Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer
Simple Summary
Abstract
1. Introduction
2. Incidence and Distribution Pattern of Nodal Metastasis
3. Staging and Detection of Nodal Disease in LACC
3.1. Prognostic Impact of Nodal Metastasis in LACC
3.2. Imaging in Nodal Staging
3.3. Controversies Regarding Surgical Nodal Staging
4. Node-Directed Treatment Intensification Strategies in LACC
4.1. Surgical Debulking of Macroscopic Nodes Prior to Definitive CRT
4.2. External Beam Radiotherapy Boost to Macroscopic Nodes
4.3. Simultaneous Integrated Boost in the Context of IGABT
5. Elective Para-Aortic Radiotherapy
6. The Evolving Landscape of Systemic Treatment and Leveraging Potential Synergy Between Radiotherapy and Immunotherapy
7. Future Directions in Personalized Therapy
7.1. Maximizing the Therapeutic Ratio of Radiotherapy
7.2. The Potential for Predictive Biomarkers for Personalized Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Monk, B.J.; Tan, D.S.P.; Hernández Chagüi, J.D.; Takyar, J.; Paskow, M.J.; Nunes, A.T.; Pujade-Lauraine, E. Proportions and Incidence of Locally Advanced Cervical Cancer: A Global Systematic Literature Review. Int. J. Gynecol. Cancer 2022, 32, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image Guided Brachytherapy in Locally Advanced Cervical Cancer: Improved Pelvic Control and Survival in RetroEMBRACE, a Multicenter Cohort Study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.M.A.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved Survival of Patients with Cervical Cancer Treated with Image-Guided Brachytherapy Compared with Conventional Brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Pötter, R.; Georg, P.; Dimopoulos, J.C.A.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical Outcome of Protocol Based Image (MRI) Guided Adaptive Brachytherapy Combined with 3D Conformal Radiotherapy with or without Chemotherapy in Patients with Locally Advanced Cervical Cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef]
- Wu, P.Y.; Wong, T.P.W.; Yip, Y.Y.C.; Chang, T.Y.A.; Chan, L.K.L.; Lee, M.C.H.; Law, L.Y.A.; Yeung, M.W.R.; Soong, S.I. MRI-Guided Adaptive Brachytherapy for Locally Advanced Cervix Cancer: Treatment Outcomes from a Single Institution in Hong Kong. Brachytherapy 2019, 18, 171–179. [Google Scholar] [CrossRef]
- Tan, L.-T.; Pötter, R.; Sturdza, A.; Fokdal, L.; Haie-Meder, C.; Schmid, M.; Gregory, D.; Petric, P.; Jürgenliemk-Schulz, I.; Gillham, C.; et al. Change in Patterns of Failure After Image-Guided Brachytherapy for Cervical Cancer: Analysis From the RetroEMBRACE Study. Int. J. Radiat. Oncol. 2019, 104, 895–902. [Google Scholar] [CrossRef]
- Nomden, C.N.; Pötter, R.; De Leeuw, A.A.C.; Tanderup, K.; Lindegaard, J.C.; Schmid, M.P.; Fortin, I.; Haie-Meder, C.; Mahantshetty, U.; Hoskin, P.; et al. Nodal Failure after Chemo-Radiation and MRI Guided Brachytherapy in Cervical Cancer: Patterns of Failure in the EMBRACE Study Cohort. Radiother. Oncol. 2019, 134, 185–190. [Google Scholar] [CrossRef]
- Cheung, E.S.-N.; Law, F.C.-H.; Fung, N.T.-C.; Soong, I.S.; Hung, R.H.-M.; Tse, T.K.-H.; Wong, K.K.-S.; Wu, P.Y. Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution. Cancers 2023, 15, 4647. [Google Scholar] [CrossRef]
- Ramlov, A.; Assenholt, M.S.; Jensen, M.F.; Grønborg, C.; Nout, R.; Alber, M.; Fokdal, L.; Tanderup, K.; Lindegaard, J.C. Clinical Implementation of Coverage Probability Planning for Nodal Boosting in Locally Advanced Cervical Cancer. Radiother. Oncol. 2017, 123, 158–163. [Google Scholar] [CrossRef]
- Vargo, J.A.; Kim, H.; Choi, S.; Sukumvanich, P.; Olawaiye, A.B.; Kelley, J.L.; Edwards, R.P.; Comerci, J.T.; Beriwal, S. Extended Field Intensity Modulated Radiation Therapy with Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era. Int. J. Radiat. Oncol. 2014, 90, 1091–1098. [Google Scholar] [CrossRef]
- Dang, Y.-Z.; Li, P.; Li, J.-P.; Zhang, Y.; Zhao, L.-N.; Li, W.-W.; Wei, L.-C.; Shi, M. Efficacy and Toxicity of IMRT-Based Simultaneous Integrated Boost for the Definitive Management of Positive Lymph Nodes in Patients with Cervical Cancer. J. Cancer 2019, 10, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Jethwa, K.R.; Jang, S.; Gonuguntla, K.; Evans, J.D.; Block, M.S.; Kumar, A.; Langstraat, C.L.; Whitaker, T.J.; Day, C.N.; Deufel, C.L.; et al. Lymph Node-Directed Simultaneous Integrated Boost in Patients with Clinically Lymph Node-Positive Cervical Cancer Treated with Definitive Chemoradiation: Clinical Outcomes and Toxicity. Int. J. Radiat. Oncol. 2018, 102, e625–e626. [Google Scholar] [CrossRef]
- Jayatilakebanda, I.; Tsang, Y.M.; Hoskin, P. High Dose Simultaneous Integrated Boost for Node Positive Cervical Cancer. Radiat. Oncol. 2021, 16, 92. [Google Scholar] [CrossRef]
- Tiwari, R.; Narayanan, G.S.; Reddy, V.P.; Vishwanathan, B.; Narayanan, S.; Venugopal, R. Impact of Nodal Boost Irradiation and MR-Based Brachytherapy on Oncologic Outcomes in Node-Positive Cervical Cancer. Gynecol. Oncol. 2021, 163, 110–116. [Google Scholar] [CrossRef]
- Lee, J.; Lin, J.-B.; Chang, C.-L.; Jan, Y.-T.; Sun, F.-J.; Wu, M.-H.; Chen, Y.-J. Prophylactic Lower Para-Aortic Irradiation Using Intensity-Modulated Radiotherapy Mitigates the Risk of Para-Aortic Recurrence in Locally Advanced Cervical Cancer: A 10-Year Institutional Experience. Gynecol. Oncol. 2017, 146, 20–26. [Google Scholar] [CrossRef]
- Lindegaard, J.C.; Assenholt, M.; Ramlov, A.; Fokdal, L.U.; Alber, M.; Tanderup, K. Early Clinical Outcome of Coverage Probability Based Treatment Planning for Simultaneous Integrated Boost of Nodes in Locally Advanced Cervical Cancer. Acta Oncol. 2017, 56, 1479–1486. [Google Scholar] [CrossRef]
- McCormack, M.; Eminowicz, G.; Gallardo, D.; Diez, P.; Farrelly, L.; Kent, C.; Hudson, E.; Panades, M.; Mathew, T.; Anand, A.; et al. Induction Chemotherapy Followed by Standard Chemoradiotherapy versus Standard Chemoradiotherapy Alone in Patients with Locally Advanced Cervical Cancer (GCIG INTERLACE): An International, Multicentre, Randomised Phase 3 Trial. Lancet 2024, 404, 1525–1535. [Google Scholar] [CrossRef]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Cvek, J.; Randall, L.; Pereira De Santana Gomes, A.J.; et al. Pembrolizumab or Placebo with Chemoradiotherapy Followed by Pembrolizumab or Placebo for Newly Diagnosed, High-Risk, Locally Advanced Cervical Cancer (ENGOT-Cx11/GOG-3047/KEYNOTE-A18): Overall Survival Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2024, 404, 1321–1332. [Google Scholar] [CrossRef]
