Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance
Abstract
:Simple Summary
Abstract
1. Introduction
2. The FAM46C Gene and Its Mutations in Cancer
3. FAM46C: A Multi-Cancer Tumour Suppressor
3.1. Multiple Myeloma
3.2. Colorectal Cancer
3.3. Squamous Cell Carcinoma
3.4. Prostate Cancer
3.5. Hepatocellular Carcinoma
3.6. Gastric Cancer
3.7. Lung Cancer
4. Signalling Pathways Regulated by FAM46C
4.1. MAPK/ERK Signalling
4.2. PI3K/AKT/mTOR Pathway
4.3. WNT/β-Catenin Pathway
4.4. TGF-β/SMAD Pathway
4.5. The FAM46C-MYC Connection
5. FAM46C Functional Models
5.1. FAM46C as a Poly(A) Polymerase
5.2. FAM46C as an Inhibitor of PLK4
5.3. FAM46C as a Regulator of Intracellular Trafficking Dynamics
5.4. The Comprehensive Model
6. Regulation of FAM46C Gene Expression
6.1. Positive Regulators of FAM46C Expression
6.1.1. IFN-α and -γ
6.1.2. IL-4 and TLR Receptor Activators
6.1.3. PRDM1 and HIC1
6.2. Negative Regulators of FAM46C Expression
7. Impact of FAM46C Expression on the Effects of Anticancer Drugs
7.1. MM
7.1.1. Bortezomib
7.1.2. Dexamethasone
7.1.3. Lenalidomide and Pomalidomide
7.1.4. Doxorubicin and Melphalan
7.1.5. SK1-I
7.2. Other cancers
7.2.1. Docetaxel
7.2.2. NCTD
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A Diverse Range of Gene Products Are Effectors of the Type I Interferon Antiviral Response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, M.; Hoffmann, H.-H.; Scull, M.A.; Gilmore, R.H.; Bell, K.L.; Ciancanelli, M.; Wilson, S.J.; Crotta, S.; Yu, Y.; Flatley, B.; et al. A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation. Cell 2015, 160, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.; Zang, T.M.; Rihn, S.J.; Zhang, F.; Kueck, T.; Alim, M.; Schoggins, J.; Rice, C.M.; Wilson, S.J.; Bieniasz, P.D. Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host Microbe 2016, 20, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Mancino, M.; Lai, G.; De Grossi, F.; Cuomo, A.; Manganaro, L.; Butta, G.M.; Ferrari, I.; Vicenzi, E.; Poli, G.; Pesce, E.; et al. FAM46C Is an Interferon-Stimulated Gene That Inhibits Lentiviral Particle Production by Modulating Autophagy. Microbiol. Spectr. 2023, 11, e05211-22. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.-P.; Ahmann, G.J.; Adli, M.; et al. Initial Genome Sequencing and Analysis of Multiple Myeloma. Nature 2011, 471, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.D.; Ross, F.M.; Walker, B.A.; Wardell, C.P.; Tapper, W.J.; Chiecchio, L.; Dagrada, G.; Konn, Z.J.; Gregory, W.M.; Jackson, G.H.; et al. Mapping of Chromosome 1p Deletions in Myeloma Identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as Being Genes in Regions Associated with Adverse Survival. Clin. Cancer Res. 2011, 17, 7776–7784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Yue, X.-Q.; Jiang, Y.-P.; Han, T.; Xin, H.-L. FAM46C Is Critical for the Anti-Proliferation and pro-Apoptotic Effects of Norcantharidin in Hepatocellular Carcinoma Cells. Sci. Rep. 2017, 7, 396. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Shi, C.-X.; Bruins, L.A.; Jedlowski, P.; Wang, X.; Kortüm, K.M.; Luo, M.; Ahmann, J.M.; Braggio, E.; Stewart, A.K. Loss of FAM46C Promotes Cell Survival in Myeloma. Cancer Res. 2017, 77, 4317–4327. [Google Scholar] [CrossRef] [PubMed]
- Kazazian, K.; Haffani, Y.; Ng, D.; Lee, C.M.M.; Johnston, W.; Kim, M.; Xu, R.; Pacholzyk, K.; Zih, F.S.-W.; Tan, J.; et al. FAM46C/TENT5C Functions as a Tumor Suppressor through Inhibition of Plk4 Activity. Commun. Biol. 2020, 3, 448. [Google Scholar] [CrossRef]
- Ma, L.; He, H.; Jiang, K.; Jiang, P.; He, H.; Feng, S.; Chen, K.; Shao, J.; Deng, G. FAM46C Inhibits Cell Proliferation and Cell Cycle Progression and Promotes Apoptosis through PTEN/AKT Signaling Pathway and Is Associated with Chemosensitivity in Prostate Cancer. Aging 2020, 12, 6352–6369. [Google Scholar] [CrossRef]
- Zhu, P. FAM46C Suppresses Gastric Cancer by Inhibition of Wnt Beta-Catenin. Front. Biosci. 2020, 25, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Lu, M. The Potential Functions of FAM46C in Oral Squamous Cell Carcinoma. OTT 2018, 11, 8915–8923. [Google Scholar] [CrossRef] [PubMed]
