 February 2024).
- European Medicines Agency. EMA Approval Tisagenlecleucel. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/kymriah (accessed on 5 February 2024).
- Mitchison, N.A. Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J. Exp. Med. 1955, 102, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.W.; Loutit, J.F. Treatment of murine leukaemia with X-rays and homologous bone marrow. II. Br. J. Haematol. 1957, 3, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Mathé, G.; Amiel, J.L.; Schwarzenberg, L.; Cattan, A.; Schneider, M. Adoptive immunotherapy of acute leukemia: Experimental and clinical results. Cancer Res. 1965, 25, 1525–1531. [Google Scholar] [PubMed]
- Southam, C.M.; Brunschwig, A.; Levin, A.G.; Dizon, Q.S. Effect of leukocytes on transplantability of human cancer. Cancer 1966, 19, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Weiden, P.L.; Flournoy, N.; Thomas, E.D.; Prentice, R.; Fefer, A.; Buckner, C.D.; Storb, R. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N. Engl. J. Med. 1979, 300, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988, 319, 1676–1680. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.; Thompson, J.A.; Byrd, D.; Riddell, S.R.; Roche, P.; Celis, E.; Greenberg, P.D. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. USA 2002, 99, 16168–16173. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Brentjens, R.; Rivière, I. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 2009, 21, 215–223. [Google Scholar] [CrossRef]
- Eshhar, Z.; Bach, N.; Fitzer-Attas, C.J.; Gross, G.; Lustgarten, J.; Waks, T.; Schindler, D.G. The T-body approach: Potential for cancer immunotherapy. Springer Semin. Immunopathol. 1996, 18, 199–209. [Google Scholar] [CrossRef]
- Kuwana, Y.; Asakura, Y.; Utsunomiya, N.; Nakanishi, M.; Arata, Y.; Itoh, S.; Nagase, F.; Kurosawa, Y. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 1987, 149, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.L.; Near, R.; Mudgett-Hunter, M.; Margolies, M.N.; Kubo, R.T.; Kaye, J.; Hedrick, S.M. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell 1989, 58, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.; Gorochov, G.; Waks, T.; Eshhar, Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant. Proc. 1989, 21, 127–130. [Google Scholar] [PubMed]
- Gross, G.; Waks, T.; Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. [Google Scholar] [CrossRef] [PubMed]
- Goverman, J.; Gomez, S.M.; Segesman, K.D.; Hunkapiller, T.; Laug, W.E.; Hood, L. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: Implications for T cell receptor complex formation and activation. Cell 1990, 60, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, M.H.; Westwood, J.A.; Parker, L.L.; Wang, G.; Eshhar, Z.; Mavroukakis, S.A.; White, D.E.; Wunderlich, J.R.; Canevari, S.; Rogers-Freezer, L.; et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin. Cancer Res. 2006, 12, 6106–6115. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Digiusto, D.L.; Slovak, M.; Wright, C.; Naranjo, A.; Wagner, J.; Meechoovet, H.B.; Bautista, C.; Chang, W.-C.; Ostberg, J.R.; et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol. Ther. 2007, 15, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Lamers, C.H.J.; Sleijfer, S.; Vulto, A.G.; Kruit, W.H.J.; Kliffen, M.; Debets, R.; Gratama, J.W.; Stoter, G.; Oosterwijk, E. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: First clinical experience. J. Clin. Oncol. 2006, 24, e20–e22. [Google Scholar] [CrossRef]
- Imai, C.; Mihara, K.; Andreansky, M.; Nicholson, I.C.; Pui, C.-H.; Geiger, T.L.; Campana, D. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004, 18, 676–684. [Google Scholar] [CrossRef]
- Maher, J.; Brentjens, R.J.; Gunset, G.; Rivière, I.; Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat. Biotechnol. 2002, 20, 70–75. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT02435849—Study of Efficacy and Safety of CTL019 in Pediatric ALL Patients (ELIANA). Available online: https://clinicaltrials.gov/study/NCT02435849 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT02445248—Study of Efficacy and Safety of CTL019 in Adult DLBCL Patients (JULIET). Available online: https://clinicaltrials.gov/study/NCT02445248 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT02228096—Study of Efficacy and Safety of CTL019 in Pediatric ALL Patients (ENSIGN). Available online: https://clinicaltrials.gov/study/NCT02228096 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT03568461—Efficacy and Safety of Tisagenlecleucel in Adult Patients with Refractory or Relapsed Follicular Lymphoma (ELARA). Available online: https://clinicaltrials.gov/study/NCT03568461 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT01029366—CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy. Available online: https://clinicaltrials.gov/study/NCT01029366 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT01747486—Dose Optimization Trial of CD19 Redirected Autologous T Cells. Available online: https://clinicaltrials.gov/study/NCT01747486 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT02030847—Study of Redirected Autologous T Cells Engineered to Contain Anti-CD19 Attached to TCR and 4-1BB Signaling Domains in Patients with Chemotherapy Resistant or Refractory Acute Lymphoblastic Leukemia. Available online: https://clinicaltrials.gov/study/NCT02030847 (accessed on 6 February 2024).