- Sponholtz, S.E.; Mogensen, O.; Hildebrandt, M.G.; Schledermann, D.; Parner, E.; Markauskas, A.; Frøding, L.P.; Fuglsang, K.; Holm, J.; Bjørnholt, S.M.; et al. From FIGO-2009 to FIGO-2018 in Women with Early-Stage Cervical Cancer; Does the Revised Staging Reflect Risk Groups? Gynecol. Oncol. 2021, 163, 281–288. [Google Scholar] [CrossRef]
- FIGO Committee on Gynecologic Oncology. FIGO Staging for Carcinoma of the Vulva, Cervix, and Corpus Uteri. Int. J. Gynecol. Obstet. 2014, 125, 97–98. [Google Scholar] [CrossRef]
- Kaur, H.; Silverman, P.M.; Iyer, R.B.; Verschraegen, C.F.; Eifel, P.J.; Charnsangavej, C. Diagnosis, Staging, and Surveillance of Cervical Carcinoma. Am. J. Roentgenol. 2003, 180, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Hackett, T.E.; Olt, G.; Sorosky, J.I.; Podczaski, E.; Harrison, T.A.; Mortel, R. Surgical Predictors of Para-Aortic Metastases in Early-Stage Cervical Carcinoma. Gynecol. Oncol. 1995, 59, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Uzan, C.; Souadka, A.; Gouy, S.; Debaere, T.; Duclos, J.; Lumbroso, J.; Haie-Meder, C.; Morice, P. Analysis of Morbidity and Clinical Implications of Laparoscopic Para-Aortic Lymphadenectomy in a Continuous Series of 98 Patients with Advanced-Stage Cervical Cancer and Negative PET–CT Imaging in the Para-Aortic Area. Oncologist 2011, 16, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Ramlov, A.; Kroon, P.S.; Jürgenliemk-Schulz, I.M.; De Leeuw, A.A.C.; Gormsen, L.C.; Fokdal, L.U.; Tanderup, K.; Lindegaard, J.C. Impact of Radiation Dose and Standardized Uptake Value of (18)FDG PET on Nodal Control in Locally Advanced Cervical Cancer. Acta Oncol. 2015, 54, 1567–1573. [Google Scholar] [CrossRef]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO Staging for Carcinoma of the Cervix Uteri. Int. J. Gynecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef]
- Meva, J.; Chaudhary, R.K.; Bhaduri, D.; Bhatia, M.; Hatti, S.; Ba, R. Lacunae in International Federation of Gynecology and Obstetrics (FIGO) Classification for Cervical Carcinoma: Observational Study Using TNM Classification as Comparator. Int. J. Gynecol. Cancer 2013, 23, 1071–1077. [Google Scholar] [CrossRef]
- Martimbeau, P.W.; Kjorstad, K.E.; Iversen, T. Stage IB Carcinoma of the Cervix, the Norwegian Radium Hospital. II. Results When Pelvic Nodes Are Involved. Obstet. Gynecol. 1982, 60, 215–218. [Google Scholar]
- Stehman, F.B.; Bundy, B.N.; Disaia, P.J.; Keys, H.M.; Larson, J.E.; Fowler, W.C. Carcinoma of the Cervix Treated with Radiation Therapy I. A Multi-Variate Analysis of Prognostic Variables in the Gynecologic Oncology Group. Cancer 1991, 67, 2776–2785. [Google Scholar] [CrossRef]
- Cheng, X.; Cai, S.; Li, Z.; Tang, M.; Xue, M.; Zang, R. The Prognosis of Women with Stage IB1-IIB Node-Positive Cervical Carcinoma after Radical Surgery. World J. Surg. Oncol. 2004, 2, 47. [Google Scholar] [CrossRef]
- Wright, J.D.; Matsuo, K.; Huang, Y.; Tergas, A.I.; Hou, J.Y.; Khoury-Collado, F.; St. Clair, C.M.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L. Prognostic Performance of the 2018 International Federation of Gynecology and Obstetrics Cervical Cancer Staging Guidelines. Obstet. Gynecol. 2019, 134, 49–57. [Google Scholar] [CrossRef]
- Grigsby, P.W.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; McCourt, C.; Hagemann, A.; Fuh, K.; Kuroki, L.; Schwarz, J.K.; et al. FIGO 2018 Staging Criteria for Cervical Cancer: Impact on Stage Migration and Survival. Gynecol. Oncol. 2020, 157, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Polterauer, S.; Hefler, L.; Seebacher, V.; Rahhal, J.; Tempfer, C.; Horvat, R.; Reinthaller, A.; Grimm, C. The Impact of Lymph Node Density on Survival of Cervical Cancer Patients. Br. J. Cancer 2010, 103, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Eom, K.-Y.; Kim, Y.S.; Park, W.; Chun, M.; Lee, J.; Kim, Y.B.; Yoon, W.S.; Kim, J.H.; Choi, J.H.; et al. The Prognostic Impact of the Number of Metastatic Lymph Nodes and a New Prognostic Scoring System for Recurrence in Early-Stage Cervical Cancer with High Risk Factors: A Multicenter Cohort Study (KROG 15-04). Cancer Res. Treat. 2018, 50, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Olthof, E.P.; Mom, C.H.; Snijders, M.L.H.; Wenzel, H.H.B.; Van Der Velden, J.; Van Der Aa, M.A. The Prognostic Value of the Number of Positive Lymph Nodes and the Lymph Node Ratio in Early-stage Cervical Cancer. Acta Obstet. Gynecol. Scand. 2022, 101, 550–557. [Google Scholar] [CrossRef]
- Matsuo, K.; Machida, H.; Mandelbaum, R.S.; Konishi, I.; Mikami, M. Validation of the 2018 FIGO Cervical Cancer Staging System. Gynecol. Oncol. 2019, 152, 87–93. [Google Scholar] [CrossRef]
- Salib, M.Y.; Russell, J.H.B.; Stewart, V.R.; Sudderuddin, S.A.; Barwick, T.D.; Rockall, A.G.; Bharwani, N. 2018 FIGO Staging Classification for Cervical Cancer: Added Benefits of Imaging. RadioGraphics 2020, 40, 1807–1822. [Google Scholar] [CrossRef]
- Choi, H.J.; Ju, W.; Myung, S.K.; Kim, Y. Diagnostic Performance of Computer Tomography, Magnetic Resonance Imaging, and Positron Emission Tomography or Positron Emission Tomography/Computer Tomography for Detection of Metastatic Lymph Nodes in Patients with Cervical Cancer: Meta-analysis. Cancer Sci. 2010, 101, 1471–1479. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Q.; Dong, L.; Jia, Y.; Hua, C.; Mi, F.; Li, C. Different Imaging Techniques for the Detection of Pelvic Lymph Nodes Metastasis from Gynecological Malignancies: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 14107–14125. [Google Scholar] [CrossRef]
- Fiorentino, A.; Laudicella, R.; Ciurlia, E.; Annunziata, S.; Lancellotta, V.; Mapelli, P.; Tuscano, C.; Caobelli, F.; Evangelista, L.; Marino, L.; et al. Positron Emission Tomography with Computed Tomography Imaging (PET/CT) for the Radiotherapy Planning Definition of the Biological Target Volume: PART 2. Crit. Rev. Oncol. Hematol. 2019, 139, 117–124. [Google Scholar] [CrossRef]
- Reinhardt, M.J.; Ehritt-Braun, C.; Vogelgesang, D.; Ihling, C.; Högerle, S.; Mix, M.; Moser, E.; Krause, T.M. Metastatic Lymph Nodes in Patients with Cervical Cancer: Detection with MR Imaging and FDG PET. Radiology 2001, 218, 776–782. [Google Scholar] [CrossRef]