- Kanasugi, J.; Hanamura, I.; Ota, A.; Karnan, S.; Lam, V.Q.; Mizuno, S.; Wahiduzzaman, M.; Rahman, M.L.; Hyodo, T.; Konishi, H.; et al. Biallelic Loss of FAM46C Triggers Tumor Growth with Concomitant Activation of Akt Signaling in Multiple Myeloma Cells. Cancer Sci. 2020, 111, 1663–1675. [Google Scholar] [CrossRef]
- Wan, X.-Y.; Zhai, X.-F.; Jiang, Y.-P.; Han, T.; Zhang, Q.-Y.; Xin, H.-L. Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma Cells by Up-Regulating FAM46C Expression. Am. J. Transl. Res. 2017, 9, 155–166. [Google Scholar]
- Deng, J.; Xiao, W.; Wang, Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front. Genet. 2022, 13, 810252. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Ouyang, Y.-C.; Jiang, B.; Lin, X.; Chen, J.; Dong, M.-Z.; Zhuang, X.; Yuan, S.; Sun, Q.-Y.; Han, C. Non-Canonical RNA Polyadenylation Polymerase FAM46C Is Essential for Fastening Sperm Head and Flagellum in Mice. Biol. Reprod. 2019, 100, 1673–1685. [Google Scholar] [CrossRef]
- Gewartowska, O.; Aranaz-Novaliches, G.; Krawczyk, P.S.; Mroczek, S.; Kusio-Kobiałka, M.; Tarkowski, B.; Spoutil, F.; Benada, O.; Kofroňová, O.; Szwedziak, P.; et al. Cytoplasmic Polyadenylation by TENT5A Is Required for Proper Bone Formation. Cell Rep. 2021, 35, 109015. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Liu, G.; Jin, C.; Zhang, Q.; Man, S.; Wang, Z. miR-657 Promotes Macrophage Polarization toward M1 by Targeting FAM46C in Gestational Diabetes Mellitus. Mediat. Inflamm. 2019, 2019, 4851214. [Google Scholar] [CrossRef]
- Yang, C.; Ni, B.; Li, C.; Sun, W.; Wang, Z.; Wang, H.; Hou, X.; Yan, S.; Wang, X.; Xu, D. circRNA_17725 Promotes Macrophage Polarization towards M2 by Targeting FAM46C to Alleviate Arthritis. Mediat. Inflamm. 2023, 2023, 6818524. [Google Scholar] [CrossRef]
- Mroczek, S.; Chlebowska, J.; Kuliński, T.M.; Gewartowska, O.; Gruchota, J.; Cysewski, D.; Liudkovska, V.; Borsuk, E.; Nowis, D.; Dziembowski, A. The Non-Canonical Poly(A) Polymerase FAM46C Acts as an Onco-Suppressor in Multiple Myeloma. Nat. Commun. 2017, 8, 619. [Google Scholar] [CrossRef]
- Manfrini, N.; Mancino, M.; Miluzio, A.; Oliveto, S.; Balestra, M.; Calamita, P.; Alfieri, R.; Rossi, R.L.; Sassoè-Pognetto, M.; Salio, C.; et al. FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Res. 2020, 80, 4693–4706. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Muszewska, A.; Knizewski, L.; Steczkiewicz, K.; Wyrwicz, L.S.; Pawlowski, K.; Rychlewski, L.; Ginalski, K. FAM46 Proteins Are Novel Eukaryotic Non-Canonical Poly(A) Polymerases. Nucleic Acids Res. 2016, 44, 3534–3548. [Google Scholar] [CrossRef] [PubMed]
- Lagali, P.S.; Kakuk, L.E.; Griesinger, I.B.; Wong, P.W.; Ayyagari, R. Identification and Characterization of C6orf37, a Novel Candidate Human Retinal Disease Gene on Chromosome 6q14. Biochem. Biophys. Res. Commun. 2002, 293, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Yang, H.; Wu, D.; You, X.; Huang, S.; Song, Y. Tent5a Modulates Muscle Fiber Formation in Adolescent Idiopathic Scoliosis via Maintenance of Myogenin Expression. Cell Prolif. 2022, 55, e13183. [Google Scholar] [CrossRef]
- Doyard, M.; Bacrot, S.; Huber, C.; Di Rocco, M.; Goldenberg, A.; Aglan, M.S.; Brunelle, P.; Temtamy, S.; Michot, C.; Otaify, G.A.; et al. FAM46A Mutations Are Responsible for Autosomal Recessive Osteogenesis Imperfecta. J. Med. Genet. 2018, 55, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Bayer, S.; Sabrautzki, S.; Wieland, T.; Mentrup, B.; Przemeck, G.K.H.; Rathkolb, B.; Graf, E.; Hans, W.; Fuchs, H.; et al. Exome Sequencing Identifies a Nonsense Mutation in Fam46a Associated with Bone Abnormalities in a New Mouse Model for Skeletal Dysplasia. Mamm. Genome 2016, 27, 111–121. [Google Scholar] [CrossRef]
- Liudkovska, V.; Krawczyk, P.S.; Brouze, A.; Gumińska, N.; Wegierski, T.; Cysewski, D.; Mackiewicz, Z.; Ewbank, J.J.; Drabikowski, K.; Mroczek, S.; et al. TENT5 Cytoplasmic Noncanonical Poly(A) Polymerases Regulate the Innate Immune Response in Animals. Sci. Adv. 2022, 8, eadd9468. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-L.; Liang, H.; Zhang, H.; Yang, M.-Z.; Sun, W.; Zhang, P.; Luo, L.; Feng, J.-X.; Bai, H.; Liu, F.; et al. FAM46B Is a Prokaryotic-like Cytoplasmic Poly(A) Polymerase Essential in Human Embryonic Stem Cells. Nucleic Acids Res. 2020, 48, 2733–2748. [Google Scholar] [CrossRef] [PubMed]
