Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Selection Process
2.3. Data Collection Process
2.4. Outcomes of Interest and Definitions
2.5. Quality Assessment
2.6. Statistical Analyses
3. Results
3.1. Systematic Review
3.2. Primary Outcomes
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of Stomach Cancer. World J. Gastroenterol. 2022, 28, 1187–1203. [Google Scholar] [CrossRef]
- van Velzen, M.J.M.; Braemer, M.; Nieuwenhuijzen, G.A.P.; van Sandick, J.W.; Siersema, P.D.; Ruurda, J.P.; Verheij, M.; Spaander, M.C.W.; Beerepoot, L.V.; Haj Mohammad, N.; et al. Incidence, Stage, Treatment, and Survival of Noncardia Gastric Cancer. JAMA Netw. Open 2023, 6, e2330018. [Google Scholar] [CrossRef] [PubMed]
- Kitano, S.; Shiraishi, N.; Fujii, K.; Yasuda, K.; Inomata, M.; Adachi, Y. A Randomized Controlled Trial Comparing Open vs. Laparoscopy-Assisted Distal Gastrectomy for the Treatment of Early Gastric Cancer: An Interim Report. Surgery 2002, 131, S306–S311. [Google Scholar] [CrossRef]
- Zeng, Y.K.; Yang, Z.L.; Peng, J.S.; Lin, H.S.; Cai, L. Laparoscopy-Assisted versus Open Distal Gastrectomy for Early Gastric Cancer: Evidence from Randomized and Nonrandomized Clinical Trials. Ann. Surg. 2012, 256, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; Man Yoon, H.; Ho Yun, Y.; Ho Nam, B.; Wool Eom, B.; Hae Baik, Y.; Eok Lee, S.; Lee, Y.; Kim, Y.; Yeon Park, J.; et al. Long-Term Outcomes of Laparoscopy-Assisted Distal Gastrectomy for Early Gastric Cancer: Result of a Randomized Controlled Trial (COACT 0301) and Other Interventional Techniques. Surg. Endosc. 2013, 27, 4267–4276. [Google Scholar] [CrossRef]
- Hayashi, H.; Ochiai, T.; Shimada, H.; Gunji, Y. Prospective Randomized Study of Open versus Laparoscopy-Assisted Distal Gastrectomy with Extraperigastric Lymph Node Dissection for Early Gastric Cancer. Surg. Endosc. Other Interv. Tech. 2005, 19, 1172–1176. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, H.S.; Lee, J.H. A Prospective Randomized Study Comparing Open vs. Laparoscopy-Assisted Distal Gastrectomy in Early Gastric Cancer: Early Results. Surg. Endosc. Other Interv. Tech. 2005, 19, 168–173. [Google Scholar] [CrossRef]
- Viñuela, E.F.; Gonen, M.; Brennan, M.F.; Coit, D.G.; Strong, V.E. Laparoscopic versus Open Distal Gastrectomy for Gastric Cancer: A Meta-Analysis of Randomized Controlled Trials and High-Quality Nonrandomized Studies. Ann. Surg. 2012, 255, 446–456. [Google Scholar] [CrossRef]
- Ashraf, M.; Ae, M.; Khan, S.; Rossita, A.E.; Yunus, M.; Richard, A.E.; Ae, B.; Memon, B.; Memon, M.A.; Barr, Á.R.; et al. Meta-Analysis of Laparoscopic and Open Distal Gastrectomy for Gastric Carcinoma. Surg. Endosc. 2008, 22, 1781–1789. [Google Scholar] [CrossRef]
- Yamashita, K.; Sakuramoto, S.; Kikuchi, S.; Futawatari, N.; Katada, N.; Hosoda, K.; Moriya, H.; Mieno, H.; Watanabe, M. Laparoscopic versus Open Distal Gastrectomy for Early Gastric Cancer in Japan: Long-Term Clinical Outcomes of a Randomized Clinical Trial. Surg. Today 2016, 46, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Sakuramoto, S.; Yamashita, K.; Kikuchi, S.; Futawatari, N.; Katada, N.; Watanabe, M.; Okutomi, T.; Wang, G.; Bax, L. Laparoscopy versus Open Distal Gastrectomy by Expert Surgeons for Early Gastric Cancer in Japanese Patients: Short-Term Clinical Outcomes of a Randomized Clinical Trial. Surg. Endosc. 2013, 27, 1695–1705. [Google Scholar] [CrossRef]
- Ballesta-Lopez, C.; Bastida-Vila, X.; Catarci, M.; Mato, R.; Ruggiero, R. Laparoscopic Billroth II Distal Subtotal Gastrectomy with Gastric Stump Suspension for Gastric Malignancies. Am. J. Surg. 1996, 171, 289–292. [Google Scholar] [CrossRef]
- Van Boxel, G.I.; Ruurda, J.P.; Van Hillegersberg, R. Robotic-Assisted Gastrectomy for Gastric Cancer: A European Perspective. Gastric Cancer 2019, 22, 909–919. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Liu, Y.; Wang, Z. Perioperative Outcomes of Robotic versus Laparoscopic Distal Gastrectomy for Gastric Cancer: A Meta-Analysis of Propensity Score-Matched Studies and Randomized Controlled Trials. BMC Surg. 2022, 22, 427. [Google Scholar] [CrossRef]