- ClinicalTrials.gov. NCT02030834—Phase IIa Study of Redirected Autologous T Cells Engineered to Contain Anti-CD19 Attached to TCRz and 4-Signaling Domains in Patients with Chemotherapy Relapsed or Refractory CD19+ Lymphomas. Available online: https://clinicaltrials.gov/study/NCT02030834 (accessed on 6 February 2024).
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT02348216—Study Evaluating the Safety and Efficacy of KTE-C19 in Adult Participants with Refractory Aggressive Non-Hodgkin Lymphoma (ZUMA-1). Available online: https://clinicaltrials.gov/study/NCT02348216 (accessed on 7 February 2024).
- ClinicalTrials.gov. NCT03105336—A Phase 2 Multicenter Study of Axicabtagene Ciloleucel in Subjects with Relapsed/Refractory Indolent Non-Hodgkin Lymphoma (ZUMA-5). Available online: https://clinicaltrials.gov/study/NCT03105336 (accessed on 7 February 2024).
- ClinicalTrials.gov. NCT03153462—Axicabtagene Ciloleucel Expanded Access Study (ZUMA-9). Available online: https://clinicaltrials.gov/study/NCT03153462 (accessed on 7 February 2024).
- ClinicalTrials.gov. NCT03761056—Study to Evaluate the Efficacy and Safety of Axicabtagene Ciloleucel as First-Line Therapy in Participants with High-Risk Large B-Cell Lymphoma (ZUMA-12). Available online: https://www.clinicaltrials.gov/study/NCT03761056 (accessed on 7 February 2024).
- ClinicalTrials.gov. NCT03391466—Study of Effectiveness of Axicabtagene Ciloleucel Compared to Standard of Care Therapy in Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma (ZUMA-7). Available online: https://clinicaltrials.gov/study/NCT03391466 (accessed on 7 February 2024).
- Sadelain, M.; Rivière, I.; Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer 2003, 3, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Mezzanzanica, D.; Canevari, S.; Mazzoni, A.; Figini, M.; Colnaghi, M.I.; Waks, T.; Schindler, D.G.; Eshhar, Z. Transfer of chimeric receptor gene made of variable regions of tumor-specific antibody confers anticarbohydrate specificity on T cells. Cancer Gene Ther. 1998, 5, 401–407. [Google Scholar] [PubMed]
- Krause, A.; Guo, H.F.; Latouche, J.B.; Tan, C.; Cheung, N.K.; Sadelain, M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 1998, 188, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Altenschmidt, U.; Klundt, E.; Groner, B. Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J. Immunol. 1997, 159, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- Darcy, P.K.; Haynes, N.M.; Snook, M.B.; Trapani, J.A.; Cerruti, L.; Jane, S.M.; Smyth, M.J. Redirected perforin-dependent lysis of colon carcinoma by ex vivo genetically engineered CTL. J. Immunol. 2000, 164, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Haynes, N.M.; Trapani, J.A.; Teng, M.W.L.; Jackson, J.T.; Cerruti, L.; Jane, S.M.; Kershaw, M.H.; Smyth, M.J.; Darcy, P.K. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 2002, 100, 3155–3163. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, R.P.; Ge, Y.; Patel, S.D.; Kashmiri, S.V.; Lee, H.S.; Hand, P.H.; Schlom, J.; Finer, M.H.; McArthur, J.G. Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum. Gene Ther. 1999, 10, 165–173. [Google Scholar] [CrossRef]
- Hwu, P.; Yang, J.C.; Cowherd, R.; Treisman, J.; Shafer, G.E.; Eshhar, Z.; Rosenberg, S.A. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 1995, 55, 3369–3373. [Google Scholar]
- Wang, G.; Chopra, R.K.; Royal, R.E.; Yang, J.C.; Rosenberg, S.A.; Hwu, P. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat. Med. 1998, 4, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.K.; Taylor, P.S.; Norton, S.D.; Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 1991, 147, 2461–2466. [Google Scholar] [CrossRef] [PubMed]
- Staveley-O’Carroll, K.; Sotomayor, E.; Montgomery, J.; Borrello, I.; Hwang, L.; Fein, S.; Pardoll, D.; Levitsky, H. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc. Natl. Acad. Sci. USA 1998, 95, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Hombach, A.; Sent, D.; Schneider, C.; Heuser, C.; Koch, D.; Pohl, C.; Seliger, B.; Abken, H. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res. 2001, 61, 1976–1982. [Google Scholar] [PubMed]
- Liebowitz, D.N.; Lee, K.P.; June, C.H. Costimulatory approaches to adoptive immunotherapy. Curr. Opin. Oncol. 1998, 10, 533–541. [Google Scholar] [CrossRef] [PubMed]
- June, C.H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Investig. 2007, 117, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Friedmann-Morvinski, D.; Bendavid, A.; Waks, T.; Schindler, D.; Eshhar, Z. Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 2005, 105, 3087–3093. [Google Scholar] [CrossRef] [PubMed]
- Finney, H.M.; Lawson, A.D.; Bebbington, C.R.; Weir, A.N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 1998, 161, 2791–2797. [Google Scholar] [CrossRef] [PubMed]
- Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-Desnoyers, G.; et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 2009, 17, 1453–1464. [Google Scholar] [CrossRef]
- Carpenito, C.; Milone, M.C.; Hassan, R.; Simonet, J.C.; Lakhal, M.; Suhoski, M.M.; Varela-Rohena, A.; Haines, K.M.; Heitjan, D.F.; Albelda, S.M.; et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA 2009, 106, 3360–3365. [Google Scholar] [CrossRef]
