MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. A Brief Overview of MIF and CD74
3. The Role of MIF and CD74 in the Mechanisms of Immune-Related Adverse Events (irAEs)
4. MIF and CD74 Predict ICB Treatment Response in Multiple Cancers
5. MIF and CD74 as Putative Predictive Biomarkers of irAE Development
6. Serum MIF Expression Exhibits a Distinct Circadian Rhythm
7. Future Directions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alturki, N.A. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J. Clin. Med. 2023, 12, 4301. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.M.; Van Allen, E.M.; Drake, C.G.; Allison, J.P.; Hu-Lieskovan, S. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Les, I.; Martínez, M.; Pérez-Francisco, I.; Cabero, M.; Teijeira, L.; Arrazubi, V.; Torrego, N.; Campillo-Calatayud, A.; Elejalde, I.; Kochan, G.; et al. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers 2023, 15, 1629. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-Related Adverse Events of Checkpoint Inhibitors. Nat. Rev. Dis. Primer 2020, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Mehnert, J. Biomarkers for Response to Immune Checkpoint Blockade. Annu. Rev. Cancer Biol. 2020, 4, 331–351. [Google Scholar] [CrossRef]
- Lei, Y.; Li, X.; Huang, Q.; Zheng, X.; Liu, M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front. Oncol. 2021, 11, 617335. [Google Scholar] [CrossRef]
- Sun, B.; Xun, Z.; Zhang, N.; Liu, K.; Chen, X.; Zhao, H. Single-Cell RNA Sequencing in Cancer Research: Discovering Novel Biomarkers and Therapeutic Targets for Immune Checkpoint Blockade. Cancer Cell Int. 2023, 23, 313. [Google Scholar] [CrossRef]
- Liu, Y.; Altreuter, J.; Bodapati, S.; Cristea, S.; Wong, C.J.; Wu, C.J.; Michor, F. Predicting Patient Outcomes after Treatment with Immune Checkpoint Blockade: A Review of Biomarkers Derived from Diverse Data Modalities. Cell Genomics 2024, 4, 100444. [Google Scholar] [CrossRef] [PubMed]
- Von Itzstein, M.S.; Khan, S.; Gerber, D.E. Investigational Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Event Prediction and Diagnosis. Clin. Chem. 2020, 66, 779–793. [Google Scholar] [CrossRef]
- Hommes, J.W.; Verheijden, R.J.; Suijkerbuijk, K.P.M.; Hamann, D. Biomarkers of Checkpoint Inhibitor Induced Immune-Related Adverse Events—A Comprehensive Review. Front. Oncol. 2021, 10, 585311. [Google Scholar] [CrossRef]
- Ponvilawan, B.; Khan, A.W.; Subramanian, J.; Bansal, D. Non-Invasive Predictive Biomarkers for Immune-Related Adverse Events Due to Immune Checkpoint Inhibitors. Cancers 2024, 16, 1225. [Google Scholar] [CrossRef] [PubMed]
- De Azevedo, R.A.; Shoshan, E.; Whang, S.; Markel, G.; Jaiswal, A.R.; Liu, A.; Curran, M.A.; Travassos, L.R.; Bar-Eli, M. MIF Inhibition as a Strategy for Overcoming Resistance to Immune Checkpoint Blockade Therapy in Melanoma. OncoImmunology 2020, 9, 1846915. [Google Scholar] [CrossRef] [PubMed]
- Lippitz, B.E. Cytokine Patterns in Patients with Cancer: A Systematic Review. Lancet Oncol. 2013, 14, e218–e228. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, S.; Davies, M.A.; Tanese, K.; Roszik, J.; Shin-Sim, M.; Bassett, R.L.; Milton, D.R.; Woodman, S.E.; Prieto, V.G.; Gershenwald, J.E.; et al. Inflammatory Marker Testing Identifies CD74 Expression in Melanoma Tumor Cells, and Its Expression Associates with Favorable Survival for Stage III Melanoma. Clin. Cancer Res. 2016, 22, 3016–3024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.; Zhang, L.; Zhao, Y.; Wang, S.; Feng, L. Bioinformatics Analysis and Experiments Identify CD74 as a Potential Immune Target in Ovarian Carcinoma. Arch. Med. Sci. 2022. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Tang, L.; Liu, Z.; Yang, K.; Cheng, Q. CD74 Correlated with Malignancies and Immune Microenvironment in Gliomas. Front. Mol. Biosci. 2021, 8, 706949. [Google Scholar] [CrossRef] [PubMed]