- Luo, R.; Liu, D.; Ye, S.; Tang, H.; Zhu, W.; He, P.; Tang, C.; Li, T. Short- and Long-Term Outcomes of Totally Robotic versus Robotic-Assisted Radical Distal Gastrectomy for Advanced Gastric Cancer: A Mono-Institution Retrospective Study. World J. Surg. Oncol. 2019, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, G.M.; Costa, G.; Laracca, G.G.; Castagnola, G.; Mercantini, P.; Di Paola, M.; Vita, S.; Masoni, L. Laparoscopic versus Open Distal Gastrectomy for Locally Advanced Gastric Cancer in Middle-Low-Volume Centers in Western Countries: A Propensity Score Matching Analysis. Langenbecks Arch. Surg. 2020, 405, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Hyung, W.J.; Yang, H.K.; Park, Y.K.; Lee, H.J.; An, J.Y.; Kim, W.; Kim, H.-I.; Kim, H.H.; Ryu, S.W.; Hur, H.; et al. Long-Term Outcomes of Laparoscopic Distal Gastrectomy for Locally Advanced Gastric Cancer: The KLASS-02-RCT Randomized Clinical Trial. J. Clin. Oncol. 2020, 38, 3304–3313. [Google Scholar] [CrossRef]
- Huang, C.; Liu, H.; Hu, Y.; Sun, Y.; Su, X.; Cao, H.; Hu, J.; Wang, K.; Suo, J.; Tao, K.; et al. Laparoscopic vs. Open Distal Gastrectomy for Locally Advanced Gastric Cancer: Five-Year Outcomes from the CLASS-01 Randomized Clinical Trial. JAMA Surg. 2022, 157, 9–17. [Google Scholar] [CrossRef]
- Son, S.Y.; Hur, H.; Hyung, W.J.; Park, Y.K.; Lee, H.J.; An, J.Y.; Kim, W.; Kim, H.-I.; Kim, H.H.; Ryu, S.W.; et al. Laparoscopic vs Open Distal Gastrectomy for Locally Advanced Gastric Cancer: 5-Year Outcomes of the KLASS-02 Randomized Clinical Trial. JAMA Surg. 2022, 157, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Hyung, W.J.; Yang, H.K.; Park, Y.K.; Lee, H.J.; An, J.Y.; Kim, W.; Kim, H.-I.; Kim, H.H.; Ryu, S.W.; et al. Standard Follow-up after Curative Surgery for Advanced Gastric Cancer: Secondary Analysis of a Multicentre Randomized Clinical Trial (KLASS-02). Br. J. Surg. 2023, 110, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Pankaj, P.; Jiang, H.; Zeng, Y.; Wu, H. Laparoscopy versus Open Distal Gastrectomy for Advanced Gastric Cancer: A Systematic Review and Meta-Analysis. Surg. Laparosc. Endosc. Percutaneous Tech. 2013, 23, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhou, S.; Peng, Z.; Chen, L. Quality of D2 Lymphadenectomy for Advanced Gastric Cancer: Is Laparoscopic-Assisted Distal Gastrectomy as Effective as Open Distal Gastrectomy? Surg. Endosc. 2015, 29, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Aurello, P.; Sagnotta, A.; Terrenato, I.; Berardi, G.; Nigri, G.; D’Angelo, F.; Ramacciato, G. Oncologic Value of Laparoscopy-Assisted Distal Gastrectomy for Advanced Gastric Cancer: A Systematic Review and Meta-Analysis. J. Minim Access Surg. 2016, 12, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Feng, X.; Wang, M.; Yao, X. Laparoscopic versus Open Distal Gastrectomy for Advanced Gastric Cancer: A Meta-Analysis of Randomized Controlled Trials and High-Quality Nonrandomized Comparative Studies. Eur. J. Surg. Oncol. (EJSO) 2020, 46, 1998–2010. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ou, C.; Cao, S.; Hua, Y.; Sha, Y. Laparoscopic vs. Open Distal Gastrectomy for Locally Advanced Gastric Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Surg. 2023, 10, 1127854. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.C.; Jiang, L.X.; Cai, L.; Zheng, H.T.; Hu, S.Y.; Chen, H.B.; Wu, G.C.; Zhang, Y.F.; Lv, Z.C. Preliminary Experience of Fast-Track Surgery Combined with Laparoscopy-Assisted Radical Distal Gastrectomy for Gastric Cancer. J. Gastrointest. Surg. 2012, 16, 1830–1839. [Google Scholar] [CrossRef]
- Huscher, C.G.S.; Mingoli, A.; Sgarzini, G.; Sansonetti, A.; Di Paola, M.; Recher, A.; Ponzano, C. Laparoscopic versus Open Subtotal Gastrectomy for Distal Gastric Cancer: Five-Year Results of a Randomized Prospective Trial. Ann. Surg. 2005, 241, 232–237. [Google Scholar] [CrossRef]
- Lee, H.J.; Hyung, W.J.; Yang, H.K.; Han, S.U.; Park, Y.K.; An, J.Y.; Kim, W.; Kim, H.-I.; Kim, H.H.; Ryu, S.W.; et al. Short-Term Outcomes of a Multicenter Randomized Controlled Trial Comparing Laparoscopic Distal Gastrectomy with D2 Lymphadenectomy to Open Distal Gastrectomy for Locally Advanced Gastric Cancer (KLASS-02-RCT). Ann. Surg. 2019, 270, 983–991. [Google Scholar] [CrossRef]