- Benjachat, T.; Tongyoo, P.; Tantivitayakul, P.; Somparn, P.; Hirankarn, N.; Prom-On, S.; Pisitkun, P.; Leelahavanichkul, A.; Avihingsanon, Y.; Townamchai, N. Biomarkers for Refractory Lupus Nephritis: A Microarray Study of Kidney Tissue. IJMS 2015, 16, 14276–14290. [Google Scholar] [CrossRef]
- Herrero, A.B.; Quwaider, D.; Corchete, L.A.; Mateos, M.V.; García-Sanz, R.; Gutiérrez, N.C. FAM46C Controls Antibody Production by the Polyadenylation of Immunoglobulin mRNAs and Inhibits Cell Migration in Multiple Myeloma. J. Cell Mol. Med. 2020, 24, 4171–4182. [Google Scholar] [CrossRef]
- Cong, J.; Yang, Y.; Wang, X.; Shen, Y.; Qi, H.-T.; Liu, C.; Tang, S.; Wu, S.; Tian, S.; Zhou, Y.; et al. Deficiency of X-Linked TENT5D Causes Male Infertility by Disrupting the mRNA Stability during Spermatogenesis. Cell Discov. 2022, 8, 23. [Google Scholar] [CrossRef]
- Etokebe, G.E.; Zienolddiny, S.; Kupanovac, Z.; Enersen, M.; Balen, S.; Flego, V.; Bulat-Kardum, L.; Radojčić-Badovinac, A.; Skaug, V.; Bakke, P.; et al. Association of the FAM46A Gene VNTRs and BAG6 Rs3117582 SNP with Non Small Cell Lung Cancer (NSCLC) in Croatian and Norwegian Populations. PLoS ONE 2015, 10, e0122651. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, R.; Wang, P.; Huang, C.; Zhang, C.; Liu, Z. FAM46A Expression Is Elevated in Glioblastoma and Predicts Poor Prognosis of Patients. Clin. Neurol. Neurosurg. 2021, 201, 106421. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Wang, J.; Zhan, T.; Xu, S. Identification of Prognostic Risk Factors for Esophageal Adenocarcinoma Using Bioinformatics Analysis. OTT 2018, 11, 4327–4337. [Google Scholar] [CrossRef]
- Liang, S.; Liu, Y.; He, J.; Gao, T.; Li, L.; He, S. Family with Sequence Similarity 46 Member a Confers Chemo-Resistance to Ovarian Carcinoma via TGF-β/Smad2 Signaling. Bioengineered 2022, 13, 10629–10639. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Ye, X.; Liu, Y.; Qiu, X.; Li, Z.; Tian, B.; Yan, D. FAM46B Inhibits Cell Proliferation and Cell Cycle Progression in Prostate Cancer through Ubiquitination of β-Catenin. Exp. Mol. Med. 2018, 50, 1–12. [Google Scholar] [CrossRef]
- Liang, T.; Ye, X.; Yan, D.; Deng, C.; Li, Z.; Tian, B. FAM46B Promotes Apoptosis and Inhibits Glycolysis of Prostate Cancer Through Inhibition of the MYC-LDHA Axis. OTT 2020, 13, 8771–8782. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Wu, S.; Chen, X.; Cheng, S.; Li, Q. FAM46B Suppresses Proliferation, Migration and Invasion of Non-Small Cell Lung Cancer via β-Catenin/MMP7 Signaling. Transl. Cancer Res. 2019, 8, 1497–1505. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Chesi, M.; Bergsagel, P.L. Advances in the Pathogenesis and Diagnosis of Multiple Myeloma. Int. J. Lab. Hematol. 2015, 37, 108–114. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Wang, J. Progress in the Identification of Gene Mutations Involved in Multiple Myeloma. OTT 2019, 12, 4075–4080. [Google Scholar] [CrossRef]
- Weaver, C.J.; Tariman, J.D. Multiple Myeloma Genomics: A Systematic Review. Semin. Oncol. Nurs. 2017, 33, 237–253. [Google Scholar] [CrossRef]
- Walker, B.A.; Wardell, C.P.; Brioli, A.; Boyle, E.; Kaiser, M.F.; Begum, D.B.; Dahir, N.B.; Johnson, D.C.; Ross, F.M.; Davies, F.E.; et al. Translocations at 8q24 Juxtapose MYC with Genes That Harbor Superenhancers Resulting in Overexpression and Poor Prognosis in Myeloma Patients. Blood Cancer J. 2014, 4, e191. [Google Scholar] [CrossRef]
- Affer, M.; Chesi, M.; Chen, W.D.; Keats, J.J.; Demchenko, Y.N.; Tamizhmani, K.; Garbitt, V.M.; Riggs, D.L.; Brents, L.A.; Roschke, A.V.; et al. Promiscuous MYC Locus Rearrangements Hijack Enhancers but Mostly Super-Enhancers to Dysregulate MYC Expression in Multiple Myeloma. Leukemia 2014, 28, 1725–1735. [Google Scholar] [CrossRef]