- Noer, J.B.; Talman, M.-L.M.; Moreira, J.M.A. HLA Class II Histocompatibility Antigen γ Chain (CD74) Expression Is Associated with Immune Cell Infiltration and Favorable Outcome in Breast Cancer. Cancers 2021, 13, 6179. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Yu, S. Comprehensive Analysis Reveals Prognostic and Therapeutic Immunity-Related Biomarkers for Pediatric Metastatic Osteosarcoma. Medicina 2024, 60, 95. [Google Scholar] [CrossRef] [PubMed]
- Ogata, D.; Roszik, J.; Oba, J.; Kim, S.-H.; Bassett, R.L.; Haydu, L.E.; Tanese, K.; Grimm, E.A.; Ekmekcioglu, S. The Expression of CD74-Regulated Inflammatory Markers in Stage IV Melanoma: Risk of CNS Metastasis and Patient Survival. Cancers 2020, 12, 3754. [Google Scholar] [CrossRef]
- Fukuda, Y.; Bustos, M.A.; Cho, S.-N.; Roszik, J.; Ryu, S.; Lopez, V.M.; Burks, J.K.; Lee, J.E.; Grimm, E.A.; Hoon, D.S.B.; et al. Interplay between Soluble CD74 and Macrophage-Migration Inhibitory Factor Drives Tumor Growth and Influences Patient Survival in Melanoma. Cell Death Dis. 2022, 13, 117. [Google Scholar] [CrossRef]
- Balakrishnan, C.K.; Tye, G.J.; Balasubramaniam, S.D.; Kaur, G. CD74 and HLA-DRA in Cervical Carcinogenesis: Potential Targets for Antitumour Therapy. Medicina 2022, 58, 190. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.; Mazzon, E.; Basile, M.S.; Di Marco, R.; Bramanti, P.; Mammana, S.; Petralia, M.C.; Fagone, P.; Nicoletti, F. Pathogenic Role for Macrophage Migration Inhibitory Factor in Glioblastoma and Its Targeting with Specific Inhibitors as Novel Tailored Therapeutic Approach. Oncotarget 2018, 9, 17951–17970. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.D.; Ely, S.; Reddy, P.K.; Stein, R.; Gold, D.V.; Cardillo, T.M.; Goldenberg, D.M. CD74 Is Expressed by Multiple Myeloma and Is a Promising Target for Therapy. Clin. Cancer Res. 2004, 10, 6606–6611. [Google Scholar] [CrossRef]
- Joseph, D.; Gonsky, J.P.; Blain, S.W. Macrophage Inhibitory Factor-1 (MIF-1) Controls the Plasticity of Multiple Myeloma Tumor Cells. PLoS ONE 2018, 13, e0206368. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, D.; Xian, M.; Wang, Z.; Bi, E.; Su, P.; Qian, J.; Ma, X.; Yang, M.; Liu, L.; et al. MIF as a Biomarker and Therapeutic Target for Overcoming Resistance to Proteasome Inhibitors in Human Myeloma. Blood 2020, 136, 2557–2573. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Wang, W.; Xu, J.; Sun, Y.; Jiang, J.; Tan, H.; Ren, L.; Wang, Y.; Ren, Y.; et al. Single-cell Atlas of the Immune Microenvironment Reveals Macrophage Reprogramming and the Potential Dual Macrophage-targeted Strategy in Multiple Myeloma. Br. J. Haematol. 2023, 201, 917–934. [Google Scholar] [CrossRef]
- Figueiredo, C.R.; Azevedo, R.A.; Mousdell, S.; Resende-Lara, P.T.; Ireland, L.; Santos, A.; Girola, N.; Cunha, R.L.O.R.; Schmid, M.C.; Polonelli, L.; et al. Blockade of MIF–CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response Against Metastatic Melanoma. Front. Immunol. 2018, 9, 1132. [Google Scholar] [CrossRef]