- Narayan, K.; Hicks, R.J.; Jobling, T.; Bernshaw, D.; Mckenzie, A.F. A Comparison of MRI and PET Scanning in Surgically Staged Loco-Regionally Advanced Cervical Cancer: Potential Impact on Treatment. Int. J. Gynecol. Cancer 2001, 11, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Olthof, E.P.; Bergink-Voorthuis, B.J.; Wenzel, H.H.B.; Mongula, J.; Van Der Velden, J.; Spijkerboer, A.M.; Adam, J.A.; Bekkers, R.L.M.; Beltman, J.J.; Slangen, B.F.M.; et al. Diagnostic Accuracy of MRI, CT, and [18F]FDG-PET-CT in Detecting Lymph Node Metastases in Clinically Early-Stage Cervical Cancer—A Nationwide Dutch Cohort Study. Insights Imaging 2024, 15, 36. [Google Scholar] [CrossRef]
- Chao, A.; Ho, K.-C.; Wang, C.-C.; Cheng, H.-H.; Lin, G.; Yen, T.-C.; Lai, C.-H. Positron Emission Tomography in Evaluating the Feasibility of Curative Intent in Cervical Cancer Patients with Limited Distant Lymph Node Metastases. Gynecol. Oncol. 2008, 110, 172–178. [Google Scholar] [CrossRef]
- Belhocine, T.; Thille, A.; Fridman, V.; Albert, A.; Seidel, L.; Nickers, P.; Kridelka, F.; Rigo, P. Contribution of Whole-Body 18FDG PET Imaging in the Management of Cervical Cancer. Gynecol. Oncol. 2002, 87, 90–97. [Google Scholar] [CrossRef]
- Ramirez, P.T. ESGO/ESTRO/ESP Updated Guidelines in Cervical Cancer. Int. J. Gynecol. Cancer 2023, 33, 667–668. [Google Scholar] [CrossRef]
- Gouy, S.; Morice, P.; Narducci, F.; Uzan, C.; Gilmore, J.; Kolesnikov-Gauthier, H.; Querleu, D.; Haie-Meder, C.; Leblanc, E. Nodal-Staging Surgery for Locally Advanced Cervical Cancer in the Era of PET. Lancet Oncol. 2012, 13, e212–e220. [Google Scholar] [CrossRef]
- Gold, M.A.; Tian, C.; Whitney, C.W.; Rose, P.G.; Lanciano, R. Surgical versus Radiographic Determination of Para-aortic Lymph Node Metastases before Chemoradiation for Locally Advanced Cervical Carcinoma: A Gynecologic Oncology Group Study. Cancer 2008, 112, 1954–1963. [Google Scholar] [CrossRef]
- Lai, C.-H.; Huang, K.-G.; Hong, J.-H.; Lee, C.-L.; Chou, H.-H.; Chang, T.-C.; Hsueh, S.; Huang, H.-J.; Ng, K.-K.; Tsai, C.-S. Randomized Trial of Surgical Staging (Extraperitoneal or Laparoscopic) versus Clinical Staging in Locally Advanced Cervical Cancer. Gynecol. Oncol. 2003, 89, 160–167. [Google Scholar] [CrossRef]
- Gouy, S.; Morice, P.; Narducci, F.; Uzan, C.; Martinez, A.; Rey, A.; Bentivegna, E.; Pautier, P.; Deandreis, D.; Querleu, D.; et al. Prospective Multicenter Study Evaluating the Survival of Patients with Locally Advanced Cervical Cancer Undergoing Laparoscopic Para-Aortic Lymphadenectomy Before Chemoradiotherapy in the Era of Positron Emission Tomography Imaging. J. Clin. Oncol. 2013, 31, 3026–3033. [Google Scholar] [CrossRef]
- Marnitz, S.; Tsunoda, A.T.; Martus, P.; Vieira, M.; Affonso Junior, R.J.; Nunes, J.; Budach, V.; Hertel, H.; Mustea, A.; Sehouli, J.; et al. Surgical versus Clinical Staging Prior to Primary Chemoradiation in Patients with Cervical Cancer FIGO Stages IIB–IVA: Oncologic Results of a Prospective Randomized International Multicenter (Uterus-11) Intergroup Study. Int. J. Gynecol. Cancer 2020, 30, 1855–1861. [Google Scholar] [CrossRef]
- LaPolla, J.P.; Schlaerth, J.B.; Gaddis, O.; Morrow, C.P. The Influence of Surgical Staging on the Evaluation and Treatment of Patients with Cervical Carcinoma. Gynecol. Oncol. 1986, 24, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Kusunoki, S.; Huang, K.-G.; Magno, A.; Lee, C.-L. Laparoscopic Technique of Para-Aortic Lymph Node Dissection: A Comparison of the Different Approaches to Trans- versus Extraperitoneal Para-Aortic Lymphadenectomy. Gynecol. Minim. Invasive Ther. 2017, 6, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Prodromidou, A.; Machairas, N.; Spartalis, E.; Kostakis, I.D.; Iavazzo, C.; Moris, D.; Tsilimigras, D.I.; Athanasiou, A.; Nikiteas, N. Transperitoneal Versus Extraperitoneal Laparoscopic Lymphadenectomy for Gynecological Malignancies: A Systematic Review and Meta-Analysis. Anticancer Res. 2018, 38, 4677–4681. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, G.; Muruzabal, J.C.; Perez, B.; Aguirre, S.; Villafranca, E.; Jurado, M. Para-Aortic plus Pelvic Lymphadenectomy in Locally Advanced Cervical Cancer: A Single Institutional Experience. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 79–83. [Google Scholar] [CrossRef]
- Köhler, C.; Mustea, A.; Marnitz, S.; Schneider, A.; Chiantera, V.; Ulrich, U.; Scharf, J.-P.; Martus, P.; Vieira, M.A.; Tsunoda, A. Perioperative Morbidity and Rate of Upstaging after Laparoscopic Staging for Patients with Locally Advanced Cervical Cancer: Results of a Prospective Randomized Trial. Am. J. Obstet. Gynecol. 2015, 213, e1–e503. [Google Scholar] [CrossRef]
- Leblanc, E.; Narducci, F.; Frumovitz, M.; Lesoin, A.; Castelain, B.; Baranzelli, M.C.; Taieb, S.; Fournier, C.; Querleu, D. Therapeutic Value of Pretherapeutic Extraperitoneal Laparoscopic Staging of Locally Advanced Cervical Carcinoma. Gynecol. Oncol. 2007, 105, 304–311. [Google Scholar] [CrossRef]
- Díaz-Feijoo, B.; Acosta, Ú.; Torné, A.; Gil-Ibáñez, B.; Hernández, A.; Domingo, S.; Gil-Moreno, A. Laparoscopic Debulking of Enlarged Pelvic Nodes during Surgical Para-Aortic Staging in Locally Advanced Cervical Cancer: A Retrospective Comparative Cohort Study. J. Minim. Invasive Gynecol. 2022, 29, 103–113. [Google Scholar] [CrossRef]
- Díaz-Feijoo, B.; Gil-Ibáñez, B.; Pérez-Benavente, A.; Martínez-Gómez, X.; Colás, E.; Sánchez-Iglesias, J.L.; Cabrera-Díaz, S.; Puig-Puig, O.; Magrina, J.F.; Gil-Moreno, A. Comparison of Robotic-Assisted vs Conventional Laparoscopy for Extraperitoneal Paraaortic Lymphadenectomy. Gynecol. Oncol. 2014, 132, 98–101. [Google Scholar] [CrossRef]
- Hasenburg, A.; Salama, J.K.; Van, T.J.; Amosson, C.; Chiu, J.K.; Kieback, D.G. Evaluation of Patients after Extraperitoneal Lymph Node Dissection and Subsequent Radiotherapy for Cervical Cancer. Gynecol. Oncol. 2002, 84, 321–326. [Google Scholar] [CrossRef]
- Xu, K.M.; Rajagopalan, M.S.; Kim, H.; Beriwal, S. Extended Field Intensity Modulated Radiation Therapy for Gynecologic Cancers: Is the Risk of Duodenal Toxicity High? Pract. Radiat. Oncol. 2015, 5, e291–e297. [Google Scholar] [CrossRef]
- Poorvu, P.D.; Sadow, C.A.; Townamchai, K.; Damato, A.L.; Viswanathan, A.N. Duodenal and Other Gastrointestinal Toxicity in Cervical and Endometrial Cancer Treated with Extended-Field Intensity Modulated Radiation Therapy to Paraaortic Lymph Nodes. Int. J. Radiat. Oncol. 2013, 85, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M. Early Toxicity and Treatment Outcomes of Extended Field-Intensity Modulated Radiotherapy for Cervical Cancer Patients with Para-Aortic Nodal Metastasis. Ecancermedicalscience 2019, 13, 957. [Google Scholar] [CrossRef]