- Young, R.M.; Engel, N.W.; Uslu, U.; Wellhausen, N.; June, C.H. Next-Generation CAR T-cell Therapies. Cancer Discov. 2022, 12, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Arany, Z.; Baur, J.A.; Epstein, J.A.; June, C.H. CAR T therapy beyond cancer: The evolution of a living drug. Nature 2023, 619, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Rivière, I.; Riddell, S. Therapeutic T cell engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Labanieh, L.; Mackall, C.L. CAR immune cells: Design principles, resistance and the next generation. Nature 2023, 614, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Maus, M.V. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023, 56, 2296–2310. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Chavez, J.C.; Sehgal, A.; Epperla, N.; Ulrickson, M.L.; Bachy, E.; Munshi, P.; Casulo, C.; Maloney, D.G.; Vos, S.d.; et al. Three-Year Follow-up Analysis of Axicabtagene Ciloleucel in Relapsed/Refractory Indolent Non-Hodgkin Lymphoma (ZUMA-5). Blood 2023, 143, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT02601313—Study of Brexucabtagene Autoleucel (KTE-X19) in Participants with Relapsed/Refractory Mantle Cell Lymphoma (Cohort 1 and Cohort 2) (ZUMA-2). Available online: https://clinicaltrials.gov/study/NCT02601313 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT02614066—A Study Evaluating the Safety and Efficacy of Brexucabtagene Autoleucel (KTE-X19) in Adult Subjects with Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia (ZUMA-3). Available online: https://clinicaltrials.gov/study/NCT02614066 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT02625480—Study Evaluating Brexucabtagene Autoleucel (KTE-X19) in Pediatric and Adolescent Participants with Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia or Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma (ZUMA-4). Available online: https://clinicaltrials.gov/study/NCT02625480 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03624036—Study to Evaluate the Safety and Tolerability of Brexucabtagene Autoleucel (KTE-X19) in People with Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (ZUMA-8). Available online: https://clinicaltrials.gov/study/NCT03624036 (accessed on 8 February 2024).
- Goy, A.; Jacobson, C.A.; Flinn, I.W.; Hill, B.T.; Weng, W.K.; Mountjoy, L.; Olalekan, O.; Zheng, D.; Nunes, A.; Zhang, W.; et al. Outcomes of Patients with Relapsed/Refractory Mantle Cell Lymphoma (R/R MCL) Treated with Brexucabtagene Autoleucel (Brexu-cel) in ZUMA-2 and ZUMA-18, an Expanded Access Study. Blood 2023, 131, 106. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Shah, B.D.; Bishop, M.R.; Oluwole, O.O.; Logan, A.C.; Baer, M.R.; Donnellan, W.B.; O’Dwyer, K.M.; Holmes, H.; Arellano, M.L.; Ghobadi, A.; et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 2021, 138, 11–22. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT03361748—Efficacy and Safety Study of bb2121 in Subjects with Relapsed and Refractory Multiple Myeloma (KarMMa). Available online: https://clinicaltrials.gov/study/NCT03361748 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03601078—An Efficacy and Safety Study of bb2121 in Subjects with Relapsed and Refractory Multiple Myeloma and in Subjects with High-Risk Multiple Myeloma (KarMMa-2). Available online: https://clinicaltrials.gov/study/NCT03601078 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03651128—Efficacy and Safety Study of bb2121 Versus Standard Regimens in Subjects with Relapsed and Refractory Multiple Myeloma (RRMM) (KarMMa-3). Available online: https://clinicaltrials.gov/study/NCT03651128 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT02658929—Study of bb2121 in Multiple Myeloma. Available online: https://clinicaltrials.gov/study/NCT02658929 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT02786511—Longterm Follow-up of Subjects Treated with bb2121. Available online: https://clinicaltrials.gov/study/NCT02786511 (accessed on 8 February 2024).
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R.; et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT02631044—Study Evaluating the Safety and Pharmacokinetics of JCAR017 in B-cell Non-Hodgkin Lymphoma (TRANSCEND-NHL-001). Available online: https://clinicaltrials.gov/study/NCT02631044 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03484702—Trial to Determine the Efficacy and Safety of JCAR017 in Adult Participants with Aggressive B-Cell Non-Hodgkin Lymphoma (TRANSCENDWORLD). Available online: https://clinicaltrials.gov/study/NCT03484702 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03744676—A Safety Trial of Lisocabtagene Maraleucel (JCAR017) for Relapsed and Refractory (R/R) B-cell Non-Hodgkin Lymphoma (NHL) in the Outpatient Setting (TRANSCEND-OUTREACH-007). Available online: https://clinicaltrials.gov/study/NCT03744676 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03310619—A Safety and Efficacy Trial of JCAR017 Combinations in Subjects with Relapsed/Refractory B-cell Malignancies (PLATFORM). Available online: https://clinicaltrials.gov/study/NCT03310619 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03483103—Lisocabtagene Maraleucel (JCAR017) as Second-Line Therapy (TRANSCEND-PILOT-017006). Available online: https://clinicaltrials.gov/study/NCT03483103 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03331198—Study Evaluating Safety and Efficacy of JCAR017 in Subjects with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL). Available online: https://clinicaltrials.gov/study/NCT03331198 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03743246—A Study to Evaluate the Safety and Efficacy of JCAR017 in Pediatric Subjects with Relapsed/Refractory (r/r) B-cell Acute Lymphoblastic Leukemia (B-ALL) and B-cell Non-Hodgkin Lymphoma (B-NHL). Available online: https://clinicaltrials.gov/study/NCT03743246 (accessed on 8 February 2024).