- Imaoka, M.; Tanese, K.; Masugi, Y.; Hayashi, M.; Sakamoto, M. Macrophage Migration Inhibitory Factor- CD 74 Interaction Regulates the Expression of Programmed Cell Death Ligand 1 in Melanoma Cells. Cancer Sci. 2019, 110, 2273–2283. [Google Scholar] [CrossRef]
- Tanese, K.; Hashimoto, Y.; Berkova, Z.; Wang, Y.; Samaniego, F.; Lee, J.E.; Ekmekcioglu, S.; Grimm, E.A. Cell Surface CD74–MIF Interactions Drive Melanoma Survival in Response to Interferon-γ. J. Investig. Dermatol. 2015, 135, 2775–2784. [Google Scholar] [CrossRef]
- Bloom, B.R.; Bennett, B. Mechanism of a Reaction in Vitro Associated with Delayed-Type Hypersensitivity. Science 1966, 153, 80–82. [Google Scholar] [CrossRef]
- David, J.R. Delayed Hypersensitivity in Vitro: Its Mediation by Cell-Free Substances Formed by Lymphoid Cell-Antigen Interaction. Proc. Natl. Acad. Sci. USA 1966, 56, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Noe, J.T.; Mitchell, R.A. MIF-Dependent Control of Tumor Immunity. Front. Immunol. 2020, 11, 609948. [Google Scholar] [CrossRef] [PubMed]
- Jankauskas, S.S.; Wong, D.W.L.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving Complexity of MIF Signaling. Cell. Signal. 2019, 57, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF Signal Transduction Initiated by Binding to CD74. J. Exp. Med. 2003, 197, 1467–1476. [Google Scholar] [CrossRef]
- Bucala, R.; Shachar, I. The Integral Role of CD74 in Antigen Presentation, MIF Signal Transduction, and B Cell Survival and Homeostasis. Mini-Rev. Med. Chem. 2015, 14, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Becker-Herman, S.; Arie, G.; Medvedovsky, H.; Kerem, A.; Shachar, I. CD74 Is a Member of the Regulated Intramembrane Proteolysis-Processed Protein Family. Mol. Biol. Cell 2005, 16, 5061–5069. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Leng, L.; Wang, T.; Wang, W.; Du, X.; Li, J.; McDonald, C.; Chen, Z.; Murphy, J.W.; Lolis, E.; et al. CD44 Is the Signaling Component of the Macrophage Migration Inhibitory Factor-CD74 Receptor Complex. Immunity 2006, 25, 595–606. [Google Scholar] [CrossRef]
- Merk, M.; Zierow, S.; Leng, L.; Das, R.; Du, X.; Schulte, W.; Fan, J.; Lue, H.; Chen, Y.; Xiong, H.; et al. The D -Dopachrome Tautomerase (DDT) Gene Product Is a Cytokine and Functional Homolog of Macrophage Migration Inhibitory Factor (MIF). Proc. Natl. Acad. Sci. USA 2011, 108, E577–E585. [Google Scholar] [CrossRef] [PubMed]
- Merk, M.; Mitchell, R.A.; Endres, S.; Bucala, R. D-Dopachrome Tautomerase (D-DT or MIF-2): Doubling the MIF Cytokine Family. Cytokine 2012, 59, 10–17. [Google Scholar] [CrossRef]
- Rebmann, V.; Dornmair, K.; Grosse-Wilde, H. Biochemical Analysis of Plasma-soluble Invariant Chains and Their Complex Formation with Soluble HLA-DR. Tissue Antigens 1997, 49, 438–442. [Google Scholar] [CrossRef]
- Assis, D.N.; Leng, L.; Du, X.; Zhang, C.K.; Grieb, G.; Merk, M.; Garcia, A.B.; McCrann, C.; Chapiro, J.; Meinhardt, A.; et al. The Role of Macrophage Migration Inhibitory Factor in Autoimmune Liver Disease: Assis et Al. Hepatology 2014, 59, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Bernhagen, J.; Krohn, R.; Lue, H.; Gregory, J.L.; Zernecke, A.; Koenen, R.R.; Dewor, M.; Georgiev, I.; Schober, A.; Leng, L.; et al. MIF Is a Noncognate Ligand of CXC Chemokine Receptors in Inflammatory and Atherogenic Cell Recruitment. Nat. Med. 2007, 13, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Alampour-Rajabi, S.; El Bounkari, O.; Rot, A.; Müller-Newen, G.; Bachelerie, F.; Gawaz, M.; Weber, C.; Schober, A.; Bernhagen, J. MIF Interacts with CXCR7 to Promote Receptor Internalization, ERK1/2 and ZAP-70 Signaling, and Lymphocyte Chemotaxis. FASEB J. 2015, 29, 4497–4511. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, S.; Teixeira, V.H.; Kalber, T.; Jose, R.J.; Floto, R.A.; Janes, S.M. Macrophage Migration Inhibitory Factor–CXCR4 Is the Dominant Chemotactic Axis in Human Mesenchymal Stem Cell Recruitment to Tumors. J. Immunol. 2015, 194, 3463–3474. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, V.; Lue, H.; Kraemer, S.; Korbiel, J.; Krohn, R.; Ohl, K.; Bucala, R.; Weber, C.; Bernhagen, J. A Functional Heteromeric MIF Receptor Formed by CD74 and CXCR4. FEBS Lett. 2009, 583, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Bucala, R. The Immunobiology of MIF: Function, Genetics and Prospects for Precision Medicine. Nat. Rev. Rheumatol. 2019, 15, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Schröder, B. The Multifaceted Roles of the Invariant Chain CD74—More than Just a Chaperone. Biochim. Biophys. Acta BBA Mol. Cell Res. 2016, 1863, 1269–1281. [Google Scholar] [CrossRef] [PubMed]
- David, K.; Friedlander, G.; Pellegrino, B.; Radomir, L.; Lewinsky, H.; Leng, L.; Bucala, R.; Becker-Herman, S.; Shachar, I. CD74 as a Regulator of Transcription in Normal B Cells. Cell Rep. 2022, 41, 111572. [Google Scholar] [CrossRef] [PubMed]
- Bacher, M.; Metz, C.N.; Calandra, T.; Mayer, K.; Chesney, J.; Lohoff, M.; Gemsa, D.; Donnelly, T.; Bucala, R. An Essential Regulatory Role for Macrophage Migration Inhibitory Factor in T-Cell Activation. Proc. Natl. Acad. Sci. USA 1996, 93, 7849–7854. [Google Scholar] [CrossRef]
- Schindler, L.; Zwissler, L.; Krammer, C.; Hendgen-Cotta, U.; Rassaf, T.; Hampton, M.B.; Dickerhof, N.; Bernhagen, J. Macrophage Migration Inhibitory Factor Inhibits Neutrophil Apoptosis by Inducing Cytokine Release from Mononuclear Cells. J. Leukoc. Biol. 2021, 110, 893–905. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Lin, J.-Y. Recent Advances of Cluster of Differentiation 74 in Cancer. World J. Immunol. 2014, 4, 174. [Google Scholar] [CrossRef]
- Bucala, R.; Donnelly, S.C. Macrophage Migration Inhibitory Factor: A Probable Link between Inflammation and Cancer. Immunity 2007, 26, 281–285. [Google Scholar] [CrossRef] [PubMed]
- McClelland, M.; Zhao, L.; Carskadon, S.; Arenberg, D. Expression of CD74, the Receptor for Macrophage Migration Inhibitory Factor, in Non-Small Cell Lung Cancer. Am. J. Pathol. 2009, 174, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Siegler, K.L.; Iczkowski, K.A.; Leng, L.; Bucala, R.; Vera, P.L. Inhibition of Macrophage Migration Inhibitory Factor or Its Receptor (CD74) Attenuates Growth and Invasion of DU-145 Prostate Cancer Cells. J. Immunol. 2006, 177, 8730–8739. [Google Scholar] [CrossRef] [PubMed]
- Kindt, N.; Lechien, J.R.; Nonclercq, D.; Laurent, G.; Saussez, S. Involvement of CD74 in Head and Neck Squamous Cell Carcinomas. J. Cancer Res. Clin. Oncol. 2014, 140, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Ghoochani, A.; Schwarz, M.A.; Yakubov, E.; Engelhorn, T.; Doerfler, A.; Buchfelder, M.; Bucala, R.; Savaskan, N.E.; Eyüpoglu, I.Y. MIF-CD74 Signaling Impedes Microglial M1 Polarization and Facilitates Brain Tumorigenesis. Oncogene 2016, 35, 6246–6261. [Google Scholar] [CrossRef] [PubMed]
- Yaddanapudi, K.; Putty, K.; Rendon, B.E.; Lamont, G.J.; Faughn, J.D.; Satoskar, A.; Lasnik, A.; Eaton, J.W.; Mitchell, R.A. Control of Tumor-Associated Macrophage Alternative Activation by Macrophage Migration Inhibitory Factor. J. Immunol. 2013, 190, 2984–2993. [Google Scholar] [CrossRef] [PubMed]