- Martinez, A.; Lecuru, F.; Bizzarri, N.; Chargari, C.; Ducassou, A.; Fagotti, A.; Fanfani, F.; Scambia, G.; Cibula, D.; Díaz-Feijoo, B.; et al. PARa-aOrtic LymphAdenectomy in Locally Advanced Cervical Cancer (PAROLA Trial): A GINECO, ENGOT, and GCIG Study. Int. J. Gynecol. Cancer 2023, 33, 293–298. [Google Scholar] [CrossRef]
- He, M.; Wang, H.; Guo, M.; Wang, L.; Tang, Y.; Zhou, Q.; Zou, D. TP009/#1444 Compare Surgical Staging with Imaging in Locally Advanced Cervical Cancer: A Multicenter, Phase III Trial. Int. J. Gynecol. Cancer 2022, 32, 227. [Google Scholar] [CrossRef]
- Hacker, N.F.; Wain, G.V.; Nicklin, J.L. Resection of Bulky Positive Lymph Nodes in Patients with Cervical Carcinoma. Int. J. Gynecol. Cancer 1995, 5, 250–256. [Google Scholar] [CrossRef]
- Cosin, J.A.; Fowler, J.M.; Chen, M.D.; Paley, P.J.; Carson, L.F.; Twiggs, L.B. Pretreatment Surgical Staging of Patients with Cervical Carcinoma: The Case for Lymph Node Debulking. Cancer 1998, 82, 2241–2248. [Google Scholar] [CrossRef]
- Liang, Z.; Xue, H.; Chen, Y. Laparoscopic Debulking of Bulky Lymph Nodes in Patients with Cervical Carcinoma: Feasibility of the Technique and Surgical Outcomes. J. Minim. Invasive Gynecol. 2014, 21, S69–S70. [Google Scholar] [CrossRef]
- Lim, M.C.; Bae, J.; Park, J.-Y.; Lim, S.; Kang, S.; Seo, S.-S.; Kim, J.-Y.; Rho, J.-W.; Park, S.-Y. Experiences of Pretreatment Laparoscopic Surgical Staging in Patients with Locally Advanced Cervical Cancer: Results of a Prospective Study. J. Gynecol. Oncol. 2008, 19, 123. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer (EMBRACE-I): A Multicentre Prospective Cohort Study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Zaharie, A.; Sturdza, A.; Knoth, J.; Grimm, C.; Polterauer, S.; Kirisits, C.; Pötter, R.; Widder, J.; Schmid, M. OC-0603 Which Is the Optimal Lymph Node Management in Node Positive Cervical Cancer? Radiother. Oncol. 2023, 182, S486–S487. [Google Scholar] [CrossRef]
- Olthof, E.P.; Wenzel, H.; Van Der Velden, J.; Spijkerboer, A.M.; Bekkers, R.; Beltman, J.J.; Nijman, H.W.; Slangen, B.; Smolders, R.; Van Trommel, N.; et al. Treatment of Bulky Lymph Nodes in Locally Advanced Cervical Cancer: Boosting versus Debulking. Int. J. Gynecol. Cancer 2022, 32, 861–868. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Guo, M.; Zhou, Q.; Tang, Y.; Zhong, L.; Liu, Q.; Fan, X.; Zhao, X.; Zhang, X.; Chen, G.; et al. Efficacy of Lymph Node Dissection on Stage IIICr of Cervical Cancer before CCRT: Study Protocol for a Phase III, Randomized Controlled Clinical Trial (CQGOG0103). J. Gynecol. Oncol. 2023, 34, e55. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Kim, J.Y.; Lee, D.S.; Lee, Y.H.; Lee, S.-W.; Sung, S.; Park, H.H.; Yoon, S.-C.; Hur, S.Y.; Park, J.-S.; et al. Clinical Impact of Boost Irradiation to Pelvic Lymph Node in Uterine Cervical Cancer Treated with Definitive Chemoradiotherapy. Medicine 2018, 97, e0517. [Google Scholar] [CrossRef] [PubMed]
- Bacorro, W.; Dumas, I.; Escande, A.; Gouy, S.; Bentivegna, E.; Morice, P.; Haie-Meder, C.; Chargari, C. Dose-Volume Effects in Pathologic Lymph Nodes in Locally Advanced Cervical Cancer. Gynecol. Oncol. 2018, 148, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.; Craciunescu, O.; Steffey, B.; Cai, J.; Chino, J. Methods, Safety, and Early Clinical Outcomes of Dose Escalation Using Simultaneous Integrated and Sequential Boosts in Patients with Locally Advanced Gynecologic Malignancies. Gynecol. Oncol. 2014, 135, 239–243. [Google Scholar] [CrossRef]
- Mohamed, S.M.I.; Aagaard, T.; Fokdal, L.U.; Pedersen, E.M.; Lindegaard, J.C.; Tanderup, K. Assessment of Radiation Doses to the Para-Aortic, Pelvic, and Inguinal Lymph Nodes Delivered by Image-Guided Adaptive Brachytherapy in Locally Advanced Cervical Cancer. Brachytherapy 2015, 14, 56–61. [Google Scholar] [CrossRef]
- Berger, T.; Seppenwoolde, Y.; Pötter, R.; Assenholt, M.S.; Lindegaard, J.C.; Nout, R.A.; De Leeuw, A.; Jürgenliemk-Schulz, I.; Tan, L.T.; Georg, D.; et al. Importance of Technique, Target Selection, Contouring, Dose Prescription, and Dose-Planning in External Beam Radiation Therapy for Cervical Cancer: Evolution of Practice From EMBRACE-I to II. Int. J. Radiat. Oncol. 2019, 104, 885–894. [Google Scholar] [CrossRef]
- Bacorro, W.; Dumas, I.; Levy, A.; Rivin Del Campo, E.; Canova, C.-H.; Felefly, T.; Huertas, A.; Marsolat, F.; Haie-Meder, C.; Chargari, C.; et al. Contribution of Image-Guided Adaptive Brachytherapy to Pelvic Nodes Treatment in Locally Advanced Cervical Cancer. Brachytherapy 2017, 16, 366–372. [Google Scholar] [CrossRef]
- Hata, M.; Koike, I.; Miyagi, E.; Numazaki, R.; Asai-Sato, M.; Kasuya, T.; Kaizu, H.; Matsui, T.; Hirahara, F.; Inoue, T. Radiation Therapy for Pelvic Lymph Node Metastasis from Uterine Cervical Cancer. Gynecol. Oncol. 2013, 131, 99–102. [Google Scholar] [CrossRef]
- Gogineni, E.; Bloom, B.; Diaz Molina, F.; Villella, J.; Goenka, A. Radiotherapy Dose Escalation on Pelvic Lymph Node Control in Patients with Cervical Cancer. Int. J. Gynecol. Cancer 2021, 31, 524–529. [Google Scholar] [CrossRef]
- Wakatsuki, M.; Ohno, T.; Kato, S.; Ando, K.; Noda, S.; Kiyohara, H.; Shibuya, K.; Karasawa, K.; Kamada, T.; Nakano, T. Impact of Boost Irradiation on Pelvic Lymph Node Control in Patients with Cervical Cancer. J. Radiat. Res. 2014, 55, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Kim, G.E.; Kim, Y.B. Prognostic Factors of Dose-Response Relationship for Nodal Control in Metastatic Lymph Nodes of Cervical Cancer Patients Undergoing Definitive Radiotherapy with Concurrent Chemotherapy. J. Gynecol. Oncol. 2022, 33, e59. [Google Scholar] [CrossRef]
- Feng, C.H.; Hasan, Y.; Kopec, M.; Al-Hallaq, H.A. Simultaneously Integrated Boost (SIB) Spares OAR and Reduces Treatment Time in Locally Advanced Cervical Cancer. J. Appl. Clin. Med. Phys. 2016, 17, 76–89. [Google Scholar] [CrossRef]
- Verma, J.; Sulman, E.P.; Jhingran, A.; Tucker, S.L.; Rauch, G.M.; Eifel, P.J.; Klopp, A.H. Dosimetric Predictors of Duodenal Toxicity After Intensity Modulated Radiation Therapy for Treatment of the Para-Aortic Nodes in Gynecologic Cancer. Int. J. Radiat. Oncol. 2014, 88, 357–362. [Google Scholar] [CrossRef]