- Walker, B.A.; Wardell, C.P.; Melchor, L.; Hulkki, S.; Potter, N.E.; Johnson, D.C.; Fenwick, K.; Kozarewa, I.; Gonzalez, D.; Lord, C.J.; et al. Intraclonal Heterogeneity and Distinct Molecular Mechanisms Characterize the Development of t(4;14) and t(11;14) Myeloma. Blood 2012, 120, 1077–1086. [Google Scholar] [CrossRef]
- Kortüm, K.M.; Langer, C.; Monge, J.; Bruins, L.; Zhu, Y.X.; Shi, C.X.; Jedlowski, P.; Egan, J.B.; Ojha, J.; Bullinger, L.; et al. Longitudinal Analysis of 25 Sequential Sample-Pairs Using a Custom Multiple Myeloma Mutation Sequencing Panel (M3P). Ann. Hematol. 2015, 94, 1205–1211. [Google Scholar] [CrossRef]
- Lohr, J.G.; Stojanov, P.; Carter, S.L.; Cruz-Gordillo, P.; Lawrence, M.S.; Auclair, D.; Sougnez, C.; Knoechel, B.; Gould, J.; Saksena, G.; et al. Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell 2014, 25, 91–101. [Google Scholar] [CrossRef]
- Ryland, G.L.; Jones, K.; Chin, M.; Markham, J.; Aydogan, E.; Kankanige, Y.; Caruso, M.; Guinto, J.; Dickinson, M.; Prince, H.M.; et al. Novel Genomic Findings in Multiple Myeloma Identified through Routine Diagnostic Sequencing. J. Clin. Pathol. 2018, 71, 895–899. [Google Scholar] [CrossRef]
- Vikova, V.; Jourdan, M.; Robert, N.; Requirand, G.; Boireau, S.; Bruyer, A.; Vincent, L.; Cartron, G.; Klein, B.; Elemento, O.; et al. Comprehensive Characterization of the Mutational Landscape in Multiple Myeloma Cell Lines Reveals Potential Drivers and Pathways Associated with Tumor Progression and Drug Resistance. Theranostics 2019, 9, 540–553. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, S.-J.; Liu, Y.-F.; Wang, C.; Li, Y.-F.; Wang, W.-Q.; Hao, Q.-Q.; Zhang, D.-F.; Li, Y.-M.; Sun, H.; et al. Gene Mutation and Overexpression of Newly Diagnosed Multiple Myeloma Patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2022, 30, 166–169. [Google Scholar]
- Rebmann Chigrinova, E.; Porret, N.A.; Andres, M.; Wiedemann, G.; Banz, Y.; Legros, M.; Pollak, M.; Oppliger Leibundgut, E.; Pabst, T.; Bacher, U. Correlation of Plasma Cell Assessment by Phenotypic Methods and Molecular Profiles by NGS in Patients with Plasma Cell Dyscrasias. BMC Med. Genom. 2022, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.B.; Lopes, C.D.H.; Awni, B.M.; Campos, E.F.; Alves, J.P.B.; Camargo, A.A.; Guardia, G.D.A.; Galante, P.A.F.; Jardim, D.L. Interplay between Tumor Mutational Burden and Mutational Profile and Its Effect on Overall Survival: A Pilot Study of Metastatic Patients Treated with Immune Checkpoint Inhibitors. Cancers 2022, 14, 5433. [Google Scholar] [CrossRef] [PubMed]
- Jirabanditsakul, C.; Dakeng, S.; Kunacheewa, C.; U-pratya, Y.; Owattanapanich, W. Comparison of Clinical Characteristics and Genetic Aberrations of Plasma Cell Disorders in Thailand Population. Technol. Cancer Res. Treat. 2022, 21, 153303382211112. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Manzoni, M.; Fabris, S.; Ciceri, G.; Todoerti, K.; Simeon, V.; Musto, P.; Cortelezzi, A.; Baldini, L.; Neri, A.; et al. Compendium of FAM 46C Gene Mutations in Plasma Cell Dyscrasias. Br. J. Haematol. 2016, 174, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients with Newly Diagnosed Myeloma. JCO 2015, 33, 3911–3920. [Google Scholar] [CrossRef] [PubMed]
- Mikulasova, A.; Ashby, C.; Tytarenko, R.G.; Qu, P.; Rosenthal, A.; Dent, J.A.; Ryan, K.R.; Bauer, M.A.; Wardell, C.P.; Hoering, A.; et al. Microhomology-Mediated End Joining Drives Complex Rearrangements and Overexpression of MYC and PVT1 in Multiple Myeloma. Haematologica 2020, 105, 1055–1066. [Google Scholar] [CrossRef]
- Tanaka, H.; Kanda, M.; Shimizu, D.; Tanaka, C.; Kobayashi, D.; Hayashi, M.; Iwata, N.; Yamada, S.; Fujii, T.; Nakayama, G.; et al. FAM46C Serves as a Predictor of Hepatic Recurrence in Patients with Resectable Gastric Cancer. Ann. Surg. Oncol. 2017, 24, 3438–3445. [Google Scholar] [CrossRef]
- Rogala, J.; Kojima, F.; Alaghehbandan, R.; Ptakova, N.; Bravc, A.; Bulimbasic, S.; Perez Montiel, D.; Slisarenko, M.; Ali, L.; Kuthi, L.; et al. Small Cell Variant of Chromophobe Renal Cell Carcinoma: Clinicopathologic, and Molecular-Genetic Analysis of 10 Cases.: Chromophobe Renal Carcinoma Analysis. Bosn. J. Basic. Med. Sci. 2022, 22, 531–539. [Google Scholar] [CrossRef]