- Yaddanapudi, K.; Rendon, B.E.; Lamont, G.; Kim, E.J.; Al Rayyan, N.; Richie, J.; Albeituni, S.; Waigel, S.; Wise, A.; Mitchell, R.A. MIF Is Necessary for Late-Stage Melanoma Patient MDSC Immune Suppression and Differentiation. Cancer Immunol. Res. 2016, 4, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, X.; Cui, Y.; Gong, Z.; Wang, W.; Lin, S. Revealing the Role of Regulatory T Cells in the Tumor Microenvironment of Lung Adenocarcinoma: A Novel Prognostic and Immunotherapeutic Signature. Front. Immunol. 2023, 14, 1244144. [Google Scholar] [CrossRef]
- Mora Barthelmess, R.; Stijlemans, B.; Van Ginderachter, J.A. Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers 2023, 15, 395. [Google Scholar] [CrossRef]
- Grieb, G.; Merk, M.; Bernhagen, J.; Bucala, R. Macrophage Migration Inhibitory Factor (MIF): A Promising Biomarker. Drug News Perspect. 2010, 23, 257. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Niño, M.D.; Sanz, A.B.; Ruiz-Andres, O.; Poveda, J.; Izquierdo, M.C.; Selgas, R.; Egido, J.; Ortiz, A. MIF, CD74 and Other Partners in Kidney Disease: Tales of a Promiscuous Couple. Cytokine Growth Factor Rev. 2013, 24, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Valiño-Rivas, L.; Baeza-Bermejillo, C.; Gonzalez-Lafuente, L.; Sanz, A.B.; Ortiz, A.; Sanchez-Niño, M.D. CD74 in Kidney Disease. Front. Immunol. 2015, 6, 483. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Benedek, G.; Bucala, R.; Matejuk, S.; Offner, H.; Vandenbark, A.A. MIF Contribution to Progressive Brain Diseases. J. Neuroinflamm. 2024, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.Y.; Yang, N.; Nikolic-Paterson, D.J.; Yu, X.Q.; Mu, W.; Isbel, N.M.; Metz, C.N.; Bucala, R.; Atkins, R.C. Expression of Macrophage Migration Inhibitory Factor in Human Glomerulonephritis. Kidney Int. 2000, 57, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Clanchy, F.I.L.; Borghese, F.; Bystrom, J.; Balog, A.; Penn, H.; Taylor, P.C.; Stone, T.W.; Mageed, R.A.; Williams, R.O. Disease Status in Human and Experimental Arthritis, and Response to TNF Blockade, Is Associated with MHC Class II Invariant Chain (CD74) Isoform Expression. J. Autoimmun. 2022, 128, 102810. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Zuno, G.A.; Bucala, R.; Hernández-Bello, J.; Román-Fernández, I.V.; García-Chagollán, M.; Nicoletti, F.; Matuz-Flores, M.G.; García-Arellano, S.; Esparza-Michel, J.A.; Cerpa-Cruz, S.; et al. Canonical (CD74/CD44) and Non-Canonical (CXCR2, 4 and 7) MIF Receptors Are Differentially Expressed in Rheumatoid Arthritis Patients Evaluated by DAS28-ESR. J. Clin. Med. 2021, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-W.; Kim, H.-R. Macrophage Migration Inhibitory Factor: A Potential Therapeutic Target for Rheumatoid Arthritis. Korean J. Intern. Med. 2016, 31, 634–642. [Google Scholar] [CrossRef]
- Morand, E.F.; Leech, M.; Bernhagen, J. MIF: A New Cytokine Link between Rheumatoid Arthritis and Atherosclerosis. Nat. Rev. Drug Discov. 2006, 5, 399–411. [Google Scholar] [CrossRef]
- Günther, S.; Fagone, P.; Jalce, G.; Atanasov, A.G.; Guignabert, C.; Nicoletti, F. Role of MIF and D-DT in Immune-Inflammatory, Autoimmune, and Chronic Respiratory Diseases: From Pathogenic Factors to Therapeutic Targets. Drug Discov. Today 2019, 24, 428–439. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Abd El-Aziz Nada, E.E.; Abdel-Hamid Ali, S.; Hegazy, E.M.; Hassan, M.H. Macrophage Migration Inhibitory Factor in Vitiligo: Pathogenesis and Potential Therapeutic Aspects. Asian J. Biochem. Genet. Mol. Biol. 2021, 8, 8–24. [Google Scholar] [CrossRef]