- Kelly, P.; Das, P.; Pinnix, C.C.; Beddar, S.; Briere, T.; Pham, M.; Krishnan, S.; Delclos, M.E.; Crane, C.H. Duodenal Toxicity After Fractionated Chemoradiation for Unresectable Pancreatic Cancer. Int. J. Radiat. Oncol. 2013, 85, e143–e149. [Google Scholar] [CrossRef]
- Stanic, S.; Mayadev, J.S. Tolerance of the Small Bowel to Therapeutic Irradiation: A Focus on Late Toxicity in Patients Receiving Para-Aortic Nodal Irradiation for Gynecologic Malignancies. Int. J. Gynecol. Cancer 2013, 23, 592–597. [Google Scholar] [CrossRef]
- Jethwa, K.R.; Jang, S.; Gonuguntla, K.; Garda, A.E.; Evans, J.D.; Whitaker, T.J.; Day, C.N.; Haddock, M.G.; Petersen, I.A. Lymph Node–Directed Simultaneous Integrated Boost in Patients with Clinically Lymph Node–Positive Cervical Cancer Treated with Definitive Chemoradiotherapy: Clinical Outcomes and Toxicity. J. Radiat. Oncol. 2020, 9, 103–111. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Kirisits, C.; De Leeuw, A.; Kirchheiner, K.; Nout, R.; Tan, L.T.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; et al. The EMBRACE II Study: The Outcome and Prospect of Two Decades of Evolution within the GEC-ESTRO GYN Working Group and the EMBRACE Studies. Clin. Transl. Radiat. Oncol. 2018, 9, 48–60. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Meng, Q.; Zhang, F.; Hu, K. Prophylactic Extended-Field Irradiation for Patients with Cervical Cancer Treated with Concurrent Chemoradiotherapy: A Propensity-Score Matching Analysis. Int. J. Gynecol. Cancer 2018, 28, 1584–1591. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, X.; Wang, W.; Hou, X.; Lian, X.; Sun, S.; Yan, J.; Liu, Z.; Miao, Z.; Hu, K.; et al. Evaluation of the Efficacy of Prophylactic Extended Field Irradiation in the Concomitant Chemoradiotherapy Treatment of Locally Advanced Cervical Cancer, Stage IIIB in the 2018 FIGO Classification. Radiat. Oncol. 2019, 14, 228. [Google Scholar] [CrossRef]
- Peters, M.; De Leeuw, A.A.C.; Nomden, C.N.; Tanderup, K.; Kirchheiner, K.; Lindegaard, J.C.; Kirisits, C.; Haie-Meder, C.; Sturdza, A.; Fokdal, L.; et al. Risk Factors for Nodal Failure after Radiochemotherapy and Image Guided Brachytherapy in Locally Advanced Cervical Cancer: An EMBRACE Analysis. Radiother. Oncol. 2021, 163, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Rotman, M.; Pajak, T.F.; Choi, K.; Clery, M.; Marcial, V.; Grigsby, P.W.; Cooper, J.; John, M. Prophylactic Extended-Field Irradiation of Para-Aortic Lymph Nodes in Stages IIB and Bulky IB and IIA Cervical Carcinomas: Ten-Year Treatment Results of RTOG 79-20. JAMA 1995, 274, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lin, J.-B.; Chang, C.-L.; Sun, F.-J.; Wu, M.-H.; Jan, Y.-T.; Chen, Y.-J. Impact of Para-Aortic Recurrence Risk-Guided Intensity-Modulated Radiotherapy in Locally Advanced Cervical Cancer with Positive Pelvic Lymph Nodes. Gynecol. Oncol. 2018, 148, 291–298. [Google Scholar] [CrossRef]
- Yap, M.L.; Cuartero, J.; Yan, J.; Pintilie, M.; Fyles, A.; Levin, W.; Manchul, L.; Milosevic, M. The Role of Elective Para-Aortic Lymph Node Irradiation in Patients with Locally Advanced Cervical Cancer. Clin. Oncol. 2014, 26, 797–803. [Google Scholar] [CrossRef]
- Bukkems, L.J.H.; Jürgenliemk-Schulz, I.M.; Van Der Leij, F.; Peters, M.; Gerestein, C.G.; Zweemer, R.P.; Van Rossum, P.S.N. The Impact of Para-Aortic Lymph Node Irradiation on Disease-Free Survival in Patients with Cervical Cancer: A Systematic Review and Meta-Analysis. Clin. Transl. Radiat. Oncol. 2022, 35, 97–103. [Google Scholar] [CrossRef]
- Small, W.; Winter, K.; Levenback, C.; Iyer, R.; Gaffney, D.; Asbell, S.; Erickson, B.; Jhingran, A.; Greven, K. Extended-Field Irradiation and Intracavitary Brachytherapy Combined with Cisplatin Chemotherapy for Cervical Cancer with Positive Para-Aortic or High Common Iliac Lymph Nodes: Results of ARM 1 of RTOG 0116. Int. J. Radiat. Oncol. 2007, 68, 1081–1087. [Google Scholar] [CrossRef]
- Eifel, P.J.; Winter, K.; Morris, M.; Levenback, C.; Grigsby, P.W.; Cooper, J.; Rotman, M.; Gershenson, D.; Mutch, D.G. Pelvic Irradiation with Concurrent Chemotherapy Versus Pelvic and Para-Aortic Irradiation for High-Risk Cervical Cancer: An Update of Radiation Therapy Oncology Group Trial (RTOG) 90-01. J. Clin. Oncol. 2004, 22, 872–880. [Google Scholar] [CrossRef]
- Jensen, N.B.K.; Pötter, R.; Kirchheiner, K.; Fokdal, L.; Lindegaard, J.C.; Kirisits, C.; Mazeron, R.; Mahantshetty, U.; Jürgenliemk-Schulz, I.M.; Segedin, B.; et al. Bowel Morbidity Following Radiochemotherapy and Image-Guided Adaptive Brachytherapy for Cervical Cancer: Physician- and Patient Reported Outcome from the EMBRACE Study. Radiother. Oncol. 2018, 127, 431–439. [Google Scholar] [CrossRef]
- Jensen, N.B.K.; Pötter, R.; Spampinato, S.; Fokdal, L.U.; Chargari, C.; Lindegaard, J.C.; Schmid, M.P.; Sturdza, A.; Jürgenliemk-Schulz, I.M.; Mahantshetty, U.; et al. Dose-Volume Effects and Risk Factors for Late Diarrhea in Cervix Cancer Patients After Radiochemotherapy with Image Guided Adaptive Brachytherapy in the EMBRACE I Study. Int. J. Radiat. Oncol. 2021, 109, 688–700. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Li, Y.; Wan, T.; Feng, Y.; Li, Z.; Huang, Q. Metastasis to Deep Obturator and Para-Aortic Lymph Nodes in 649 Patients with Cervical Carcinoma. Eur. J. Surg. Oncol. EJSO 2011, 37, 978–983. [Google Scholar] [CrossRef]
- Sakuragi, N.; Satoh, C.; Takeda, N.; Hareyama, H.; Takeda, M.; Yamamoto, R.; Fujimoto, T.; Oikawa, M.; Fujino, T.; Fujimoto, S. Incidence and Distribution Pattern of Pelvic and Paraaortic Lymph Node Metastasis in Patients with Stages IB, IIA, and IIB Cervical Carcinoma Treated with Radical Hysterectomy. Cancer 1999, 85, 1547–1554. [Google Scholar] [CrossRef]
- Han, X.; Wen, H.; Ju, X.; Chen, X.; Ke, G.; Zhou, Y.; Li, J.; Xia, L.; Tang, J.; Liang, S.; et al. Predictive Factors of Para-Aortic Lymph Nodes Metastasis in Cervical Cancer Patients: A Retrospective Analysis Based on 723 Para-Aortic Lymphadenectomy Cases. Oncotarget 2017, 8, 51840–51847. [Google Scholar] [CrossRef] [PubMed]
- Keenan, L.G.; Rock, K.; Azmi, A.; Salib, O.; Gillham, C.; McArdle, O. An Atlas to Aid Delineation of Para-Aortic Lymph Node Region in Cervical Cancer: Design and Validation of Contouring Guidelines. Radiother. Oncol. 2018, 127, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Pelvic RT Versus Prophylactic Extended-Field RT in Patients with Cervical Cancer. ClinicalTrials.gov Identifier: NCT03955367. Available online: https://www.clinicaltrials.gov/study/NCT03955367 (accessed on 1 September 2024).
