Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Pretreatment Workflow
Simulation Protocol
2.3. Treatment Planning
- PTVhigh = PTV − (CS + 2 mm)
- PTVlow = intersection between PTV and (CS + 3 mm) in pancreatic patients
2.4. Online Clinical Workflow
2.5. Quality Assurance
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daamen, L.A.; de Mol van Otterloo, S.R.; van Goor, I.W.J.M.; Eijkelenkamp, H.; Erickson, B.A.; Hall, W.A.; Heerkens, H.D.; Meijer, G.J.; Molenaar, I.Q.; van Santvoort, H.C.; et al. Online adaptive MR-guided stereotactic radiotherapy for unresectable malignancies in the upper abdomen using a 1.5T MR-linac. Acta Oncol. 2022, 61, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Wegener, D.; Thome, A.; Paulsen, F.; Gani, C.; Boldt, J.; Butzer, S.; Thorwarth, D.; Moennich, D.; Nachbar, M.; Müller, A.-C.; et al. First Experience and Prospective Evaluation on Feasibility and Acute Toxicity of Online Adaptive Radiotherapy of the Prostate Bed as Salvage Treatment in Patients with Biochemically Recurrent Prostate Cancer on a 1.5T MR-Linac. J. Clin. Med. 2022, 11, 4651. [Google Scholar] [CrossRef] [PubMed]
- De-Colle, C.; Kirby, A.; Russell, N.; Shaitelman, S.; Currey, A.; Donovan, E.; Hahn, E.; Han, K.; Anandadas, C.; Mahmood, F.; et al. Adaptive radiotherapy for breast cancer. Clin. Transl. Radiat. Oncol. 2022, 39, 100564. [Google Scholar] [CrossRef] [PubMed]
- Ocanto, A.; Torres, L.; Montijano, M.; Rincón, D.; Fernández, C.; Sevilla, B.; Gonsalves, D.; Teja, M.; Guijarro, M.; Glaría, L.; et al. MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers 2024, 16, 270. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Ma, T.M.; Lamb, J.M.; Casado, M.; Wilhalme, H.; Low, D.A.; Sheng, K.; Sharma, S.; Nickols, N.G.; Pham, J.; et al. Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer: The MIRAGE Randomized Clinical Trial. JAMA Oncol. 2023, 9, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Henke, L.; Kashani, R.; Robinson, C.; Curcuru, A.; DeWees, T.; Bradley, J.; Green, O.; Michalski, J.; Mutic, S.; Parikh, P.; et al. Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother. Oncol. 2018, 126, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on MR Safety; Kanal, E.; Barkovich, A.J.; Bell, C.; Borgstede, J.P.; Bradley, W.G., Jr.; Froelich, J.W.; Gimbel, J.R.; Gosbee, J.W.; Kuhni-Kaminski, E.; et al. ACR guidance document on MR safe practices: 2013. J. Magn. Reson. Imaging 2013, 37, 501–530. [Google Scholar] [CrossRef] [PubMed]
- Klüter, S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Rippke, C.; Schrenk, O.; Renkamp, C.K.; Buchele, C.; Hörner-Rieber, J.; Debus, J.; Alber, M.; Klüter, S. Quality assurance for on-table adaptive magnetic resonance guided radiation therapy: A software tool to complement secondary dose calculation and failure modes discovered in clinical routine. J. Appl. Clin. Med. Phys. 2022, 23, e13523. [Google Scholar] [CrossRef] [PubMed]
- Hehakaya, C.; Sharma, A.M.; van der Voort Van, J.R.; Grobbee, D.E.; Verkooijen, H.M.; Izaguirre, E.W.; Moors, E.H. Implementing Magnetic Resonance Imaning-Guided Radiation Therapy in Routine Care: Opportunities and Challenges in the United States. Adv. Radiat. Oncol. 2022, 7, 100953. [Google Scholar] [CrossRef] [PubMed]