- Yu, L.; Gong, C. Pancancer Analysis of a Potential Gene Mutation Model in the Prediction of Immunotherapy Outcomes. Front. Genet. 2022, 13, 917118. [Google Scholar] [CrossRef]
- Han, W.; Li, C.; Wang, Y.; Huo, B.; Li, W.; Shi, W. Heme Metabolism-Related Gene TENT5C Is a Prognostic Marker and Investigating Its Immunological Role in Colon Cancer. PGPM 2023, 16, 1127–1143. [Google Scholar] [CrossRef]
- Xia, E.; Kanematsu, S.; Suenaga, Y.; Elzawahry, A.; Kondo, H.; Otsuka, N.; Moriya, Y.; Iizasa, T.; Kato, M.; Yoshino, I.; et al. MicroRNA Induction by Copy Number Gain Is Associated with Poor Outcome in Squamous Cell Carcinoma of the Lung. Sci. Rep. 2018, 8, 15363. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xing, X.; Cheng, C.; Kong, R.; Sun, L.; Zhao, F.; Zhang, D.; Li, J. Hsa-miR-1269a up-Regulation Fosters the Malignant Progression of Esophageal Squamous Cell Carcinoma via Targeting FAM46C. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2023, 827, 111832. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, M.; Wu, T.; Zhang, L.; Wang, Y.; Chen, L.; Fu, G.; Weng, X.; Wang, J. Loss of Hypermethylated in Cancer 1 (HIC1) Promotes Lung Cancer Progression. Cell. Signal. 2019, 53, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, D.; Shang, G.; Gao, G.; Zhang, X. Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020, 28, 910–921.e4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; Hu, J.; Wu, Y.; Ma, X.; Chen, Y.; Yu, B.; Liao, S.; Huang, H.; Gao, S. Structural and Functional Characterization of Multiple Myeloma Associated Cytoplasmic Poly(A) Polymerase FAM46C. Cancer Commun. 2021, 41, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Fucci, C.; Resnati, M.; Riva, E.; Perini, T.; Ruggieri, E.; Orfanelli, U.; Paradiso, F.; Cremasco, F.; Raimondi, A.; Pasqualetto, E.; et al. The Interaction of the Tumor Suppressor FAM46C with P62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep. 2020, 32, 108162. [Google Scholar] [CrossRef]
- Gao, X.-Z.; Xi, X.-F.; Zhang, S.-P. Down-Regulation of miR-10b Represses Cell Vitality in Osteosarcoma and Is Inversely Associated with Prognosis via Interacting with FAM46C. Tissue and Cell 2020, 63, 101331. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Geng, S.; Wang, J.; Yan, C.; Zhang, X.; Zhang, J.; Wu, F.; Pang, Y.; Zhong, Y.; et al. FAM46C-Mediated Tumor Heterogeneity Predicts Extramedullary Metastasis and Poorer Survival in Multiple Myeloma. Aging 2023, 15, 3644–3677. [Google Scholar] [CrossRef]
- Flietner, E.; Yu, M.; Poudel, G.; Veltri, A.J.; Zhou, Y.; Rajagopalan, A.; Feng, Y.; Lasho, T.; Wen, Z.; Sun, Y.; et al. Molecular Characterization Stratifies VQ Myeloma Cells into Two Clusters with Distinct Risk Signatures and Drug Responses. Oncogene 2023, 42, 1751–1762. [Google Scholar] [CrossRef]
- Tan, J.; Sun, T.; Shen, J.; Zhu, H.; Gong, Y.; Zhu, H.; Wu, G. FAM46C Inhibits Lipopolysaccharides-Induced Myocardial Dysfunction via Downregulating Cellular Adhesion Molecules and Inhibiting Apoptosis. Life Sciences 2019, 229, 1–12. [Google Scholar] [CrossRef]
- Bilska, A.; Kusio-Kobiałka, M.; Krawczyk, P.S.; Gewartowska, O.; Tarkowski, B.; Kobyłecki, K.; Nowis, D.; Golab, J.; Gruchota, J.; Borsuk, E.; et al. Immunoglobulin Expression and the Humoral Immune Response Is Regulated by the Non-Canonical Poly(A) Polymerase TENT5C. Nat. Commun. 2020, 11, 2032. [Google Scholar] [CrossRef]
- Liu, S.; Chen, H.; Yin, Y.; Lu, D.; Gao, G.; Li, J.; Bai, X.-C.; Zhang, X. Inhibition of FAM46/TENT5 Activity by BCCIPα Adopting a Unique Fold. Sci. Adv. 2023, 9, eadf5583. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Hwang, J.Y.; Kim, D.K.; Na, K.; Lee, S.; Baek, S.; Kang, S.; Yang, S.M.; Kim, M.H.; Han, H.; et al. Polo-like Kinase 4: A Multifaceted Marker Linking Tumor Aggressiveness and Unfavorable Prognosis, and Insights into Therapeutic Strategies. Cancers 2023, 15, 4663. [Google Scholar] [CrossRef]
- Ryniawec, J.M.; Rogers, G.C. Balancing the Scales: Fine-Tuning Polo-like Kinase 4 to Ensure Proper Centriole Duplication. Genes. Dev. 2022, 36, 647–649. [Google Scholar] [CrossRef]