- Shim, S.-H.; Kim, D.-Y.; Lee, S.J.; Kim, S.-N.; Kang, S.-B.; Lee, S.-W.; Park, J.-Y.; Suh, D.-S.; Kim, J.-H.; Kim, Y.-M.; et al. Prediction Model for Para-Aortic Lymph Node Metastasis in Patients with Locally Advanced Cervical Cancer. Gynecol. Oncol. 2017, 144, 40–45. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Meng, Q.; Zhang, F.; Hu, K. Nomogram for Predicting Para-Aortic Lymph Node Metastases in Patients with Cervical Cancer. Arch. Gynecol. Obstet. 2018, 298, 381–388. [Google Scholar] [CrossRef]
- Neoadjuvant Chemotherapy for Cervical Cancer Meta-analysis Collaboration. Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer. Eur. J. Cancer 2003, 39, 2470–2486. [CrossRef]
- Dueñas-González, A.; Zarbá, J.J.; Patel, F.; Alcedo, J.C.; Beslija, S.; Casanova, L.; Pattaranutaporn, P.; Hameed, S.; Blair, J.M.; Barraclough, H.; et al. Phase III, Open-Label, Randomized Study Comparing Concurrent Gemcitabine Plus Cisplatin and Radiation Followed by Adjuvant Gemcitabine and Cisplatin Versus Concurrent Cisplatin and Radiation in Patients with Stage IIB to IVA Carcinoma of the Cervix. J. Clin. Oncol. 2011, 29, 1678–1685. [Google Scholar] [CrossRef]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.H.; Gebski, V.; Narayan, K.; King, M.T.; Bradshaw, N.; Lee, Y.C.; Diamante, K.; Fyles, A.W.; et al. Adjuvant Chemotherapy Following Chemoradiotherapy as Primary Treatment for Locally Advanced Cervical Cancer versus Chemoradiotherapy Alone (OUTBACK): An International, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2023, 24, 468–482. [Google Scholar] [CrossRef]
- Scholl, S.M.E.; De La Rochefordiere, A.; Petrow, P.; Floquet, A.; Petit, T.; Alran, S.; Berton-Rigaud, D.; Campitelli, M.; Chiara-Bruneaud, C.; Fabbro, M.; et al. CETUXICOL, a Phase II Trial Randomizing Standard Treatment with or without Cetuximab in Primary Cervical Cancer Treatment. J. Clin. Oncol. 2012, 30 (Suppl. S15), e15535. [Google Scholar] [CrossRef]
- Nogueira-Rodrigues, A.; Moralez, G.; Grazziotin, R.; Carmo, C.C.; Small, I.A.; Alves, F.V.G.; Mamede, M.; Erlich, F.; Viegas, C.; Triginelli, S.A.; et al. Phase 2 Trial of Erlotinib Combined with Cisplatin and Radiotherapy in Patients with Locally Advanced Cervical Cancer. Cancer 2014, 120, 1187–1193. [Google Scholar] [CrossRef]
- Schefter, T.; Winter, K.; Kwon, J.S.; Stuhr, K.; Balaraj, K.; Yaremko, B.P.; Small, W.; Sause, W.; Gaffney, D. RTOG 0417: Efficacy of Bevacizumab in Combination with Definitive Radiation Therapy and Cisplatin Chemotherapy in Untreated Patients with Locally Advanced Cervical Carcinoma. Int. J. Radiat. Oncol. 2014, 88, 101–105. [Google Scholar] [CrossRef]
- Leath, C.A.; Deng, W.; Mell, L.K.; Richardson, D.L.; Walker, J.L.; Holman, L.L.; Lea, J.S.; Amarnath, S.R.; Santos-Reyes, L.J.; Arend, R.C.; et al. Incorporation of Triapine (T) with Cisplatin Chemoradiation (CRT) for Locally Advanced Cervical and Vaginal Cancer: Results from NRG-GY006, a Phase III Randomized Trial. J. Clin. Oncol. 2023, 41 (Suppl. S16), 5502. [Google Scholar] [CrossRef]
- Lindegaard, J.C.; Petric, P.; Tan, L.-T.; Hoskin, P.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Mahantshetty, U.; Kirisits, C.; Pötter, R. Are We Making Progress in Curing Advanced Cervical Cancer—Again? Int. J. Gynecol. Cancer 2024, 34, 1940–1945. [Google Scholar] [CrossRef]
- Walboomers, J.M.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.F.; Peto, J.; Meijer, C.J.L.M.; Muñoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Heeren, A.M.; Punt, S.; Bleeker, M.C.; Gaarenstroom, K.N.; Van Der Velden, J.; Kenter, G.G.; De Gruijl, T.D.; Jordanova, E.S. Prognostic Effect of Different PD-L1 Expression Patterns in Squamous Cell Carcinoma and Adenocarcinoma of the Cervix. Mod. Pathol. 2016, 29, 753–763. [Google Scholar] [CrossRef]
- Shao, C.; Li, G.; Huang, L.; Pruitt, S.; Castellanos, E.; Frampton, G.; Carson, K.R.; Snow, T.; Singal, G.; Fabrizio, D.; et al. Prevalence of High Tumor Mutational Burden and Association with Survival in Patients with Less Common Solid Tumors. JAMA Netw. Open 2020, 3, e2025109. [Google Scholar] [CrossRef]
- Monk, B.J.; Colombo, N.; Tewari, K.S.; Dubot, C.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. J. Clin. Oncol. 2023, 41, 5505–5511. [Google Scholar] [CrossRef]
- Oaknin, A.; Gladieff, L.; Martínez-García, J.; Villacampa, G.; Takekuma, M.; De Giorgi, U.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. Atezolizumab plus Bevacizumab and Chemotherapy for Metastatic, Persistent, or Recurrent Cervical Cancer (BEATcc): A Randomised, Open-Label, Phase 3 Trial. Lancet 2024, 403, 31–43. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y.; Yang, H.; Wang, J.; Lou, H.; Li, D.; Wang, K.; Zhang, H.; Wu, T.; Li, Y.; et al. Cadonilimab plus Platinum-Based Chemotherapy with or without Bevacizumab as First-Line Treatment for Persistent, Recurrent, or Metastatic Cervical Cancer (COMPASSION-16): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial in China. Lancet 2024, 404, 1668–1676. [Google Scholar] [CrossRef]
- FDA. Approves Pembrolizumab Combination for the First-Line Treatment of Cervical Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-combination-first-line-treatment-cervical-cancer (accessed on 1 October 2024).