- Chuong, M.D.; Clark, M.A.; Henke, L.E.; Kishan, A.U.; Portelance, L.; Parikh, P.J.; Bassetti, M.F.; Nagar, H.; Rosenberg, S.A.; Mehta, M.P.; et al. Patterns of utilization and clinical adoption of 0.35 Tesla MR-guided radiation therapy in the United States—Understanding the transition to adaptive, ultra-hypofractionated treatments. Clin. Transl. Radiat. Oncol. 2022, 38, 161–168. [Google Scholar] [CrossRef]
- Slotman, B.J.; Clark, M.A.; Özyar, E.; Kim, M.; Itami, J.; Tallet, A.; Debus, J.; Pfeffer, R.; Gentile, P.; Hama, Y.; et al. Clinical adoption patterns of 0.35 Tesla MR-guided radiation therapy in Europe and Asia. Radiat. Oncol. 2022, 17, 146. [Google Scholar] [CrossRef] [PubMed]
- Henke, L.E.; Contreras, J.A.; Green, O.L.; Cai, B.; Kim, H.; Roach, M.C.; Olsen, J.R.; Fischer-Valuck, B.; Mullen, D.F.; Kashani, R.; et al. Magnetic Resonance Image-Guided Radiotherapy (MRIgRT): A 4.5-Year Clinical Experience. Clin. Oncol. 2018, 30, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, F.R.; Willigenburg, T.; Tree, A.C.; Hall, W.A.; Choi, S.L.; Choudhury, A.; Christodouleas, J.P.; de Boer, J.C.; Breugel, E.N.d.G.-V.; Kerkmeijer, L.G.; et al. Magnetic Resonance-Guided Adaptive Radiation Therapy for Prostate Cancer: The First Results from the MOMENTUM study—An International Registry for the Evidence-Based Introduction of Magnetic Resonance-Guided Adaptive Radiation Therapy. Pract. Radiat. Oncol. 2023, 13, e261–e269. [Google Scholar] [CrossRef] [PubMed]
- Alongi, F.; Rigo, M.; Figlia, V.; Cuccia, F.; Giaj-Levra, N.; Nicosia, L.; Ricchetti, F.; Sicignano, G.; De Simone, A.; Naccarato, S.; et al. 1.5 T MR-guided and daily adapted SBRT for prostate cancer: Feasibility, preliminary clinical tolerability, quality of life and patient-reported outcomes during treatment. Radiat. Oncol. 2020, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.G.; Jones, B.L.; Schefter, T.; Goodman, K.A.; Miften, M. An evaluation of motion mitigation techniques for pancreatic SBRT. Radiother. Oncol. 2017, 124, 168–173. [Google Scholar] [CrossRef]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Loehre, P.J.L., Sr.; Feng, Y.; Cardenes, H.; Wagner, L.; Brell, J.M.; Cella, D.; Flynn, P.; Ramanathan, R.K.; Crane, C.H.; Alberts, S.R.; et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: An Eastern Cooperative Oncology Group trial. J. Clin. Oncol. 2011, 29, 4105–4112. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, C.; Rudra, S.; Bommireddy, A.; Hawkins, W.G.; Wang-Gillam, A.; Fields, R.C.; Cai, B.; Park, J.; Green, O.; Roach, M.; et al. Ablative Five-Fraction Stereotactic Body Radiation Therapy for Inoperable Pancreatic Cancer Using Online MR-Guided Adaptation. Adv. Radiat. Oncol. 2020, 6, 100506. [Google Scholar] [CrossRef] [PubMed]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.C.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Shouman, M.A.; Fuchs, F.; Walter, F.; Corradini, S.; Westphalen, C.B.; Vornhülz, M.; Beyer, G.; Andrade, D.; Belka, C.; Niyazi, M.; et al. Stereotactic body radiotherapy for pancreatic cancer—A systematic review of prospective data. Clin. Transl. Radiat. Oncol. 2024, 45, 100738. [Google Scholar] [CrossRef] [PubMed]
- Real Decreto 1566/1998. Criterios de Calidad de Radioterapia. BOE Numer 206. 1998, pp. 29383–29394. Available online: https://www.boe.es/eli/es/rd/1998/07/17/1566 (accessed on 3 March 2024).