- ClinicalTrials.gov. NCT03575351—A Study to Compare the Efficacy and Safety of JCAR017 to Standard of Care in Adult Subjects with High-risk, Transplant-eligible Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphomas (TRANSFORM). Available online: https://clinicaltrials.gov/study/NCT03575351 (accessed on 8 February 2024).
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.; Wang, M.; Arnason, J.; Purev, E.; Maloney, D.G.; Andreadis, C.; Sehgal, A.; et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood 2024, 143, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Hoda, D.; Riedell, P.A.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; Godwin, J.E.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): An open-label, phase 2 study. Lancet Oncol. 2022, 23, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT03548207—A Study of JNJ-68284528, a Chimeric Antigen Receptor T Cell (CAR-T) Therapy Directed against B-Cell Maturation Antigen (BCMA) in Participants with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1). Available online: https://clinicaltrials.gov/study/NCT03548207 (accessed on 9 February 2024).
- ClinicalTrials.gov. NCT04133636—A Study of JNJ-68284528, a Chimeric Antigen Receptor T Cell (CAR-T) Therapy Directed against B-cell Maturation Antigen (BCMA) in Participants with Multiple Myeloma (CARTITUDE-2). Available online: https://clinicaltrials.gov/study/NCT04133636 (accessed on 9 February 2024).
- ClinicalTrials.gov. NCT04181827—A Study Comparing JNJ-68284528, a CAR-T Therapy Directed against B-cell Maturation Antigen (BCMA), Versus Pomalidomide, Bortezomib and Dexamethasone (PVd) or Daratumumab, Pomalidomide and Dexamethasone (DPd) in Participants with Relapsed and Lenalidomide-Refractory Multiple Myeloma (CARTITUDE-4). Available online: https://clinicaltrials.gov/study/NCT04181827 (accessed on 9 February 2024).
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an Anti-B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for Relapsed/Refractory Multiple Myeloma: CARTITUDE-1 2-Year Follow-up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef]
- Cohen, A.D.; Mateos, M.-V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.; Suvannasankha, A.; de Braganca, K.C.; Corsale, C.; et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood 2023, 141, 219–230. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT01626495—Phase I/IIA Study of CART19 Cells for Patients with Chemotherapy Resistant or Refractory CD19+ Leukemia and Lymphoma (Pedi CART19). Available online: https://clinicaltrials.gov/study/NCT01626495 (accessed on 9 February 2024).
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Maude, S.L.; Pulsipher, M.A.; Boyer, M.W.; Grupp, S.A.; Davies, S.M.; Phillips, C.L.; Verneris, M.R.; August, K.J.; Schlis, K.; Driscoll, T.A.; et al. Efficacy and Safety of CTL019 in the First US Phase II Multicenter Trial in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of an Interim Analysis. Blood 2016, 128, 2801. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; de Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef]
- Fowler, N.H.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: The phase 2 ELARA trial. Nat. Med. 2022, 28, 325–332. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.C.; Lu, X.; Huang, Y.; Lin, X.; Mahmood, I.; Przepiorka, D.; Gavin, D.; Lee, S.; Liu, K.; George, B.; et al. FDA Approval Summary: Tisagenlecleucel for Treatment of Patients with Relapsed or Refractory B-cell Precursor Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2019, 25, 1142–1146. [Google Scholar] [CrossRef]
- Salles, G.; Schuster, S.J.; Dreyling, M.; Fischer, L.; Kuruvilla, J.; Patten, P.E.M.; von Tresckow, B.; Smith, S.M.; Jiménez-Ubieto, A.; Davis, K.L.; et al. Efficacy comparison of tisagenlecleucel vs. usual care in patients with relapsed or refractory follicular lymphoma. Blood Adv. 2022, 6, 5835–5843. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Feldman, S.A.; Zhao, Y.; Xu, H.; Black, M.A.; Morgan, R.A.; Wilson, W.H.; Rosenberg, S.A. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother. 2009, 32, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, I.C.; Lenton, K.A.; Little, D.J.; Decorso, T.; Lee, F.T.; Scott, A.M.; Zola, H.; Hohmann, A.W. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol. Immunol. 1997, 34, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.T.; Carpenter, R.O.; Stetler-Stevenson, M.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Somerville, R.P.T.; Lu, T.; Yang, J.C.; Sherry, R.M.; Feldman, S.A.; McIntyre, L.; Bot, A.; Rossi, J.; Lam, N.; et al. Long-Duration Complete Remissions of Diffuse Large B Cell Lymphoma after Anti-CD19 Chimeric Antigen Receptor T Cell Therapy. Mol. Ther. 2017, 25, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. NCT00924326—CAR T Cell Receptor Immunotherapy for Patients with B-Cell Lymphoma. Available online: https://clinicaltrials.gov/study/NCT00924326 (accessed on 9 February 2024).