- Mayadev, J.; Nunes, A.T.; Li, M.; Marcovitz, M.; Lanasa, M.C.; Monk, B.J. CALLA: Efficacy and Safety of Concurrent and Adjuvant Durvalumab with Chemoradiotherapy versus Chemoradiotherapy Alone in Women with Locally Advanced Cervical Cancer: A Phase III, Randomized, Double-Blind, Multicenter Study. Int. J. Gynecol. Cancer 2020, 30, 1065–1070. [Google Scholar] [CrossRef]
- FDA. Approves Pembrolizumab with Chemoradiotherapy for FIGO 2014 Stage III-IVA Cervical Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-chemoradiotherapy-figo-2014-stage-iii-iva-cervical-cancer (accessed on 1 October 2024).
- Liu, J.; Xiang, Y. A Study of AK104/Placebo Combined with Chemoradiotherapy for the Treatment of Locally Advanced Cervical Cancer (AK104-305). Available online: https://clinicaltrials.gov/study/NCT05235516 (accessed on 1 October 2024).
- Roussy, G. Randomized Phase II Trial Assessing the Inhibitor of Programmed Cell Death Ligand 1 (Pd-L1) Immune Checkpoint Atezolizumab in Locally Advanced Cervical Cancer. (Atezolacc). 2018. Available online: https://clinicaltrials.gov/ct2/show/NCT03612791 (accessed on 1 October 2024).
- Chen, J.; Li, C.; Cao, Y.; Zhu, L.; Zhang, B.; You, J.; Hou, H.; Wang, J.; Yuan, Z. Toripalimab Combined with Concurrent Platinum-Based Chemoradiotherapy in Patients with Locally Advanced Cervical Cancer: An Open-Label, Single-Arm, Phase II Trial. BMC Cancer 2022, 22, 793. [Google Scholar] [CrossRef]
- Grippin, A.; Court, K.; O’Hara, M.; Gjyshi, O.; Mathew, G.; Domingo, M.; Lin, L.L.; Jhingran, A.; Joyner, M.M.; Napravnik, T.C.; et al. IMMUNOCERV Phase II Trial Combining the HPV-Specific T Cell Immunotherapy PDS0101 with Chemoradiation for Treatment of Locally Advanced Cervical Cancer. Int. J. Radiat. Oncol. 2024, 120, S113. [Google Scholar] [CrossRef]
- Rodrigues, M.; Vanoni, G.; Loap, P.; Dubot, C.; Timperi, E.; Minsat, M.; Bazire, L.; Durdux, C.; Fourchotte, V.; Laas, E.; et al. Nivolumab plus Chemoradiotherapy in Locally-Advanced Cervical Cancer: The NICOL Phase 1 Trial. Nat. Commun. 2023, 14, 3698. [Google Scholar] [CrossRef]
- Ray-Coquard, I.L.; Kaminsky-Forrett, M.-C.; Ohkuma, R.; De Montfort, A.; Joly, F.; Treilleux, I.; Ghamry-Barrin, S.; Bello-Roufai, D.; Saintigny, P.; Angelergues, A.; et al. In Situ Immune Impact of Nivolumab + Ipilimumab Combination before Standard Chemoradiation Therapy (RTCT) for FIGO IB3-IVA in Patients (Pts) with Cervical Squamous Carcinoma: COLIBRI Trial, a GINECO Study. J. Clin. Oncol. 2023, 41 (Suppl. S16), 5501. [Google Scholar] [CrossRef]
- Mayadev, J.; Zamarin, D.; Deng, W.; Lankes, H.; O’Cearbhaill, R.; Aghajanian, C.A.; Schilder, R. Anti-PD-L1 (Atezolizumab) as an Immune Primer and Concurrently with Extended-Field Chemoradiotherapy for Node-Positive Locally Advanced Cervical Cancer. Int. J. Gynecol. Cancer 2020, 30, 701–704. [Google Scholar] [CrossRef]
- Randall, L.; Wu, X.; Mayadev, J.; Takekuma, M.; Estevez-Diz, M.D.P.; Shapira-Frommer, R.; Rimel, B.; Lorusso, D.; Lee, J.-Y.; Zhou, Q.; et al. eVOLVE-Cervical (GOG-3092/ENGOT-Cx19/GEICO133-C): A Prospective Phase III Study of Volrustomig versus Placebo after Definitive Chemoradiation among Women with High-Risk, Locally Advanced Cervical Cancer. Gynecol. Oncol. 2024, 190, S285. [Google Scholar] [CrossRef]
- Garcia-Duran, C.; Grau, F.; Villacampa, G.; Oaknin, A. ATOMICC Trial: A Randomized, Open-Label, Phase II Trial of Anti-PD1, Dostarlimab, as Maintenance Therapy for Patients with High-Risk Locally Advanced Cervical Cancer after Chemoradiation. Int. J. Gynecol. Cancer 2022, 32, 1196–1200. [Google Scholar] [CrossRef]
- Da Silva, D.M.; Enserro, D.M.; Mayadev, J.S.; Skeate, J.G.; Matsuo, K.; Pham, H.Q.; Lankes, H.A.; Moxley, K.M.; Ghamande, S.A.; Lin, Y.G.; et al. Immune Activation in Patients with Locally Advanced Cervical Cancer Treated with Ipilimumab Following Definitive Chemoradiation (GOG-9929). Clin. Cancer Res. 2020, 26, 5621–5630. [Google Scholar] [CrossRef]
- Liang, Y.; Lü, W.; Zhang, X.; Lü, B. Tumor-Infiltrating CD8+ and FOXP3+ Lymphocytes before and after Neoadjuvant Chemotherapy in Cervical Cancer. Diagn. Pathol. 2018, 13, 93. [Google Scholar] [CrossRef]
- Foy, J.-P.; Karabajakian, A.; Ortiz-Cuaran, S.; Boussageon, M.; Michon, L.; Bouaoud, J.; Fekiri, D.; Robert, M.; Baffert, K.-A.; Hervé, G.; et al. Immunologically Active Phenotype by Gene Expression Profiling Is Associated with Clinical Benefit from PD-1/PD-L1 Inhibitors in Real-World Head and Neck and Lung Cancer Patients. Eur. J. Cancer 2022, 174, 287–298. [Google Scholar] [CrossRef]
- Rose, B.S.; Liang, Y.; Lau, S.K.; Jensen, L.G.; Yashar, C.M.; Hoh, C.K.; Mell, L.K. Correlation Between Radiation Dose to 18F-FDG-PET Defined Active Bone Marrow Subregions and Acute Hematologic Toxicity in Cervical Cancer Patients Treated with Chemoradiotherapy. Int. J. Radiat. Oncol. 2012, 83, 1185–1191. [Google Scholar] [CrossRef]
- Vittrup, A.S.; Tanderup, K.; Bentzen, S.M.; Jensen, N.B.K.; Spampinato, S.; Fokdal, L.U.; Lindegaard, J.C.; Sturdza, A.; Schmid, M.; Segedin, B.; et al. Persistence of Late Substantial Patient-Reported Symptoms (LAPERS) After Radiochemotherapy Including Image Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: A Report From the EMBRACE Study. Int. J. Radiat. Oncol. 2021, 109, 161–173. [Google Scholar] [CrossRef]
- Søndergaard, J.; Holmberg, M.; Jakobsen, A.R.; Agerbæk, M.; Muren, L.P.; Høyer, M. A Comparison of Morbidity Following Conformal versus Intensity-Modulated Radiotherapy for Urinary Bladder Cancer. Acta Oncol. 2014, 53, 1321–1328. [Google Scholar] [CrossRef]