- Tetar, S.U.; Bruynzeel, A.M.E.; Lagerwaard, F.J.; Slotman, B.J.; Bohoudi, O.; Palacios, M.A. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Phys. Imaging Radiat. Oncol. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.; Cao, M.; Kishan, A.; Agazaryan, N.; Thomas, D.H.; Shaverdian, N.; Yang, Y.; Ray, S.; Low, D.A.; Raldow, A.; et al. Online Adaptive Radiation Therapy: Implementation of a New Process of Care. Cureus 2017, 9, e1618. [Google Scholar] [CrossRef] [PubMed]
- Tree, A.C.; Ostler, P.; van der Voet, H.; Chu, W.; Loblaw, A.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; Staffurth, J.; et al. Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2-year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2022, 23, 1308–1320. [Google Scholar] [CrossRef]
- Pham, J.; Savjani, R.R.; Gao, Y.; Cao, M.; Hu, P.; Sheng, K.; Low, D.A.; Steinberg, M.; Kishan, A.U.; Yang, Y. Evaluation of T2-Weighted MRI for Visualization and Sparing of Urethra with MR-Guided Radiation Therapy (MRgRT) On-Board MRI. Cancers 2021, 13, 3564. [Google Scholar] [CrossRef] [PubMed]
- Grimbergen, G.; Eijkelenkamp, H.; Heerkens, H.D.; Raaymakers, B.W.; Intven, M.P.W.; Meijer, G.J. Dosimetric impact of intrafraction motion under abdominal compression during MR-guided SBRT for (Peri-) pancreatic tumors. Phys. Med. Biol. 2022, 67, 185016. [Google Scholar] [CrossRef] [PubMed]
- Votta, C.; Iacovone, S.; Turco, G.; Carrozzo, V.; Vagni, M.; Scalia, A.; Chiloiro, G.; Meffe, G.; Nardini, M.; Panza, G.; et al. Evaluation of clinical parallel workflow in online adaptive MR-guided Radiotherapy: A detailed assessment of treatment session times. Tech. Innov. Patient Support Radiat. Oncol. 2024, 29, 100239. [Google Scholar] [CrossRef]
- Adair Smith, G.; Dunlop, A.; Alexander, S.E.; Barnes, H.; Casey, F.; Chick, J.; Gunapala, R.; Herbert, T.; Lawes, R.; Mason, S.A.; et al. Interobserver variation of clinical oncologists compared to therapeutic radiographers (RTT) prostate contours on T2 weighted MRI. Tech. Innov. Patient Support Radiat. Oncol. 2022, 25, 100200. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Prostate Cancer (Version 4.2023). 2019. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 15 January 2024).
- Widmark, A.; Gunnlaugsson, A.; Beckman, L.; Thellenberg-Karlsson, C.; Hoyer, M.; Lagerlund, M.; Kindblom, J.; Ginman, C.; Johansson, B.; Björnlinger, K.; et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomized, non-inferiority, phase 3 trial. Lancet 2019, 394, 385–395. [Google Scholar] [CrossRef]
- Callan, L.; Bauman, G.; Chen, J.; Lock, M.; Sexton, T.; D’Souza, D.; Rodrigues, G. A Phase I/II Trial of Fairly Brief Androgen Suppression and Stereotactic Radiation Therapy for High-Risk Prostate Cancer (FASTR-2): Preliminary Results and Toxicity Analysis. Adv. Radiat. Oncol. 2019, 4, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Bruynzeel, A.M.; Tetar, S.U.; Oei, S.S.; Senan, S.; Haasbeek, C.J.; Spoelstra, F.O.; Piet, A.H.; Meijnen, P.; van der Jagt, M.A.B.; Fraikin, T.; et al. A prospective single-arm phase 2 study of stereotactic magnetic resonance guided adaptive radiation therapy for prostate cancer: Early toxicity results. Int. J. Radiat. Oncol. 2019, 105, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Ristau, J.; Hörner-Rieber, J.; Buchele, C.; Klüter, S.; Jäkel, C.; Baumann, L.; Andratschke, N.; Schüler, H.G.; Guckenberger, M.; Li, M.; et al. Stereotactic MRI-guided radiation therapy for localized prostate cancer (SMILE): A prospective, multicentric phase-II-trial. Radiat. Oncol. 