- Taylor, J.; Gandhi, A.; Gray, E.; Zaenker, P. Checkpoint Inhibitor Immune-Related Adverse Events: A Focused Review on Autoantibodies and B Cells as Biomarkers, Advancements and Future Possibilities. Front. Immunol. 2023, 13, 991433. [Google Scholar] [CrossRef]
- Reschke, R.; Shapiro, J.W.; Yu, J.; Rouhani, S.J.; Olson, D.J.; Zha, Y.; Gajewski, T.F. Checkpoint Blockade–Induced Dermatitis and Colitis Are Dominated by Tissue-Resident Memory T Cells and Th1/Tc1 Cytokines. Cancer Immunol. Res. 2022, 10, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, I.; Cvjetićanin, T.; Lazaroski, S.; Stošić-Grujičić, S.; Miljković, D. Macrophage Migration Inhibitory Factor Stimulates Interleukin-17 Expression and Production in Lymph Node Cells. Immunology 2009, 126, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mo, H.-Y.; Xiong, G.; Zhang, L.; He, J.; Huang, Z.-F.; Liu, Z.-W.; Chen, Q.-Y.; Du, Z.-M.; Zheng, L.-M.; et al. Tumor Microenvironment Macrophage Inhibitory Factor Directs the Accumulation of Interleukin-17-Producing Tumor-Infiltrating Lymphocytes and Predicts Favorable Survival in Nasopharyngeal Carcinoma Patients. J. Biol. Chem. 2012, 287, 35484–35495. [Google Scholar] [CrossRef] [PubMed]
- Thibult, M.-L.; Mamessier, E.; Gertner-Dardenne, J.; Pastor, S.; Just-Landi, S.; Xerri, L.; Chetaille, B.; Olive, D. PD-1 Is a Novel Regulator of Human B-Cell Activation. Int. Immunol. 2013, 25, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. PD-L1hi B Cells Are Critical Regulators of Humoral Immunity. Nat. Commun. 2015, 6, 5997. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Sumner, W.A.; Miyauchi, S.; Cohen, E.E.W.; Califano, J.A.; Sharabi, A.B. Role of B Cells in Responses to Checkpoint Blockade Immunotherapy and Overall Survival of Cancer Patients. Clin. Cancer Res. 2021, 27, 6075–6082. [Google Scholar] [CrossRef] [PubMed]
- Laumont, C.M.; Nelson, B.H. B Cells in the Tumor Microenvironment: Multi-Faceted Organizers, Regulators, and Effectors of Anti-Tumor Immunity. Cancer Cell 2023, 41, 466–489. [Google Scholar] [CrossRef]
- Sarvaria, A.; Basar, R.; Mehta, R.S.; Shaim, H.; Muftuoglu, M.; Khoder, A.; Sekine, T.; Gokdemir, E.; Kondo, K.; Marin, D.; et al. IL-10+ Regulatory B Cells Are Enriched in Cord Blood and May Protect against cGVHD after Cord Blood Transplantation. Blood 2016, 128, 1346–1361. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B Cells Responses and Cytokine Production Are Regulated by Their Immune Microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H. Immunological Studies on PD-1 Deficient Mice: Implication of PD-1 as a Negative Regulator for B Cell Responses. Int. Immunol. 1998, 10, 1563–1572. [Google Scholar] [CrossRef]
- Jensen, T.O.; Schmidt, H.; Møller, H.J.; Høyer, M.; Maniecki, M.B.; Sjoegren, P.; Christensen, I.J.; Steiniche, T. Macrophage Markers in Serum and Tumor Have Prognostic Impact in American Joint Committee on Cancer Stage I/II Melanoma. J. Clin. Oncol. 2009, 27, 3330–3337. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, M.; Ge, Y.; Krepler, C.; Belser, E.; Lopez-Coral, A.; Xu, X.; Zhang, G.; Azuma, R.; Liu, Q.; et al. BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth. Clin. Cancer Res. 2015, 21, 1652–1664. [Google Scholar] [CrossRef]