- Hoffmann, I. Role of Polo-like Kinases Plk1 and Plk4 in the Initiation of Centriole Duplication—Impact on Cancer. Cells 2022, 11, 786. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, K.; Nishizuka, M.; Katoh, D.; Kato, A.; Osada, S.; Imagawa, M. FAD104, a Regulatory Factor of Adipogenesis, Acts as a Novel Regulator of Calvarial Bone Formation. J. Biol. Chem. 2013, 288, 31772–31783. [Google Scholar] [CrossRef]
- Tominaga, K.; Kondo, C.; Johmura, Y.; Nishizuka, M.; Imagawa, M. The Novel Gene Fad 104, Containing a Fibronectin Type III Domain, Has a Significant Role in Adipogenesis. FEBS Lett. 2004, 577, 49–54. [Google Scholar] [CrossRef]
- You, Y.; Liu, C.; Liu, T.; Tian, M.; Wu, N.; Yu, Z.; Zhao, F.; Qi, J.; Zhu, Q. FNDC3B Protects Steatosis and Ferroptosis via the AMPK Pathway in Alcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2022, 193, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-dos-Santos, A.; De Brito, L.M.; De Araújo, G.S. The Fusiform Gyrus Exhibits Differential Gene-Gene Co-Expression in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1138336. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Yun, M.; Kwon, T.-H.; Bang, M.; Lee, J.; Lee, Y.S.; Ko, H.Y.; Chong, K. Fibronectin Type III Domain Containing 3B as a Potential Prognostic and Therapeutic Biomarker for Glioblastoma. Biomedicines 2023, 11, 3168. [Google Scholar] [CrossRef]
- Jiang, H.; Chu, B.L.; He, J.; Liu, Z.; Yang, L. Expression and Prognosis Analyses of the Fibronectin Type-III Domain-Containing (FNDC) Protein Family in Human Cancers: A Review. Medicine 2022, 101, e31854. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, P.; Xie, Q.; Bui, A.D.; Yonamine, S.; Hinterwirth, A.; Zhong, L.; Chen, C.; Doan, T.; Han, Y. Biomarkers for Primary Open-Angle Glaucoma Progression. Exp. Eye Res. 2022, 219, 109025. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wang, H.; Zhang, J.; Tian, J. FNDC3B Is Associated with ER Stress and Poor Prognosis in Cervical Cancer. Oncol. Lett. 2019, 19, 406–414. [Google Scholar] [CrossRef]
- Bian, T.; Zheng, L.; Jiang, D.; Liu, J.; Zhang, J.; Feng, J.; Zhang, Q.; Qian, L.; Qiu, H.; Liu, Y.; et al. Overexpression of Fibronectin type III Domain containing 3B Is Correlated with Epithelial-mesenchymal Transition and Predicts Poor Prognosis in Lung Adenocarcinoma. Exp. Ther. Med. 2019, 17, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, Y.-W.; Chen, Y.-C.; Liao, C.-C.; Jou, Y.-S.; Hsu, M.-T.; Chen, C.-F. FNDC3B Promotes Cell Migration and Tumor Metastasis in Hepatocellular Carcinoma. Oncotarget 2016, 7, 49498–49508. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wu, Y.; Gao, W.; Tian, Y.; Wang, G.; Liu, A.; Chen, W. Novel Non-Coding RNA Analysis in Multiple Myeloma Identified Through High-Throughput Sequencing. Front. Genet. 2021, 12, 625019. [Google Scholar] [CrossRef] [PubMed]
- Perini, T.; Materozzi, M.; Milan, E. The Immunity-malignancy Equilibrium in Multiple Myeloma: Lessons from Oncogenic Events in Plasma Cells. FEBS J. 2022, 289, 4383–4397. [Google Scholar] [CrossRef]
- Caracciolo, D.; Riillo, C.; Juli, G.; Scionti, F.; Todoerti, K.; Polerà, N.; Grillone, K.; Fiorillo, L.; Arbitrio, M.; Di Martino, M.T.; et al. miR-22 Modulates Lenalidomide Activity by Counteracting MYC Addiction in Multiple Myeloma. Cancers 2021, 13, 4365. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Suwa, T.; Murase, Y.; Tateno, S.; Mizutome, H.; Asatsuma-Okumura, T.; Shimizu, N.; Kishi, T.; Momose, S.; Kizaki, M.; et al. ARID2 Is a Pomalidomide-Dependent CRL4CRBN Substrate in Multiple Myeloma Cells. Nat. Chem. Biol. 2020, 16, 1208–1217. [Google Scholar] [CrossRef]
- Podyacheva, E.; Danilchuk, M.; Toropova, Y. Molecular Mechanisms of Endothelial Remodeling under Doxorubicin Treatment. Biomed. Pharmacother. 2023, 162, 114576. [Google Scholar] [CrossRef]