- Park, Y.K.; Yoon, H.M.; Kim, Y.W.; Park, J.Y.; Ryu, K.W.; Lee, Y.J.; Jeong, O.; Yoon, K.Y.; Lee, J.H.; Lee, S.E.; et al. Laparoscopy-Assisted versus Open D2 Distal Gastrectomy for Advanced Gastric Cancer. Ann. Surg. 2018, 267, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Etoh, T.; Ohyama, T.; Sakuramoto, S.; Tsuji, T.; Lee, S.W.; Yoshida, K.; Koeda, K.; Hiki, N.; Kunisaki, C.; Tokunaga, M.; et al. Five-Year Survival Outcomes of Laparoscopy-Assisted vs Open Distal Gastrectomy for Advanced Gastric Cancer: The JLSSG0901 Randomized Clinical Trial. JAMA Surg. 2023, 158, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zheng, C.H.; Xu, B.-B.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Lin, M.; Tu, R.H.; et al. Assessment of Robotic versus Laparoscopic Distal Gastrectomy for Gastric Cancer: A Randomized Controlled Trial. Ann. Surg. 2021, 273, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shan, F.; Ying, X.; Zhang, Y.; Jian-Yu, E.; Wang, Y.; Ren, H.; Su, X.; Ji, J. Assessment of Laparoscopic Distal Gastrectomy after Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer: A Randomized Clinical Trial. JAMA Surg. 2019, 154, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xing, J.; Cai, J.; Zhang, Z.; Li, F.; Zhang, N.; Wu, J.; Cui, M.; Liu, Y.; Chen, L.; et al. Short-Term Surgical Outcomes of Laparoscopy-Assisted versus Open D2 Distal Gastrectomy for Locally Advanced Gastric Cancer in North China: A Multicenter Randomized Controlled Trial. Surg. Endosc. 2019, 33, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, C.; Sun, Y.; Su, X.; Cao, H.; Hu, J.; Xue, Y.; Suo, J.; Tao, K.; He, X.; et al. Morbidity and Mortality of Laparoscopic versus Open D2 Distal Gastrectomy for Advanced Gastric Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2016, 34, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, X.; Zhao, Y.; Qian, F.; Tang, B.; Hao, Y.; Luo, H.; Chen, J.; Yu, P. Short-Term Surgical Outcomes of a Randomized Controlled Trial Comparing Laparoscopic versus Open Gastrectomy with D2 Lymph Node Dissection for Advanced Gastric Cancer. Surg. Endosc. 2018, 32, 2427–2433. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Goossen, K.; Tenckhoff, S.; Probst, P.; Grummich, K.; Mihaljevic, A.L.; Büchler, M.W.; Diener, M.K. Optimal Literature Search for Systematic Reviews in Surgery. Langenbecks Arch. Surg. 2018, 403, 119–129. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of Surgical Complications: A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205. [Google Scholar] [CrossRef]
- Yu, J.; Huang, C.; Sun, Y.; Su, X.; Cao, H.; Hu, J.; Wang, K.; Suo, J.; Tao, K.; He, X.; et al. Effect of Laparoscopic vs Open Distal Gastrectomy on 3-Year Disease-Free Survival in Patients with Locally Advanced Gastric Cancer the CLASS-01 Randomized Clinical Trial. JAMA 2019, 321, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Warn, D.E.; Thompson, S.G.; Spiegelhalter, D.J. Bayesian Random Effects Meta-Analysis of Trials with Binary Outcomes: Methods for the Absolute Risk Difference and Relative Risk Scales. Stat. Med. 2002, 21, 1601–1623. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.J.; Thorlund, K.; Ioannidis, J.P.A. Demystifying Trial Networks and Network Meta-Analysis. BMJ 2013, 346, f2914. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.M.; Davey, J.; Clarke, M.J.; Thompson, S.G.; Higgins, J.P. Predicting the Extent of Heterogeneity in Meta-Analysis, Using Empirical Data from the Cochrane Database of Systematic Reviews. Int. J. Epidemiol. 2012, 41, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses Testing for Heterogeneity. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Smith, B.J. Boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. J. Stat. Softw. 2007, 21, 1–37. [Google Scholar] [CrossRef]
- Salanti, G.; Del Giovane, C.; Chaimani, A.; Caldwell, D.M.; Higgins, J.P.T. Evaluating the Quality of Evidence from a Network Meta-Analysis. PLoS ONE 2014, 9, e99682. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. Available online: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (accessed on 2 March 2023).