2022, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, H.B.; D’Alimonte, L.; Davidson, M.; Ho, L.; Cheung, P.; Vesprini, D.; Liu, S.; Chu, W.; Chung, H.; Ravi, A.; et al. Phase 1-2 Study of Stereotactic Ablative Radiotherapy Including Regional Lymph Node Irradiation in Patients With High-Risk Prostate Cancer (SATURN): Early Toxicity and Quality of Life. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Alayed, Y.; Cheung, P.; Vesprini, D.; Liu, S.; Chu, W.; Chung, H.; Musunuru, H.B.; Davidson, M.; Ravi, A.; Ho, L.; et al. SABR in High-Risk Prostate Cancer: Outcomes From 2 Prospective Clinical Trials With and Without Elective Nodal Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Lieng, H.; Hayden, A.J.; Christie, D.R.; Davis, B.J.; Eade, T.N.; Emmett, L.; Holt, T.; Hruby, G.; Pryor, D.; Shakespeare, T.P.; et al. Radiotherapy for recurrent prostate cancer: 2018 Recommendations of the Australian and New Zealand Radiation Oncology Genito-Urinary group. Radiother. Oncol. 2018, 129, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Valle, L.F.; Lehrer, E.J.; Markovic, D.; Elashoff, D.; Levin-Epstein, R.; Karnes, R.J.; Reiter, R.E.; Rettig, M.; Calais, J.; Nickols, N.G.; et al. A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). Eur. Urol. 2020, 80, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, F.; Corradini, S.; Mazzola, R.; Spiazzi, L.; Rigo, M.; Bonù, M.L.; Ruggieri, R.; Buglione di Monale, E.; Bastia, M.; Magrini, S.M.; et al. MR-Guided Hypofractionated Radiotherapy: Current Emerging Data and Promising Perspectives for Localized Prostate Cancer. Cancers 2021, 13, 1791. [Google Scholar] [CrossRef] [PubMed]
- Michalet, M.; Riou, O.; Cottet-Moine, J.; Castan, F.; Gourgou, S.; Valdenaire, S.; Debuire, P.; Ailleres, N.; Draghici, R.; Charissoux, M.; et al. Magnetic Resonance-Guided Reirradiation for Local Recurrence within the Prostate or in the Prostate Bed: One-Year Clinical Results of a Prospective Registry Study. Cancers 2022, 14, 1943. [Google Scholar] [CrossRef] [PubMed]
- Lominska, C.E.; Unger, K.; Nasr, N.M.; Haddad, N.; Gagnon, G. Stereotactic body radiation therapy for reirradiation of localized adenocarcinoma of the pancreas. Radiat. Oncol. 2012, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.T.; Hiniker, S.M.; Chang, D.T.; Tran, P.T.; Khashab, M.A.; Limaye, M.R.; Laheru, D.A.; Le, D.T.; Kumar, R.; Pai, J.S.; et al. Re-irradiation with stereotactic body radiation therapy as a novel treatment option for isolated local recurrence of pancreatic cancer after multimodality therapy: Experience from two institutions. J. Gastrointest. Oncol. 2013, 4, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Koong, A.C.; Christofferson, E.; Le, Q.-T.; Goodman, K.A.; Ho, A.; Kuo, T.; Ford, J.M.; Fisher, G.A.; Greco, R.; Norton, J.; et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.M.; Mittauer, K.E.; Kotecha, R.; Contreras, J.; Alvarez, D.; Kalman, N.S.; Hall, M.D.; Luciani, G.; Romaguera, T.; Mishra, V.; et al. Favorable Initial Outcomes of Abdominopelvic Reirradiation Using Dose-Escalated Magnetic Resonance Image-Guided Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e175. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Median Age(range) | 71 (46–84) |
Gender (%) | |
Male | 28 (75.68%) |
Female | 9 (24,32%) |
Karnofsky (inclusion ≥ 80%) (%) | |
80 | 1 (2.70%) |
90 | 6 (16.22%) |
100 | 30 (68.46%) |
Localization treatment (%) | |
Prostate | 22 (59.46%) |
Liver | 1 (2.70%) |