- Tanaka, Y.; Okabe, S.; Ohyashiki, K.; Gotoh, A. Potential of a Sphingosine 1-phosphate Receptor Antagonist and Sphingosine Kinase Inhibitors as Targets for Multiple Myeloma Treatment. Oncol. Lett. 2022, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Peyrin-Biroulet, L.; Zhang, J.; Chiorean, M.; Vermeire, S.; Lee, S.D.; Kühbacher, T.; Yacyshyn, B.; Cabell, C.H.; Naik, S.U.; et al. Efficacy and Safety of Etrasimod in a Phase 2 Randomized Trial of Patients with Ulcerative Colitis. Gastroenterology 2020, 158, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Drabkin, H.A.; Reeves, J.A.; Hainsworth, J.D.; Hazel, S.E.; Paggiarino, D.A.; Wojciak, J.; Woodnutt, G.; Bhatt, R.S. A Phase 2 Study of the Sphingosine-1-phosphate Antibody Sonepcizumab in Patients with Metastatic Renal Cell Carcinoma. Cancer 2017, 123, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Sundaramoorthy, P.; Gasparetto, C.; Feinberg, D.; Fan, S.; Long, G.; Sellars, E.; Garrett, A.; Tuchman, S.A.; Reeves, B.N.; et al. Phase I Study of Opaganib, an Oral Sphingosine Kinase 2-Specific Inhibitor, in Relapsed and/or Refractory Multiple Myeloma. Ann. Hematol. 2023, 102, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Dosso, S.D.; Berthold, D.R. Docetaxel in the Management of Prostate Cancer: Current Standard of Care and Future Directions. Expert. Opin. Pharmacother. 2008, 9, 1969–1979. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, Y.; Tan, L.; Song, X.; Wang, M.; Li, Y.; Cao, Z.; Guo, C. Norcantharidin: Research Advances in Pharmaceutical Activities and Derivatives in Recent Years. Biomed. Pharmacother. 2020, 131, 110755. [Google Scholar] [CrossRef]
References # | Cancer Type | Cell Line/Cell Type/Sample | Relevant FAM46C-Related Phenotype |
---|---|---|---|
[7] | HCC | SMMC-7721, MHCC-97H, SK-Hep-1 | Effect on cell proliferation/apoptosis |
[8] | MM | OCIMY5 | Effect on cell growth/apoptosis |
[9] | CRC | Primary Tumour | Reduced levels in tumour vs. control samples |
[10] | PC | DU145 | Effect on cell growth/apoptosis |
[11] | GC | MKN45, MKN74, AGS | Effect on cell proliferation/cell cycle/apoptosis |
[12] | Oral SCC | HSC4, SCC15, and CAL27 | Effect on cell proliferation/apoptosis |
[13] | MM | KMS-11, OCI-My5, ANBL-6 | Effect on tumour growth |
[14] | HCC | SMMC-7721, MHCC-97H | Effect on cell migration/invasion |
[20] | MM | SKMM1, H929 | Effect on cell growth/survival |
[21] | MM | LP-1, OPM-2 | Effect on cell proliferation/cell cycle/apoptosis/tumour progression |
[30] | MM | JJN3, RPMI-8226 | Effect on cell migration/invasion |
[57] | GC | MKN1, MKN45, MKN74, NUGC2, NUGC3, NUGC4, SC-6-JCK, AGS, KATOIII, N87, GCIY, patients tissues | Reduced levels in tumour cell lines/samples vs. controls |
[60] | CRC | Tumour | Reduced levels in tumour vs. control samples |
[61] | Lung SCC | PC-10, Tumour | Effect on cell proliferation and reduced levels in tumour vs. control samples |
[62] | Oesophageal SCC | KYSE30 and TE-13 | Effect on cell proliferation/migration/invasion |
[63] | LC | H292, A549 | Putative effect on cell proliferation/migration |
[64] | MM | MM.1S | Effect on cell viability/proliferation |
[65] | MM | RPMI-8226 | Effect on cell apoptosis |
[66] | MM | RPMI-8226, OPM-2, MM.1S, U266 | Effect on clonogenic potential/proliferation/apoptosis |
[67] | OS | MG-63 | Effect on cell growth/migration/invasion |
[68] | MM | Patient | Expression predicts extramedullary metastasis |
[69] | MM | CD138+ BM mice cells | Expression correlates with increased survival |
References # | Cell Type/Cancer Type | Cell Line | Pathway Involved | Effect Related to FAM46C Expression |
---|---|---|---|---|
[7] | HCC | SMMC-7721, MHCC-97H, SK-Hep-1 | MAPK/ERK | Inhibition |
[8] | MM | OCIMY5, XG1 | MAPK/ERK | Inhibition |
[10] | PC | DU145 | PI3K/AKT/mTOR | Inhibition through PTEN stabilization |
[11] | GC | MKN45, MKN74, AGS | WNT/Beta-catenin | Inhibition |
[12] | Oral SCC | HSC4, SCC15, CAL27 | MAPK/ERK | Inhibition |
[13] | MM | KMS-11, OCI-My5, ANBL-6 | PI3K/AKT/mTOR | Inhibition |
[14] | HCC | SMMC-7721; MHCC-97H | TGF-beta/SMAD | Inhibition |
[70] | Cardiomyocyte | AC16 | MAPK/ERK | Inhibition |
References # | Cell Type/Cancer Type | Cell Line | Associated Functional Model | Effect |
---|---|---|---|---|
[4] | Epithelial | HEK-293T | Intracellular trafficking regulation | Inhibition of lentiviral particle production |
[9] | OS, M | U2OS, MDA-MB-435 | Inhibition of PLK4 | Inhibition of cell invasion/cancer growth |