- Aiolfi, A.; Bona, D.; Riva, C.G.; Micheletto, G.; Rausa, E.; Campanelli, G.; Olmo, G.; Bonitta, G.; Bonavina, L. Systematic Review and Bayesian Network Meta-Analysis Comparing Laparoscopic Heller Myotomy, Pneumatic Dilatation, and Peroral Endoscopic Myotomy for Esophageal Achalasia. J. Laparoendosc. Adv. Surg. Tech. 2020, 30, 147–155. [Google Scholar] [CrossRef]
- Aiolfi, A.; Gagner, M.; Zappa, M.A.; Lastraioli, C.; Lombardo, F.; Panizzo, V.; Bonitta, G.; Cavalli, M.; Campanelli, G.; Bona, D. Staple Line Reinforcement During Laparoscopic Sleeve Gastrectomy: Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Obes. Surg. 2022, 32, 1466–1478. [Google Scholar] [CrossRef]
- Korea, S.; Bang, Y.-J.; Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus Paclitaxel versus Placebo plus Paclitaxel in Patients with Previously Treated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (RAINBOW): A Double-Blind, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; de Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Du, Y. Comparison of Clinical Efficacy Between Laparoscopic and Open Distal Gastrectomy in the Treatment of Gastric Carcinoma: A Meta-Analysis. J. Laparoendosc. Adv. Surg. Tech. A 2022, 32, 522–531. [Google Scholar] [CrossRef]
- Aiolfi, A.; Lombardo, F.; Matsushima, K.; Sozzi, A.; Cavalli, M.; Panizzo, V.; Bonitta, G.; Bona, D. Systematic Review and Updated Network Meta-Analysis of Randomized Controlled Trials Comparing Open, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Early and Locally Advanced Gastric Cancer. Surgery 2021, 170, 942–951. [Google Scholar] [CrossRef]
- Gong, S.; Li, X.; Tian, H.; Song, S.; Lu, T.; Jing, W.; Huang, X.; Xu, Y.; Wang, X.; Zhao, K.; et al. Clinical Efficacy and Safety of Robotic Distal Gastrectomy for Gastric Cancer: A Systematic Review and Meta-Analysis. Surg. Endosc. 2022, 36, 2734–2748. [Google Scholar] [CrossRef]
- Sano, T.; Sasako, M.; Yamamoto, S.; Nashimoto, A.; Kurita, A.; Hiratsuka, M.; Tsujinaka, T.; Kinoshita, T.; Arai, K.; Yamamura, Y.; et al. Gastric Cancer Surgery: Morbidity and Mortality Results from a Prospective Randomized Controlled Trial Comparing D2 and Extended Para-Aortic Lymphadenectomy-Japan Clinical Oncology Group Study 9501. J. Clin. Oncol. 2004, 22, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-H.; Han, S.-U.; Kim, M.-C.; Jin Hyung, W.; Kim, W.; Lee, H.-J.; Wan Ryu, S.; Seok Cho, G.; Young Song, K.; Yeob Ryu, S.; et al. Long-Term Results of Laparoscopic Gastrectomy for Gastric Cancer: A Large-Scale Case-Control and Case-Matched Korean Multicenter Study. J. Clin. Oncol. 2014, 32, 627–633. [Google Scholar] [CrossRef]
- Li, P.; Gasmalla, M.A.A.; Zhang, W.; Liu, J.; Bing, R.; Yang, R. Effects of Roasting Temperatures and Grinding Type on the Yields of Oil and Protein Obtained by Aqueous Extraction Processing. J. Food Eng. 2016, 173, 15–24. [Google Scholar] [CrossRef]
- Zhu, C.; Kong, S.H.; Kim, T.H.; Park, S.H.; Ang, R.R.G.; Diana, M.; Soler, L.; Suh, Y.S.; Lee, H.J.; Marescaux, J.; et al. The Anatomical Configuration of the Splenic Artery Influences Suprapancreatic Lymph Node Dissection in Laparoscopic Gastrectomy: Analysis Using a 3D Volume Rendering Program. Surg. Endosc. 2018, 32, 3697–3705. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, F.; Aiolfi, A.; Cavalli, M.; Mini, E.; Lastraioli, C.; Panizzo, V.; Lanzaro, A.; Bonitta, G.; Danelli, P.; Campanelli, G.; et al. Techniques for Reconstruction after Distal Gastrectomy for Cancer: Updated Network Meta-Analysis of Randomized Controlled Trials. Langenbecks Arch. Surg. 2022, 407, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Rausa, E.; Kelly, M.E.; Asti, E.; Aiolfi, A.; Bonitta, G.; Winter, D.C.; Bonavina, L. Extended versus Conventional Thromboprophylaxis after Major Abdominal and Pelvic Surgery: Systematic Review and Meta-Analysis of Randomized Clinical Trials. Surgery 2018, 164, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Bona, D.; Bonitta, G.; Lombardo, F.; Manara, M.; Sozzi, A.; Schlanger, D.; Popa, C.; Cavalli, M.; Campanelli, G.; et al. Long-Term Impact of D2 Lymphadenectomy during Gastrectomy for Cancer: Individual Patient Data Meta-Analysis and Restricted Mean Survival Time Estimation. Cancers 2024, 16, 424. [Google Scholar] [CrossRef]
- Smith, D.D.; Schwarz, R.R.; Schwarz, R.E. Impact of Total Lymph Node Count on Staging and Survival after Gastrectomy for Gastric Cancer: Data from a Large US-Population Database. J. Clin. Oncol. 2005, 23, 7114–7124. [Google Scholar] [CrossRef] [PubMed]
- Gholami, S.; Janson, L.; Worhunsky, D.J.; Tran, T.B.; Squires, M.H.; Jin, L.X.; Spolverato, G.; Votanopoulos, K.I.; Schmidt, C.; Weber, S.M.; et al. Number of Lymph Nodes Removed and Survival after Gastric Cancer Resection: An Analysis from the US Gastric Cancer Collaborative. J. Am. Coll. Surg. 2015, 221, 291–299. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kojima, K.; Inokuchi, M.; Kato, K.; Sugita, H.; Kawano, T.; Sugihara, K. Patterns, Timing and Risk Factors of Recurrence of Gastric Cancer after Laparoscopic Gastrectomy: Reliable Results Following Long-Term Follow-Up. Eur. J. Surg. Oncol. (EJSO) 2014, 40, 1376–1382. [Google Scholar] [CrossRef]
- Xu, D.; Huang, Y.; Geng, Q.; Guan, Y.; Li, Y.; Wang, W.; Yuan, S.; Sun, X.; Chen, Y.; Li, W.; et al. Effect of Lymph Node Number on Survival of Patients with Lymph Node-Negative Gastric Cancer According to the 7th Edition UICC TNM System. PLoS ONE 2012, 7, e38681. [Google Scholar] [CrossRef] [PubMed]
- Inaki, N.; Etoh, T.; Ohyama, T.; Uchiyama, K.; Katada, N.; Koeda, K.; Yoshida, K.; Takagane, A.; Kojima, K.; Sakuramoto, S.; et al. A Multi-Institutional, Prospective, Phase II Feasibility Study of Laparoscopy-Assisted Distal Gastrectomy with D2 Lymph Node Dissection for Locally Advanced Gastric Cancer (JLSSG0901). World J. Surg. 2015, 39, 2734–2741. [Google Scholar] [CrossRef]
- Woo, Y.; Goldner, B.; Ituarte, P.; Lee, B.; Melstrom, L.; Son, T.; Noh, S.H.; Fong, Y.; Hyung, W.J. Lymphadenectomy with Optimum of 29 Lymph Nodes Retrieved Associated with Improved Survival in Advanced Gastric Cancer: A 25,000-Patient International Database Study. J. Am. Coll. Surg. 2017, 224, 546–555. [Google Scholar] [CrossRef]
- Kang, S.Y.; Lee, S.Y.; Kim, C.Y.; Yang, D.H. Comparison of Learning Curves and Clinical Outcomes between Laparoscopy-Assisted Distal Gastrectomy and Open Distal Gastrectomy. J. Gastric Cancer 2010, 10, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.H.; Son, S.Y.; Park, Y.S.; Shin, D.J.; Ahn, H.S.; Ahn, S.H.; Park, D.J.; Kim, H.H. The Learning Curve Associated with Laparoscopic Total Gastrectomy. Gastric Cancer 2016, 19, 264–272. [Google Scholar] [CrossRef]
- Zhang, X.; Tanigawa, N. Learning Curve of Laparoscopic Surgery for Gastric Cancer, a Laparoscopic Distal Gastrectomy-Based Analysis. Surg. Endosc. 2009, 23, 1259–1264. [Google Scholar] [CrossRef]