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi, J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma. Mol. Ther. 2017, 25, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Jacobson, C.A.; Ghobadi, A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Five-year follow-up of ZUMA-1 supports the curative potential of Axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood 2023, 141, 2307–2315. [Google Scholar] [CrossRef]
- Westin, J.R.; Oluwole, O.O.; Kersten, M.J.; Miklos, D.B.; Perales, M.-A.; Ghobadi, A.; Rapoport, A.P.; Sureda, A.; Jacobson, C.A.; Farooq, U.; et al. Survival with Axicabtagene ciloleucel in Large B-Cell Lymphoma. N. Engl. J. Med. 2023, 389, 148–157. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; Vos, S.d.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Friedman, K.M.; Garrett, T.E.; Evans, J.W.; Horton, H.M.; Latimer, H.J.; Seidel, S.L.; Horvath, C.J.; Morgan, R.A. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells. Hum. Gene Ther. 2018, 29, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.-T.; Anderson, K.C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015, 7, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Garfall, A.L.; Maus, M.V.; Hwang, W.-T.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Zheng, Z.; Vogl, D.T.; Cohen, A.D.; Weiss, B.M.; et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Shi, V.; Maric, I.; Wang, M.; Stroncek, D.F.; Rose, J.J.; Brudno, J.N.; Stetler-Stevenson, M.; Feldman, S.A.; Hansen, B.G.; et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016, 128, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 2016, 30, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Teoh, J.; Brown, L.F. Developing lisocabtagene maraleucel chimeric antigen receptor T-cell manufacturing for improved process, product quality and consistency across CD19+ hematologic indications. Cytotherapy 2022, 24, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Lin, Y.; Agha, M.; Cohen, A.D.; Htut, M.; Stewart, A.K.; Hari, P.; Berdeja, J.G.; Usmani, S.Z.; Yeh, T.-M.; et al. Health-related quality of life in patients given ciltacabtagene autoleucel for relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b-2, open-label study. Lancet Haematol. 2022, 9, e897–e905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-H.; Liu, J.; Wang, B.-Y.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- San-Miguel, J.; Dhakal, B.; Yong, K.; Spencer, A.; Anguille, S.; Mateos, M.-V.; Fernández de Larrea, C.; Martínez-López, J.; Moreau, P.; Touzeau, C.; et al. Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N. Engl. J. Med. 2023, 389, 335–347. [Google Scholar] [CrossRef]
- Cappell, K.M.; Kochenderfer, J.N. Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transplant. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, K.; Subklewe, M.; Aljurf, M.; Bachy, E.; Balduzzi, A.; Barba, P.; Bruno, B.; Benjamin, R.; Carrabba, M.G.; Chabannon, C.; et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 2023, 142, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Maus, M.V.; Alexander, S.; Bishop, M.R.; Brudno, J.N.; Callahan, C.; Davila, M.L.; Diamonte, C.; Dietrich, J.; Fitzgerald, J.C.; Frigault, M.J.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 2020, 8, e001511. [Google Scholar] [CrossRef]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019, 54, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, K.; Perez, A.; Sesques, P.; Hoster, E.; Berger, C.; Jentzsch, L.; Mougiakakos, D.; Frölich, L.; Ackermann, J.; Bücklein, V.; et al. CAR-HEMATOTOX: A model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 2021, 138, 2499–2513. [Google Scholar] [CrossRef] [PubMed]
- Rejeski, K.; Greco, R.; Onida, F.; Sánchez-Ortega, I.; Bonini, C.; Sureda, A.; Gribben, J.G.; Yakoub-Agha, I.; Subklewe, M. An International Survey on Grading, Diagnosis, and Management of Immune Effector Cell-Associated Hematotoxicity (ICAHT) following CAR T-cell Therapy on Behalf of the EBMT and EHA. Hemasphere 2023, 7, e889. [Google Scholar] [CrossRef]
- Juluri, K.R.; Wu, Q.V.; Voutsinas, J.; Hou, J.; Hirayama, A.V.; Mullane, E.; Miles, N.; Maloney, D.G.; Turtle, C.J.; Bar, M.; et al. Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy. Blood Adv. 2022, 6, 2055–2068. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Knezevic, A.; Pennisi, M.; Chen, Y.; Ruiz, J.D.; Purdon, T.J.; Devlin, S.M.; Smith, M.; Shah, G.L.; Halton, E.; et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020, 4, 3776–3787. [Google Scholar] [CrossRef] [PubMed]
- Sandler, R.D.; Tattersall, R.S.; Schoemans, H.; Greco, R.; Badoglio, M.; Labopin, M.; Alexander, T.; Kirgizov, K.; Rovira, M.; Saif, M.; et al. Diagnosis and Management of Secondary HLH/MAS following HSCT and CAR-T Cell Therapy in Adults; A Review of the Literature and a Survey of Practice within EBMT Centres on Behalf of the Autoimmune Diseases Working Party (ADWP) and Transplant Complications Working Party (TCWP). Front. Immunol. 2020, 11, 524. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Hines, M.R.; Knight, T.E.; McNerney, K.O.; Leick, M.B.; Jain, T.; Ahmed, S.; Frigault, M.J.; Hill, J.A.; Jain, M.D.; Johnson, W.T.; et al. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant. Cell. Ther. 2023, 29, 438.e1–438.e16. [Google Scholar] [CrossRef]
- Mullanfiroze, K.; Lazareva, A.; Chu, J.; Williams, L.; Burridge, S.; Silva, J.; Chiesa, R.; Rao, K.; Lucchini, G.; Ghorashian, S.; et al. CD34+-selected stem cell boost can safely improve cytopenias following CAR T-cell therapy. Blood Adv. 2022, 6, 4715–4718. [Google Scholar] [CrossRef]
- Gagelmann, N.; Wulf, G.G.; Duell, J.; Glass, B.; van Heteren, P.; von Tresckow, B.; Fischer, M.; Penack, O.; Ayuk, F.; Einsele, H.; et al. Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: A GLA/DRST study. Blood Adv. 2023, 7, 555–559. [Google Scholar] [CrossRef]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm (accessed on 9 February 2024).