- Shvefel, S.C.; Pai, J.A.; Cao, Y.; Pal, L.R.; Levy, R.; Yao, W.; Cheng, K.; Zemanek, M.; Bartok, O.; Weller, C.; et al. Temporal Genomic Analysis of Melanoma Rejection Identifies Regulators of Tumor Immune Evasion. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wu, L.; Gao, Y.; Xie, S.; Ye, W.; Uemura, Y.; Zhang, R.; Yu, Y.; Li, J.; Chen, M.; Wu, Q.; et al. The Level of Macrophage Migration Inhibitory Factor Is Negatively Correlated with the Efficacy of PD-1 Blockade Immunotherapy Combined with Chemotherapy as a Neoadjuvant Therapy for Esophageal Squamous Cell Carcinoma. Transl. Oncol. 2023, 37, 101775. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, L.; Li, H.; Peng, Z.; Ding, K.; Huang, Z.; Zhou, Z.; Xie, M.; Yan, J.; Feng, S.; et al. Serum Cytokine Analysis in a Cohort of Advanced Non-Small Cell Lung Cancer Treated with PD-1 Inhibitors Reveals Predictive Markers of CXCL12. Front. Immunol. 2023, 14, 1194123. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, D.; Huang, X.; Zhang, M.; Zhu, W.; Xu, C. Significance of Monocyte Infiltration in Patients with Gastric Cancer: A Combined Study Based on Single Cell Sequencing and TCGA. Front. Oncol. 2022, 12, 1001307. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wu, M.; Wang, T.; Yuan, H.; Zhang, X.; Zhang, H.; Li, T.; Pandey, V.; Han, X.; Lobie, P.E.; et al. Breast Cancer Stem Cells Secrete MIF to Mediate Tumor Metabolic Reprogramming That Drives Immune Evasion. Cancer Res. 2024, 84, 1270–1285. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Y.; Jiang, W.; Yin, X.; Chen, D.; Chi, Y.; Wang, Y.; Zhang, J.; Zhang, Q.; Han, Y. Identification of Fatty Acid Metabolism–Related Molecular Subtype Biomarkers and Their Correlation with Immune Checkpoints in Cutaneous Melanoma. Front. Immunol. 2022, 13, 967277. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Xiao, G.; Desai, J.; Frentzas, S.; Wang, Z.M.; Xia, Y.; Li, B. CD74 Is Associated with Inflamed Tumor Immune Microenvironment and Predicts Responsiveness to PD-1/CTLA-4 Bispecific Antibody in Patients with Solid Tumors. Cancer Immunol. Immunother. 2024, 73, 36. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.C.; Duong, C.P.M.; Gopalakrishnan, V.; Iebba, V.; Chen, W.-S.; Derosa, L.; Khan, M.A.W.; Cogdill, A.P.; White, M.G.; Wong, M.C.; et al. Gut Microbiota Signatures Are Associated with Toxicity to Combined CTLA-4 and PD-1 Blockade. Nat. Med. 2021, 27, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Tahir, S.A.; Gao, J.; Miura, Y.; Blando, J.; Tidwell, R.S.S.; Zhao, H.; Subudhi, S.K.; Tawbi, H.; Keung, E.; Wargo, J.; et al. Autoimmune Antibodies Correlate with Immune Checkpoint Therapy-Induced Toxicities. Proc. Natl. Acad. Sci. USA 2019, 116, 22246–22251. [Google Scholar] [CrossRef]
- Miura, Y.; Motoshima, T.; Anami, T.; Yano, H.; Mito, R.; Pan, C.; Urakami, S.; Kinowaki, K.; Tsukamoto, H.; Kurahashi, R.; et al. Predictive Value of CXCL10 for the Occurrence of Immune-related Adverse Events in Patient with Renal Cell Carcinoma. Microbiol. Immunol. 2023, 67, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Liu, J.; Qin, J.; Lai, L.; Heo, G.S.; Luehmann, H.; Sultan, D.; Bredemeyer, A.; Bajapa, G.; Feng, G.; et al. Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 2024, 149, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Damo, M.; Hornick, N.I.; Venkat, A.; William, I.; Clulo, K.; Venkatesan, S.; He, J.; Fagerberg, E.; Loza, J.L.; Kwok, D.; et al. PD-1 Maintains CD8 T Cell Tolerance towards Cutaneous Neoantigens. Nature 2023, 619, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Honma, S. The Mammalian Circadian System: A Hierarchical Multi-Oscillator Structure for Generating Circadian Rhythm. J. Physiol. Sci. 2018, 68, 207–219. [Google Scholar] [CrossRef]