- Kim, T.H.; Ryu, K.W.; Lee, J.H.; Cho, G.S.; Hyung, W.J.; Kim, C.Y.; Kim, M.C.; Ryu, S.W.; Shin, D.W.; Lee, H.J. Operation Time as a Simple Indicator to Predict the Overcoming of the Learning Curve in Gastric Cancer Surgery: A Multicenter Cohort Study. Gastric Cancer 2019, 22, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
Author, Year Country | Period | Surgical Approach | No. Pts | Age (yrs) | Gender M/F | BMI (kg/m2) | Staging System | Stage Ia | Stage Ib | Stage II | Stage III | Stage IV | Tumor Histology Int/Diff | Tumor Histology Diffused/Und | Neoadj/ Adj |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Huscher, 2005 Italy [29] | 1992–1996 | Op-DG | 29 | 63.6 ± 13.2 | 21/8 | NR | AJCC 1997 | 6 | 3 | 5 | 11 | 4 | 18 | 11 | NR |
Lap-DG | 30 | 63.2 ± 12.5 | 18/12 | 7 | 6 | 4 | 8 | 5 | 16 | 14 | |||||
Jin chen Hu, 2012 China [28] | 2009–2011 | Op-DG | 20 | 64.5 ± 6.5 | 12/8 | 23.4 ± 2.6 | NR | 1 | 6 | 11 | 2 | NR | NR | 0/NR | |
Lap-DG | 22 | 62.5 ± 6.75 | 10/12 | 22.9 ± 2.2 | 1 | 10 | 10 | 1 | 0/NR | ||||||
Hu Y, 2016 China [36] | 2012–2014 | Op-DG | 520 | 55.8 ± 11.1 | 346/174 | 22.7 ± 3.2 | AJCC 7th | 99 | 53 | 138 | 221 | 8 | 365 | 155 | 0/NR |
Lap-DG | 519 | 56.5 ± 10.4 | 380/139 | 22.7 ± 3.3 | 87 | 64 | 77 | 219 | 11 | 361 | 158 | 0/NR | |||
Shi, 2018 China [37] | 2010–2012 | Op-DG | 102 | NR | NR | NR | AJCC 6th | 0 | 10 | NR | NR | NR | 38 | 122 | 0/NR |
Lap-DG | 94 | 0 | 16 | 45 | 117 | 0/NR | |||||||||
Park, 2018 Korea [31] | 2010–2011 | Op-DG | 96 | 60.1 ± 8.2 | 65/31 | 23.3 ± 3.1 | AJCC 7th | 22 | 14 | 33 | 23 | 4 | 96 | 0 | 0/NR |
Lap-DG | 100 | 58.6 ± 8.9 | 69/31 | 23.7 ± 3.0 | 27 | 15 | 29 | 28 | 1 | 100 | 0 | 0/NR | |||
Wang, 2019 China [35] | 2014–2017 | Op-DG | 220 | 60.6 ± 10.2 | 133/87 | 23.5 ± 3.3 | AJCC 7th | 41 | 27 | 63 | 83 | 6 | 59 | 161 | 0/NR |
LapAs-DG | 222 | 59.4 ± 12.4 | 144/78 | 23.1 ± 3.1 | 44 | 31 | 63 | 80 | 4 | 47 | 175 | 0/NR | |||
Li, 2019 China [34] | 2015–2017 | Op-DG | 50 | 61 ± 2.25 | 34/16 | 22.6 ± 0.9 | AJCC 7th | 10 | 6 | 19 | 12 | 0 | 10 | 40 | 50/50 |
LapAs-DG | 45 | 59 ± 3.25 | 32/13 | 23.5 ± 1 | 7 | 6 | 18 | 10 | 0 | 10 | 35 | 45/45 | |||
Lee, 2019 Korea [30] | 2011–2015 | Op-DG | 498 | 59.6 ± 11.5 | 346/152 | 23.7 ± 3.3 | NR | 167 | 170 | 154 | 7 | 498 | 0 | 0/NR | |
Lap-DG | 513 | 59.8 ± 11.1 | 370/143 | 23.5 ± 2.9 | 181 | 151 | 172 | 9 | 513 | 0 | 0/NR | ||||
Lu, 2021 China [33] | 2017–2020 | Lap-DG | 142 | 59.3 ± 11.3 | 90/52 | 22.7 ± 3.3 | AJCC 8th | 43 | 36 | 63 | 0 | 56 | 86 | 0/19 | |
Rob-DG | 141 | 59.4 ± 10.2 | 94/47 | 23.2 ± 3 | 55 | 33 | 53 | 0 | 52 | 89 | 0/18 | ||||
Etoh 2023 Japan [32] | 2009–2016 | Op-DG | 233 | 66 ± 7.8 | 160/73 | 22.7 | AJCC 7th | 45 | 50 | 67 | 71 | 0 | NR | 0/NR | |
Lap-DG | 227 | 64 ± 6.6 | 156/71 | 22.3 | 52 | 39 | 64 | 72 | 0 | 0/NR |
Op-DG | LapAs-DG | Lap-DG | Rob-DG | |
---|---|---|---|---|
1.2 (0.0–2.2) | 1.5 (0.0–2.2) | 1.2 (0.0–1.7) | 0.0 (0.0–0.0) | Anastomotic leak |
6.4 (0.0–17.7) | 3.8 (2.2–13.3) | 6.4 (0.0–11) | 1.4 (1.4–1.4) | Clavien–Dindo III–IV |
18.4 (10.7–46) | 15 (11.1–36.2) | 16 (11–30.2) | 9 (9–9) | Overall complication |
0.3 (0.0–6.8) | 0.2 (0.0–0.4) | 0.03 (0.0–3.3) | 0.0 (0.0–0.0) | In-hospital mortality |
2.8 (0.0–6.8) | 1.1 (0.0–1.3) | 2.9 (0.0–6.6) | 1 (1–1) | SSI |
2 (0.0–6.1) | 1 (0.0–2.3) | 1.1 (0.0–2.1) | 1 (1–1) | Bleeding requiring transfusion |
4.1 (0.0–21) | 5 (2.1–7.3) | 4.7 (2.6–17.2) | 5.9 (5.9–5.9) | Pulmonary complications |
0.0 (0.0–3.1) | 1.1 (0.0–4.2) | 0.0 (0.0–1.4) | 1.1 (1.1–1.1) | Cardiovascular complications |
1.8 (0.0–3.6) | 1.8 (0.0–2.1) | 1.1 (0.0–1.7) | 0.0 (0.0–0.0) | Need for reoperation |