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers 2023, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.D.; Gust, J.; Perna, F. How I treat unique and difficult-to-manage cases of CAR T-cell therapy-associated neurotoxicity. Blood 2023, 141, 2443–2451. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Ogando-Rivas, E.; Liu, R.; Wang, T.; Rubin, J.; Jin, L.; Tao, H.; Sawyer, W.W.; Mendez-Gomez, H.R.; Cascio, M.; et al. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022, 11, 1974. [Google Scholar] [CrossRef]
- Bellone, M.; Calcinotto, A. Ways to enhance lymphocyte trafficking into tumors and fitness of tumor infiltrating lymphocytes. Front. Oncol. 2013, 3, 231. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, J.; Dietrich, J.; Straathof, K.; Roddie, C.; Scott, B.J.; Davidson, T.B.; Prolo, L.M.; Batchelor, T.T.; Campen, C.J.; Davis, K.L.; et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 2023, 29, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, G.; Fraietta, J.A.; Gerson, J.N.; van Deerlin, V.M.; Morrissette, J.J.D.; Caponetti, G.C.; Paruzzo, L.; Harris, J.C.; Chong, E.A.; Susanibar Adaniya, S.P.; et al. T-cell Lymphoma and Secondary Primary Malignancy Risk after Commercial CAR T-cell Therapy. Nat. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
1980s | First reports on chimeric antigen receptor T-cells (e.g., Kuwana et al. [33], Becker et al. [34], Eshhar et al. [35,36], Goverman et al. [37]) |
1990s | “First-generation” CAR T-cells with scFv (Eshhar et al. [38]) |
2000s | First clinical trials of “first-generation” CAR T-cells in metastatic solid tumors (e.g., Kershaw et al. [39], Park et al. [40], Lamers et al. [41]); development of “second-generation” CAR T-cells (e.g., Imai et al. [42], Maher et al. [43]) |
2010s | Successful use of “second-generation” CAR T-cells in several clinical trials [44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
2017 | FDA approval of first CAR T-cell product (tisagenlecleucel) |
Trade Name | Generic Name | Targeted Antigen | Costimulatory Domains | FDA Approval | EMA Approval |
---|---|---|---|---|---|
KYMRIAH® | Tisagen- lecleucel | CD19 | 4-1BB |
|
|
YESCARTA® | Axicabtagene ciloleucel | CD19 | CD28 |
|
|
TECARTUS® | Brexucabtagene autoleucel | CD19 | CD28 |
|
|
ABECMA® | Idecabtagene vicleucel | BCMA | 4-1BB |
|
|
BREYANZI® | Lisocabtagene maraleucel | CD19 | 4-1BB |
|
|
CARVYKTI® | Ciltacabtagene autoleucel | BCMA | 4-1BB |
|
|
Trade Name Generic Name | Most Relevant Clinical Trials | Summary of Most Relevant Results |
---|---|---|
KYMRIAH® Tisagenlecleucel |
| ELIANA: primary end point: ORR 82.3% (95% CI, 72.1 to 90.0); secondary end points: BOR 82.1% (95% CI, 70.8 to 90.4); BOR with MRD negative BM 81.0% (95% CI, 70.6 to 89.0); total SAEs 79.75%, CRS 63.29%, ICANS: 3.75% [44] JULIET: primary end point: ORR 52% (95% CI, 41 to 62); secondary end points: 12-month median RFS 65%; CRS ≥ 3: 22%, ICANS ≥ 3: 12% [52] ENSIGN: primary end point ORR: 70.3% (95% CI, 57.6 to 81.1); secondary end points: median EFS 15.6 months (95% CI, 6.4 to NA), median OS 29.9 months (95% CI, 15.1 to 42.4); total SAEs 81.25%, CRS 64.06%, ICANS 6.25% [46] ELARA: primary end point CRR: 69.1% (95% CI, 58.8 to 78.3); secondary end points: ORR 86.2 (95% CI, 77.5 to 92.4), total SAEs 43.3%, CRS 19.59%, ICANS 1.03% [47] |
YESCARTA® Axicabtagene ciloleucel |