[17] | Epithelial, murine osteoblast | HEK-293T | Poly(A) polymerase | Proper bone formation |
[20] | Epithelial, MM | HEK-293, SKMM1, H929 | Poly(A) polymerase | Stabilization of ER-targeted proteins |
[21] | MM | LP-1, RPMI-8226 | Intracellular trafficking regulation | Protein aggregate accumulation and consequent apoptosis induction |
[22] | - | - | Poly(A) polymerase | - |
[27] | Murine macrophage | - | Poly(A) polymerase | Innate immune response regulation |
[30] | MM | U266, JJN3, RPMI-8226 | Poly(A) polymerase | Increased production of Ig light chains and BIP protein |
[64] | MM | MM1.S | Poly(A) polymerase | Inhibition of cell viability/proliferation |
[65] | MM | RPMI-8226 | Poly(A) polymerase | Polyadenylation of RNA molecules with poly(A) tails |
[71] | Murine spleen-derived B cells | - | Poly(A) polymerase | Ig mRNA stabilization and enhanced expression |
References # | Cell Type/Cancer Type | Cell Line | Regulator of Fam46c Expression | Effect on FAM46C Expression |
---|---|---|---|---|
[4] | Macrophage/Dendritic cell/CD4+ T cell | Primary | IFN-α, IFN-γ | Stimulation |
[18] | Macrophage | THP-1 | miR-657 | Inhibition |
[19] | Macrophage | Raw264.7 | circRNA_17725, miR-4668-5p | circRNA_17725 sponges miR-4668-5p, upregulating FAM46C |
[61] | Lung SCC | PC10, ACC-LC-73 | miR-296-5p, miR-324-3p, miR-3928-3p | Inhibition |
[62] | Oesophageal SCC | KYSE30, TE-13 | miR-1269a | Inhibition |
[63] | LC | H292, A549 | HIC1 | Stimulation (putative) |
[66] | MM | RPMI-8226, U266 | PRDM1 | Stimulation |
[67] | OS | MG-63 | miR10-b | Inhibition |
[71] | Murine naïve B | Primary | LPS/IL-4 or engagement of TLR1/2, TLR2, TLR4, TLR6/2, TLR9 | Stimulation |
[86] | MM | Primary bone marrow plasma cells | MSTRG.13132 | Correlation |
References # | Cancer Type | Cell Line/Model | Drug Tested | Effect of FAM46C |
---|---|---|---|---|
[7] | HCC | SMMC-7721, MHCC-97H, SK-Hep-1 | NTCD | Involvement in drug-induced anti-proliferative and anti-metastatic effects |
[8] | MM | OCIMY5 | BTZ, LENA | Depletion confers resistance to DEXA but not to BTZ |
[8] | MM | XG1 | DEXA, LENA | Depletion confers resistance to both DEXA and LENA |
[10] | PC | DU145, 22RV1 | DTX | Expression increases while down-modulation decreases sensitivity |
[10] | PC | Patient-derived Xenograft | DTX | Higher expression increases sensitivity |
[10] | PC | Primary human cancer cells | DTX | Higher expression increases sensitivity |
[13] | MM | KMS-11 | BTZ, LENA, POMA, DOXO, MEL | Knockout confers resistance to DOXO or MEL administration |
[13] | MM | ANBL-6 | BTZ, LENA, POMA | Knockout is synergistic with BTZ or POMA administration |
[13] | MM | OCI-My5 | DOXO, MEL | Knockout confers resistance to DOXO or MEL administration |
[14] | HCC | SMMC-7721, MHCC-97H | NTCD | Involvement in drug-induced anti-proliferative and anti-metastatic effects |
[21] | MM | LP-1, OPM-2, U266 | SK1-I | Expression increases while down-modulation decreases sensitivity |
[30] | MM | RPMI-8226 | BTZ, DEXA, MEL | None |
[30] | MM | JJN3 | BTZ, MEL | None |
[68] | MM | Patient-derived Bone Marrow cells | BTZ | Low levels are synergistic with BTZ administration |
[68] | MM | Patient-derived Bone Marrow cells | DEXA | High levels are synergistic with DEXA administration |
[69] | MM | CD138+ cells derived from VQ mice models | BTZ | Reduced levels confer resistance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, G.; De Grossi, F.; Catusi, I.; Pesce, E.; Manfrini, N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers 2024, 16, 1706. https://doi.org/10.3390/cancers16091706
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers. 2024; 16(9):1706. https://doi.org/10.3390/cancers16091706
Chicago/Turabian StyleLai, Giancarlo, Federica De Grossi, Ilaria Catusi, Elisa Pesce, and Nicola Manfrini. 2024. "Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance" Cancers 16, no. 9: 1706. https://doi.org/10.3390/cancers16091706
APA StyleLai, G., De Grossi, F., Catusi, I., Pesce, E., & Manfrini, N. (2024). Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers, 16(9), 1706. https://doi.org/10.3390/cancers16091706