1.9 (0.0–8.2) | 0.9 (0.0–2.1) | 1.1 (0.0–2.1) | NR | Positive resection margins (R1) |
180.8 (123.2–209.9) | 231.3 (196.0–227.1) | 240 (185–240) | 201 (201–201) | Operative time (minutes) |
165 (58.7–523) | 139 (95–236) | 127 (84–320) | 41.2 (41.2–41.2) | Intraoperative blood loss (mL) |
3.7 (2.2–4.0) | 3.1 (2.5–3.5) | 3.2 (2.3–3.4) | 3.2 (3.2–3.2) | Time to first flatus (days) |
4.5 (2.9–7.8) | 4.6 (3.4–6.5) | 4.4 (3.2–6.1) | 3.5 (3.5–3.5) | Time to oral intake (days) |
10.6 (8.1–18.8) | 9.5 (8.8–10.7) | 9.1 (8.4–11.2) | 7.9 (7.9–7.9) | HLOS (days) |
40.2 (31.4–76.5) | 38.5 (30.0–46.6) | 37.1 (29.1–47.2) | 40.9 (40.9–40.9) | Total No. lymph nodes |
I2 (95% CrI) | Outcomes | ||||
---|---|---|---|---|---|
LapAs-DG | 0.79 (0.28–2.22) | 0.63 (0.29–1.39) | 0.67 (0.19–2.50) | 23.1 | Anastomotic leak |
1.27 (0.45–3.53) | Lap-DG | 0.81 (0.38–1.72) | 0.86 (0.39–1.86) | ||
1.58 (0.72–3.39) | 1.24 (0.58–2.61) | Op-DG | 1.062 (0.37–3.06) | ||
1.49 (3.99–5.40) | 1.17 (0.54–2.54) | 0.94 (0.32–2.72) | Rob-DG | ||
LapAs-DG | 0.64 (0.32–1.58) | 1.55 (0.33–1.11) | 0.44 (0.16–1.61) | 0.0 | Clavien–Dindo III–IV |
1.56 (0.63–3.15) | Lap-DG | 0.85 (0.50–1.46) | 0.69 (0.34–1.52) | ||
1.82 (0.90–3.07) | 1.17 (0.69–1.99) | Op-DG | 0.80 (0.34–2.14) | ||
2.26 (0.62–6.25) | 1.45 (0.66–2.96) | 1.25 (0.47–2.90) | Rob-DG | ||
LapAs-DG | 0,98 (0.63–1.62) | 1.02 (0.75–1.40) | 0.65 (0.32–1.48) | 45.5 | Overall complications |
1.02 (0.62–1.58) | Lap-DG | 1.03 (0.72–1.42) | 0.66 (0.38–1.22) | ||
0.98 (0.71–1.32) | 0.97 (0.70–1.39) | Op-DG | 0.64 (0.34–1.34) | ||
1.54 (0.68–3.09) | 1.51 (0.82–2.63) | 1.57 (0.75–2.94) | Rob-DG | ||
LapAs-DG | 0.86 (0.30–2.49) | 0.69 (0.32–1.50) | 0.78 (0.21–2.89) | 12.4 | In-hospital mortality |
1.16 (0.40–3.36) | Lap-DG | 0.80 (0.38–1.72) | 0.90 (0.41–1.96) | ||
1.46 (0.67–3.17) | 1.25 (0.58–2.67) | Op-DG | 1.13 (0.38–3.30) | ||
1.29 (0.35–4.81) | 1.11 (0.51–2.42) | 0.89 (0.30–2.63) | Rob-DG | ||
LapAs-DG | 0.84 (0.33–2.22) | 0.60 (0.30–1.31) | 0.67 (0.20–2.43) | 0.0 | Postoperative bleeding |
1.19 (0.45–3.02) | Lap-DG | 0.71 (0.35–1.52) | 0.80 (0.37–1.76) | ||
1.67 (0.77–3.29) | 1.41 (0.66–2.82) | Op-DG | 1.12 (0.40–3.09) | ||
1.49 (0.41–4.96) | 1.25 (0.57–2.73) | 0.89 (0.32–2.47) | Rob-DG | ||
LapAs-DG | 0.88 (0.31–2.51) | 0.68 (0.31–1.48) | - | 60.2 | Pancreatic injury/leak |
1.13 (0.40–3.23) | Lap-DG | 0.766 (0.35–1.67) | - | ||
1.48 (0.67–3.22) | 1.31 (0.60–2.81) | Op-DG | - | ||
- | - | - | Rob-DG | ||
LapAs-DG | 0.83 (0.33–2.18) | 0.63 (0.32–1.35) | 0.66 (1.97–2.35) | 11.3 | SSI |
1.21 (0.46–3.02) | Lap-DG | 0.76 (0.39–1.56) | 0.79 (0.36–1.72) | ||
1.59 (0.74–3.14) | 1.32 (0.64–2.56) | Op-DG | 1.04 (0.38–2.84) | ||
1.52 (0.43–5.08) | 1.26 (0.58–2.71) | 0.96 (0.35–2.60) | Rob-DG | ||
LapAs-DG | 0.90 (0.41–1.94) | 0.60 (0.37–1.11) | 0.67 (0.25–2.05) | 23.4 | Pulmonary complications |
1.11 (0.51–2.43) | Lap-DG | 0.66 (0.38–1.30) | 0.75 (0.38–1.60) | ||
1.68 (0.90–2.73) | 1.51 (0.77–2.61) | Op-DG | 1.12 (0.47–2.77) | ||
1.49 (0.48–4.01) | 1.34 (0.62–2.64) | 0.89 (0.36–2.14) | Rob-DG | ||
LapAs-DG | 0.79 (0.27–2.32) | 0.68 (0.31–1.49) | 0.73 (0.19–2.75) | 26.4 | Cardiovascular complications |
1.26 (0.43–3.66) | Lap-DG | 0.86 (0.40–1.86) | 0.92 (0.42–1.99) | ||
1.47 (0.67–3.18) | 1.17 (0.54–2.51) | Op-DG | 1.07 (0.36–3.15) | ||
1.37 (0.36–5.15) | 1.09 (0.50–2.36) | 0.93 (0.32–2.76) | Rob-DG | ||
LapAs-DG | 0.85 (0.30–2.46) | 0.75 (0.35–1.60) | 0.73 (0.20–2.76) | 69.3 | Reoperation |