| ZUMA-1: primary end points: cohort 1 ORR 82% (95% CI, 71 to 90), cohort 2 ORR 83% (95% CI, 63 to 95), cohort 3: CRS ≥ 3: 3%, ICANS ≥ 3: 39%, ICANS 5: 3%, cohort 4: CRS ≥ 3: 2%, ICANS ≥ 3: 17%, cohort 5: CRS ≥ 3: 2%, ICANS ≥ 3: 12%, cohort 6: CRS ≥ 3: 0%, ICANS ≥ 3: 15%; total SAEs 71.43% [53] ZUMA-5: primary end point: ORR 94% (95% CI, 88–97) in FL and 77% (95% CI, 59–90) in MZL; key secondary end points: median PFS 40.2 months in FL, not reached in MZL; FL: total SAEs 11%, CRS ≥ 3: 0%, ICANS ≥ 3: 0%; MZL: total SAEs 14%, CRS ≥ 3: 11%, ICANS ≥ 3: 4% [81] ZUMA-12: primary end point: CRR 78% (95% CI, 62 to 90); secondary end points: ORR 89% (95% CI, 75 to 97), median OS 24.5 months (95% CI, 3.6 to 24.5), total SAEs 45% [56] ZUMA-7: primary end point: 25-month follow-up: EFS 8.3 vs. 2.0 months, HR 0.4, (95% CI, 0.31 to 0.51, p < 0.001); secondary end points: ORR 83% vs. 50% (p < 0.001), CR 65% vs. 32%, total SAEs 91% vs. 83%; CRS ≥ 3: 6% vs. 0%, neurologic events ≥ 3: 21% vs. 1% [82] |
TECARTUS® Brexucabtagene autoleucel |
| ZUMA-2: primary end points: ORR 93% (95% CI, 84 to 98); secondary end points: CRR 67% (95% CI, 53 to 78), 12-month PFS 61% and OS 83%; CRS ≥ 3: 15%, ICANS ≥ 3: 31% [88] ZUMA-3: primary end points: CRR 70.9% (95% CI, 57 to 82); secondary end points: MRD negativity 76% (95% CI, 63 to 87), median DOR 12.8 months (95% CI, 8.7 to NA), median OS 18.2 (95% CI, 15.9 to NA), total SAEs: dose-dependent from 100% to 75%; CRS ≥ 3: 24%, ICANS ≥ 3: 25% [84,89,90] ZUMA-8: primary end point: dose limiting toxicities (DLTs): first-stage cohort 1: 0%, first-stage cohort 2: 0%, second-stage cohort 3: 33.3%, second-stage cohort 4A: 0%; secondary end points: ORR: first-stage cohort 1: 50% (95% CI, 11.8 to 88.2), first-stage cohort 2: 33% (95% CI, 0.8 to 90.6), second-stage cohort 3: 100% (95% CI, 29.2 to 100), second-stage cohort 4a: 0% (0.0 to 70.8) [86] ZUMA-18: ORR: 87%; median OS not yet reached at 33.5 months of follow-up; no new safety signals were detected |
ABECMA® Idecabtagene vicleucel |
| KarMMa: primary end point: ORR 73% (95% CO, 66 to 81; p < 0.001); secondary end points: CRR 33%, VGPR or better 52%, MRD negativity 26% (95% CI, 19 to 34), median DOR 10.7 months (95% CI, 9.0 to 11.3), median PFS 8.8 months (95% CI, 5.6 to 11.6), total SAEs 99%, CRS ≥ 3: 5%, ICANS ≥ 3: 3% [96] KarMMa-3: primary end point: at 18.6 months mPFS 13.3 vs. 4.4 months (HR 0,49, 95% CI, 0.38 to 0.65; p < 0.001); secondary end points: ORR 71% vs. 42% (p < 0.001), CR 39% vs. 5%; total SAE 93% vs. 75%, CRS ≥ 3: 5%, ICANS ≥ 3: 3% [97] |
BREYANZI® Lisocabtagene maraleucel |
| TRANSCEND-NHL-001: primary end point: ORR 73% (95% CI, 66.8 to 78.0); secondary end points: CRR 53% (95% CI, 46.8 to 59.4); 12-month DOR 54.7% (95% CI, 46.7 to 62.0), median PFS 6.8 months (95% CI, 3.3 to 14.1), 12-month OS 57.9% (95% CI, 51.3 to 63.8); total SAE 79%, CRS ≥ 3: 2%, ICANS ≥ 3: 10% [106,107] TRANSCEND-OUTREACH-007: primary end points: CRS ≥3: 0.0% (95% CI, 0.0 to 4.4), ICANS ≥3: 9.8% (95% CI, 4.3 to 18.3); secondary end points: total SAE: 74.4%, ORR 80.5% (95% CI, 70.3 to 88.4), CRR 53.7 (95% CI, 42.3 to 64.7), median DOR 14.75 months (95% CI, 5.03 to NA), median DOCR NA (95% CI, 16.59 to NA), median PFS 5.83 months (95% CI, 0.7 to 24.5), median OS 22.01 months (95% CI, 1.0 to 27.3) [100] TRANSCEND-PILOT-017006: primary end point: ORR 80.3% (95% CI, 68.2 to 89.4); secondary end points: total SAE 78.7%, CRR 54.1% (95% CI, 40.8 to 66.9), median DOR 23.26 months (95% CI, 6.24 to NA), median PFS 9.03 (95% CI, 4.17 to NA), median EFS 7.23 months (95% CI, 3.22 to 24.28), median OS NA (95% CI, 16.33 to NA), CRS ≥ 3: 2%, ICANS ≥ 3: 5% [102,108] TRANSFORM: primary end point: median EFS NA (95% CI, 9.5 to NA) vs. 2.4 months (95% CI, 2.2 to 4.9), HR 0.356 (0.243 to 0.522); secondary end points: CRR 68% (95% CI, 63.7 to 82.5) vs. 40% (95% CI, 33.2 to 54.2) p < 0.0001, median PFS NA (95% CI, 12.6 to NA) vs. 6.2 months (95% CI, 4.3 to 8.6), HR 0.400 (95% CI, 0.261–0.615) p < 0.0001, median OS NA (95% CI, 29.5 to NA) vs. 29.9 (95% CI, 17.9 to NA), HR 0.724 (95% CI, 0.443 to 1.183) p = 0.099, total SAE 85% vs. 81%, CRS ≥3: 1%, ICANS ≥ 3: 4% [105,109] |