Pancreas | 12 (32.44%) |
Adrenal | 1 (2.70%) |
Lung | 1 (2.70%) |
Reirradiation (%) | |
Yes | 3 (8.10%) |
No | 0 (91.9%) |
Prostate: cT-stage (%) | |
T1 | 3 (13.63%) |
T2a | 8 (36.36%) |
T2b | 4 (18.18%) |
T2c | 6 (27.27%) |
T3a | 1 (4.56%) |
Risk-stage according to NCCN guidelines (%) | |
Low Risk | 3 (13.64%) |
Intermediate favorable risk | 11 (50%) |
Intermediate unfavorable risk | 5 (22.73%) |
High risk | 3 (13.64%) |
GTV (%) | |
Prostate | 14 (63.64%) |
Prostate and seminal vesicles | 8 (36.36%) |
Pancreas: cT-stage (%) | |
T3 | 3 (25%) |
T4 | 9 (75%) |
cN-stage (%) | |
N0 | 8 (66.67%) |
N1 | 4 (33.33%) |
Systemic treatment | |
FOLFIRINOX | 9 (75%) |
Other | 3 (25%) |
Chemotherapy cycles n (%) | |
<5 | 1 (8.33%) |
5–10 | 10 (83.33%) |
>10 | 1 (8.33%) |
Localization | Patients | Dose | Target Volume |
---|---|---|---|
Prostate | 14 | 36.50 Gy in 5 fx. (AD) | Prostate |
8++ | 40 Gy in 5 fx. (AD) | Prostate and seminal vesicles | |
Pancreas | 3 | 50 Gy in 5 fx. (D) | Pancreatic tumor |
1 | 45 Gy in 5 fx. (D) | ||
7 | 40 Gy in 5 fx. (D) | ||
1 | 30 Gy in 5 fx. (D) | ||
Lung | 1 | 28 Gy in 1 fx. (D) | Lung nodule |
Liver | 1 | 50 Gy in 5 fx. (D) | Liver nodule |
Adrenal gland | 1 | 36 Gy in 3 fx. (D) | Adrenal gland |
Adverse Event | End of Treatment | Three Months | ||||
---|---|---|---|---|---|---|
Grade I | Grade II | Grade III | Grade I | Grade II | Grade III | |
Genito-urinary | ||||||
Cystitis | 9 (40.91%) | 4 (18.18%) | 0 | 0 | 1 (4.54%) | 0 |
Hematuria | 0 | 0 | 0 | 0 | 0 | 0 |
Urinary incontinence | 0 | 0 | 0 | 0 | 0 | 0 |
Urinary retention | 0 | 0 | 0 | 0 | 0 | 0 |
Gastrointestinal | ||||||
Diarrhea | 0 | 0 | 0 | 0 | 0 | 0 |
Colitis | 0 | 0 | 0 | 0 | 0 | 0 |
Rectal pain | 0 | 0 | 0 | 0 | 0 | 0 |
Adverse Event | End of Treatment | Three Months | ||||
---|---|---|---|---|---|---|
Grade I | Grade II | Grade III | Grade I | Grade II | Grade III | |
Nausea | 2 (8.5%) | 1 (4.25%) | 0 | 0 | 0 | 0 |
Vomiting | 0 | 0 | 0 | 0 | 0 | 0 |
dyspepsia | 0 | 0 | 0 | 0 | 0 | 0 |
Jaundice | 0 | 1 (4.25%) | 0 | 0 | 0 | 0 |
Diarrhea | 0 | 0 | 0 | 0 | 0 | 0 |
Colitis | 0 | 0 | 0 | 0 | 0 | 0 |
Duodenal ulcer | 0 | 0 | 0 | 0 | 0 | 1 (4.25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonsalves, D.; Ocanto, A.; Meilan, E.; Gomez, A.; Dominguez, J.; Torres, L.; Pascual, C.F.; Teja, M.; Linde, M.M.; Guijarro, M.; et al. Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers 2024, 16, 1685. https://doi.org/10.3390/cancers16091685
Gonsalves D, Ocanto A, Meilan E, Gomez A, Dominguez J, Torres L, Pascual CF, Teja M, Linde MM, Guijarro M, et al. Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers. 2024; 16(9):1685. https://doi.org/10.3390/cancers16091685
Chicago/Turabian StyleGonsalves, Daniela, Abrahams Ocanto, Eduardo Meilan, Alberto Gomez, Jesus Dominguez, Lisselott Torres, Castalia Fernández Pascual, Macarena Teja, Miguel Montijano Linde, Marcos Guijarro, and et al. 2024. "Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain" Cancers 16, no. 9: 1685. https://doi.org/10.3390/cancers16091685
APA StyleGonsalves, D., Ocanto, A., Meilan, E., Gomez, A., Dominguez, J., Torres, L., Pascual, C. F., Teja, M., Linde, M. M., Guijarro, M., Rivas, D., Begara, J., González, J. A., Andreescu, J., Holgado, E., Alcaraz, D., López, E., Dzhugashvli, M., Lopez-Campos, F., ... Couñago, F. (2024). Feasibility and Acute Toxicity of Hypo-Fractionated Radiotherapy on 0.35T MR-LINAC: The First Prospective Study in Spain. Cancers, 16(9), 1685. https://doi.org/10.3390/cancers16091685