1.18 (0.41–3.38) | Lap-DG | 0.88 (0.41–1.92 | 0.86 (0.40–1.87) | ||
1.33 (0.62–2.78) | 1.13 (0.52–2.46) | Op-DG | 0.97 (0.33–2.89) | ||
1.37 (0.36–5.08) | 1.16 (0.53–2.52) | 1.03 (0.35–3.04) | Rob-DG | ||
LapAs-DG | 1.23 (0.45–3.51) | 0.82 (0.39–1.76) | - | 0.0 | R1/R2 |
0.77 (0.28–2.21) | Lap-DG | 0.64 (0.30–1.42) | - | ||
1.23 (0.57–2.57) | 1.57 (0.70–3.36) | Op-DG | - | ||
- | - | - | Rob-DG | ||
I2 (95% CrI) | |||||
LapAs-DG | −84.4 (−103.7; −64.8) | 29.17 (18.4; 40.0) | −98.9 (−128.7; −68.7) | 68.1 | Intraoperative blood loss (mL) |
84.41 (64.8; 103.7) | Lap-DG | 113.6 (97.3; 129.5) | −14.5 (−37.3; 8.4) | ||
−29.17 (−40.0; −18.4) | −113.6 (−129.5; −97.3) | Op-DG | −128.1 (−155.9; −100.0) | ||
98.9 (68.7; 128.7) | 14.5 (−8.4; 37.3) | 128.1 (100.0; 155.9) | Rob-DG | ||
LapAs-DG | 24.9 (10.2; 39.6) | −39.3 (−49.2; −29.3) | 44.6 (18.9; 70.1) | 55.2 | Operative time (minutes) |
−24.9 (−39.6; −10.2) | Lap-DG | −64.2 (−75.0; −53.3) | 19.6 (−1.3; 40.6) | ||
39.3 (29.3; 49.2) | 64.2 (53.3; 75.0) | Op-DG | 83.8 (60.2; 107.3) | ||
−44.6 (−70.1; −18.9) | −19.6 (−40.6; 1.3) | −83.8 (−107.3; −60.2) | Rob-DG | ||
LapAs-DG | −0.4 (−1.5; 0.8) | 0.2 (−0.5; 0.9) | −0.7 (−2.4; 1.1) | 45.7 | Time to first flatus (days) |
0.39 (−0.8; 1.5) | Lap-DG | 0.6 (−0.3; 1.5) | −0.3 (−1.6; 1.0) | ||
−0.2 (−0.9; 0.5) | −0.6 (−1.5; 0.3) | Op-DG | −0.9 (−2.5; 0.7) | ||
0.7 (−1.1; 2.4) | 0.3 (−1.0; 1.6) | 0.9 (−0.7; 2.5) | Rob-DG | ||
LapAs-DG | −0.3 (−5.0; 4.3) | 0.4 (−3.1; 4.0) | −0.7 (−7.5; 6.1) | 67.1 | Time to oral intake (days) |
0.3 (−4.3; 5.0) | Lap-DG | 0.8 (−2.1; 3.7) | −0.4 (−5.4; 4.6) | ||
−0.4 (−4.0; 3.1) | −0.8 (−3.7; 2.1) | Op-DG | −1.2 (−7.0; 4.6) | ||
0.7 (−6.1; 7.5) | 0.4 (−4.6; 5.4) | 1.2 (−4.6; 7.0) | Rob-DG | ||
LapAs-DG | −0.2 (−2.9; 2.1) | 0.7 (−1.0; 2.4) | −0.5 (−4.9; 3.6) | 54.7 | HLOS (days) |
0.2 (−2.1; 2.9) | Lap-DG | 0.9 (−0.7; 2.9) | −0.3 (−3.7; 3.1) | ||
−0.7 (−2.4; 1.0) | −0.9 (−2.8; 0.7) | Op-DG | −1.2 (−5.2; 2.5) | ||
0.5 (−3.6; 4.9) | 0.3 (−3.1; 3.7) | 1.2 (−2.5; 5.2) | Rob-DG | ||
LapAs-DG | −1.5 (−9.7; 5.9) | −0,5 (−5.4; 3.9) | −0.5 (−13.9; 12.3) | 6.5 | Total No. lymph nodes |
1.5 (−5.9; 9.7) | Lap-DG | 0.9 (−5.1; 7.5) | 1.0 (−9.5; 11.5) | ||
−0.5 (−3.9; 5.4) | −0.9 (−7.5; 5.2) | Op-DG | 0.0 (−12.4; 12.1) | ||
0.5 (−12.3; 13.9) | −1.0 (−11.5; 9.5) | −0.0 (−12.1; 12.4) | Rob-DG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manara, M.; Aiolfi, A.; Sozzi, A.; Calì, M.; Grasso, F.; Rausa, E.; Bonitta, G.; Bonavina, L.; Bona, D. Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis. Cancers 2024, 16, 1620. https://doi.org/10.3390/cancers16091620
Manara M, Aiolfi A, Sozzi A, Calì M, Grasso F, Rausa E, Bonitta G, Bonavina L, Bona D. Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis. Cancers. 2024; 16(9):1620. https://doi.org/10.3390/cancers16091620
Chicago/Turabian StyleManara, Michele, Alberto Aiolfi, Andrea Sozzi, Matteo Calì, Federica Grasso, Emanuele Rausa, Gianluca Bonitta, Luigi Bonavina, and Davide Bona. 2024. "Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis" Cancers 16, no. 9: 1620. https://doi.org/10.3390/cancers16091620
APA StyleManara, M., Aiolfi, A., Sozzi, A., Calì, M., Grasso, F., Rausa, E., Bonitta, G., Bonavina, L., & Bona, D. (2024). Short-Term Outcomes Analysis Comparing Open, Laparoscopic, Laparoscopic-Assisted, and Robotic Distal Gastrectomy for Locally Advanced Gastric Cancer: A Randomized Trials Network Analysis. Cancers, 16(9), 1620. https://doi.org/10.3390/cancers16091620