CARVYKTI® Ciltacabtagene autoleucel |
| CARTITUDE-1: primary end point: ORR 97.9% (95% CI, 92.7 to 99.7); secondary end points: sCR 82.5% (95% CI, 73.4 to 89.4), MRD negative sCR 44.3% (95% CI, 34.2 to 54.8), 27-month OS 70.4%, total SAE 91%, CRS ≥ 3: 5.1% (one related death), ICANS ≥ 3: 12.3% (one related death) [113,114] CARTITUDE-2: primary end point: MRD negativity 35% (95% CI, 15.4 to 59.2); secondary end points: ORR 60.0% (95% CI, 36.1 to 80.9), median DOR 11.5 months (95% CI, 7.0 to NA), total SAE 95%, CRS ≥ 3: 0%, ICANS ≥ 3: 10% [115] CARTITUDE-4: primary end point: 12-month PFS 75.9% (95% CI, 69.4 to 81.1) vs 48.6% (95% CI, 41.5 to 55.3); secondary end points: ORR 84.6% vs. 67.3%, HR 2.2 (95% CI, 1.5 to 3.1) p < 0.001, CR or better 73.1% vs. 21.8%, HR 2.9 (95% CI, 2.3 to 3.7) p < 0.001; total SAE 96.6% vs. 94.2%, CRS ≥ 3: 1.1%, ICANS ≥ 3: 2.8% [115] |
CRS | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|
Fever (not attributable to other causes) | ≥38 °C | ≥38 °C | ≥38 °C | ≥38 °C | Death |
With | |||||
Hypotension | None | Not requiring vasopressors | Requiring a vasopressor with or without vasopressin | Requiring multiple vasopressors (excluding vasopressin) | Death |
And/or | |||||
Hypoxia | None | Requiring low-flow nasal cannula or blow-by | Requiring high-flow nasal cannula, facemask, nonrebreather mask, or venturi mask | Requiring positive pressure (e.g., CPAP, BiPAP, intubation, and mechanical ventilation) | Death |
Neurotoxicity | Grade 1 | Grade 2 | Grade 3 | Grade 4 |
---|---|---|---|---|
ICE score | 7–9 | 3–6 | 0–2 | 0 Patient is unarousable and unable to perform ICE |
Depressed level of consciousness | Awakens spontaneously | Awakens to voice | Awakens only to tactile stimulus | Patient is unarousable or requires vigorous or repetitive tactile stimuli to arouse (stupor or coma) |
Seizure | NA | NA | Any clinical seizure, focal or generalized, which resolves rapidly or nonconvulsive seizures on EEG that resolve with intervention | Life-threatening prolonged seizure (>5 min) or repetitive clinical or electrical seizures without return to baseline in between |
Motor findings | NA | NA | NA | Deep focal motor weakness such as hemiparesis or paraparesis |
Elevated ICP/cerebral edema | NA | NA | Focal/local edema on neuroimaging | Diffuse cerebral edema on neuroimaging; decerebrate or decorticate posturing or cranial nerve VI palsy; papilledema; or Cushing’s triad |
Ability | Points |
---|---|
Orientation | Ability to name the year, month, city, and hospital: 4 points |
Naming | Ability to name 3 different objects: 3 points |
Following commands | Ability to follow simple commands (e.g., “show me 2 fingers”): 1 point |
Writing | Ability to write a certain sentence (e.g., “our national bird is the bald eagle”): 1 point |
Attention | Ability to count backwards from 100 by 10 to 0: 1 point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blüm, P.; Kayser, S. Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations. Cancers 2024, 16, 1599. https://doi.org/10.3390/cancers16081599
Blüm P, Kayser S. Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations. Cancers. 2024; 16(8):1599. https://doi.org/10.3390/cancers16081599
Chicago/Turabian StyleBlüm, Philipp, and Sabine Kayser. 2024. "Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations" Cancers 16, no. 8: 1599. https://doi.org/10.3390/cancers16081599
APA StyleBlüm, P., & Kayser, S. (2024). Chimeric Antigen Receptor (CAR) T-Cell Therapy in Hematologic Malignancies: Clinical Implications and Limitations. Cancers, 16(8), 1599. https://doi.org/10.3390/cancers16081599