- Takahashi, J.S. Transcriptional Architecture of the Mammalian Circadian Clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Petrovsky, N.; Socha, L.; Silva, D.; Grossman, A.B.; Metz, C.; Bucala, R. Macrophage Migration Inhibitory Factor Exhibits a Pronounced Circadian Rhythm Relevant to Its Role as a Glucocorticoid Counter-regulator. Immunol. Cell Biol. 2003, 81, 137–143. [Google Scholar] [CrossRef]
- Edwards, K.M.; Tomfohr, L.M.; Mills, P.J.; Bosch, J.A.; Ancoli-lsrael, S.; Loredo, J.S.; Dimsdale, J. Macrophage Migratory Inhibitory Factor (MIF) May Be a Key Factor in Inflammation in Obstructive Sleep Apnea. Sleep 2011, 34, 161–163. [Google Scholar] [CrossRef]
- Suyagh, M.; Alefishat, E.; Farha, R.A.; Akour, A.; Kasabri, V.; Bulatova, N. The Impact of Shift Work-Related Circadian Rhythm Disruption on Inflammatory Biomarkers. Jordan J. Pharm. Sci. 2018, 11, 69–79. [Google Scholar]
- Yao, J.; Leng, L.; Sauler, M.; Fu, W.; Zheng, J.; Zhang, Y.; Du, X.; Yu, X.; Lee, P.; Bucala, R. Transcription Factor ICBP90 Regulates the MIF Promoter and Immune Susceptibility Locus. J. Clin. Investig. 2016, 126, 732–744. [Google Scholar] [CrossRef]
- Wang, D.; Wang, F.; Wang, S.; Chu, L.; Tang, D.; Chen, P.; Yang, M. Identification and Characterization of the CDK1-BMAL1-UHRF1 Pathway Driving Tumor Progression. iScience 2023, 26, 106544. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Yousaf, N.; Morganstein, D. Glucocorticoid Use and Complications Following Immune Checkpoint Inhibitor Use in Melanoma. Clin. Med. 2020, 20, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.J.; Gilbert, M.R. Glucocorticoids and Immune Checkpoint Inhibitors in Glioblastoma. J. Neurooncol. 2021, 151, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Wang, W.; Roger, T.; Merk, M.; Wuttke, M.; Calandra, T.; Bucala, R. Glucocorticoid-Induced MIF Expression by Human CEM T Cells. Cytokine 2009, 48, 177–185. [Google Scholar] [CrossRef]
- Dickmeis, T. Glucocorticoids and the Circadian Clock. J. Endocrinol. 2009, 200, 3–22. [Google Scholar] [CrossRef]
- Oster, H.; Challet, E.; Ott, V.; Arvat, E.; De Kloet, E.R.; Dijk, D.-J.; Lightman, S.; Vgontzas, A.; Van Cauter, E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr. Rev. 2017, 38, 3–45. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Dai, Z.; Wang, D.; Hei, Z.; Zhang, N.; Fu, X.; Wang, X.; Zhang, S.; Qin, L.; et al. Validity of Plasma Macrophage Migration Inhibitory Factor for Diagnosis and Prognosis of Hepatocellular Carcinoma. Int. J. Cancer 2011, 129, 2463–2472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fey, R.M.; Nichols, R.A.; Tran, T.T.; Vandenbark, A.A.; Kulkarni, R.P. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers 2024, 16, 1773. https://doi.org/10.3390/cancers16091773
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers. 2024; 16(9):1773. https://doi.org/10.3390/cancers16091773
Chicago/Turabian StyleFey, Rosalyn M., Rebecca A. Nichols, Thuy T. Tran, Arthur A. Vandenbark, and Rajan P. Kulkarni. 2024. "MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy" Cancers 16, no. 9: 1773. https://doi.org/10.3390/cancers16091773
APA StyleFey, R. M., Nichols, R. A., Tran, T. T., Vandenbark, A. A., & Kulkarni, R. P. (2024). MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers, 16(9), 1773. https://doi.org/10.3390/cancers16091773