- Letschert, J.G.J.; Lebesque, J.V.; Aleman, B.M.P.; Bosset, J.F.; Horiot, J.C.; Bartelink, H.; Cionini, L.; Hamers, J.P.; Leer, J.W.H.; Van Glabbeke, M. The Volume Effect in Radiation-Related Late Small Bowel Complications: Results of a Clinical Study of the EORTC Radiotherapy Cooperative Group in Patients Treated for Rectal Carcinoma. Radiother. Oncol. 1994, 32, 116–123. [Google Scholar] [CrossRef]
- Berger, T.; Fokdal, L.U.; Assenholt, M.S.; Jensen, N.B.K.; Petersen, J.B.B.; Nyvang, L.; Korreman, S.; Lindegaard, J.C.; Tanderup, K. Robustness of Elective Lymph Node Target Coverage with Shrinking Planning Target Volume Margins in External Beam Radiotherapy of Locally Advanced Cervical Cancer. Phys. Imaging Radiat. Oncol. 2019, 11, 9–15. [Google Scholar] [CrossRef]
- Reijtenbagh, D.; Godart, J.; Penninkhof, J.; Quint, S.; Zolnay, A.; Mens, J.-W.; Hoogeman, M. Nine Years of Plan of the Day for Cervical Cancer: Plan Library Remains Effective Compared to Fully Online-Adaptive Techniques. Radiother. Oncol. 2024, 190, 110009. [Google Scholar] [CrossRef]
- Chuter, R.W.; Brewster, F.; Retout, L.; Cree, A.; Aktürk, N.; Hales, R.; Benson, R.; Hoskin, P.; McWilliam, A. Feasibility of Using a Dual Isocentre Technique for Treating Cervical Cancer on the 1.5 T MR-Linac. Phys. Med. Biol. 2023, 68, 025017. [Google Scholar] [CrossRef]
- Ding, S.; Piao, Z.; Chen, M.; Li, F.; Li, Y.; Liu, B.; Liu, H.; Huang, X.; Li, J. MRI Guided Online Adaptive Radiotherapy and the Dosimetric Impact of Inter- and Intrafractional Motion in Patients with Cervical Cancer. Clin. Transl. Radiat. Oncol. 2025, 50, 100881. [Google Scholar] [CrossRef]
- Winkel, D.; Bol, G.H.; Werensteijn-Honingh, A.M.; Intven, M.P.W.; Eppinga, W.S.C.; Hes, J.; Snoeren, L.M.W.; Sikkes, G.G.; Gadellaa-van Hooijdonk, C.G.M.; Raaymakers, B.W.; et al. Target Coverage and Dose Criteria Based Evaluation of the First Clinical 1.5T MR-Linac SBRT Treatments of Lymph Node Oligometastases Compared with Conventional CBCT-Linac Treatment. Radiother. Oncol. 2020, 146, 118–125. [Google Scholar] [CrossRef]
- Portelance, L.; Corradini, S.; Erickson, B.; Lalondrelle, S.; Padgett, K.; Van Der Leij, F.; Van Lier, A.; Jürgenliemk-Schulz, I. Online Magnetic Resonance-Guided Radiotherapy (oMRgRT) for Gynecological Cancers. Front. Oncol. 2021, 11, 628131. [Google Scholar] [CrossRef]
- Van De Sande, M.A.E.; Creutzberg, C.L.; Van De Water, S.; Sharfo, A.W.; Hoogeman, M.S. Which Cervical and Endometrial Cancer Patients Will Benefit Most from Intensity-Modulated Proton Therapy? Radiother. Oncol. 2016, 120, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Maity, A.; Vogel, J.; Kirk, M.; Zhai, H.; Both, S.; Lin, L.L. Proton Therapy Reduces Normal Tissue Dose in Extended-Field Pelvic Radiation for Endometrial Cancer. Int. J. Part. Ther. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Berman, A.T.; Both, S.; Sharkoski, T.; Goldrath, K.; Tochner, Z.; Apisarnthanarax, S.; Metz, J.M.; Plastaras, J.P. Proton Reirradiation of Recurrent Rectal Cancer: Dosimetric Comparison, Toxicities, and Preliminary Outcomes. Int. J. Part. Ther. 2014, 1, 2–13. [Google Scholar] [CrossRef]
- Corbeau, A.; Nout, R.A.; Mens, J.W.M.; Horeweg, N.; Godart, J.; Kerkhof, E.M.; Kuipers, S.C.; Van Poelgeest, M.I.E.; Kroep, J.R.; Boere, I.A.; et al. PROTECT: Prospective Phase-II-Trial Evaluating Adaptive Proton Therapy for Cervical Cancer to Reduce the Impact on Morbidity and the Immune System. Cancers 2021, 13, 5179. [Google Scholar] [CrossRef]
- Rose, P.G.; Java, J.; Whitney, C.W.; Stehman, F.B.; Lanciano, R.; Thomas, G.M.; DiSilvestro, P.A. Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy. J. Clin. Oncol. 2015, 33, 2136–2142. [Google Scholar] [CrossRef]
- Bizzarri, N.; Russo, L.; Dolciami, M.; Zormpas-Petridis, K.; Boldrini, L.; Querleu, D.; Ferrandina, G.; Pedone Anchora, L.; Gui, B.; Sala, E.; et al. Radiomics Systematic Review in Cervical Cancer: Gynecological Oncologists’ Perspective. Int. J. Gynecol. Cancer 2023, 33, 1522–1541. [Google Scholar] [CrossRef]
- Li, K.; Sun, H.; Lu, Z.; Xin, J.; Zhang, L.; Guo, Y.; Guo, Q. Value of [18F]FDG PET Radiomic Features and VEGF Expression in Predicting Pelvic Lymphatic Metastasis and Their Potential Relationship in Early-Stage Cervical Squamous Cell Carcinoma. Eur. J. Radiol. 2018, 106, 160–166. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Zhang, R.; Dong, R.T.; Hu, Q.Y.; Yu, T.; Liu, F.; Luo, Y.H.; Dong, Y. Feasibility of an ADC-Based Radiomics Model for Predicting Pelvic Lymph Node Metastases in Patients with Stage IB–IIA Cervical Squamous Cell Carcinoma. Br. J. Radiol. 2019, 92, 20180986. [Google Scholar] [CrossRef]
- Gui, B.; Autorino, R.; Miccò, M.; Nardangeli, A.; Pesce, A.; Lenkowicz, J.; Cusumano, D.; Russo, L.; Persiani, S.; Boldrini, L.; et al. Pretreatment MRI Radiomics Based Response Prediction Model in Locally Advanced Cervical Cancer. Diagnostics 2021, 11, 631. [Google Scholar] [CrossRef]
- Zhou, Z.; Maquilan, G.M.; Thomas, K.; Wachsmann, J.; Wang, J.; Folkert, M.R.; Albuquerque, K. Quantitative PET Imaging and Clinical Parameters as Predictive Factors for Patients with Cervical Carcinoma: Implications of a Prediction Model Generated Using Multi-Objective Support Vector Machine Learning. Technol. Cancer Res. Treat. 2020, 19, 1533033820983804. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Jia, H.; Xia, B.; Zang, C.; Liu, Y.; Qian, L.; Dong, J. IVIM-DWI and MRI-Based Radiomics in Cervical Cancer: Prediction of Concurrent Chemoradiotherapy Sensitivity in Combination with Clinical Prognostic Factors. Magn. Reson. Imaging 2022, 91, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Zhang, Q.; Wang, S.; Zhang, J.; An, J.; Xie, L.; Yu, X.; Zhao, X. MRI-Based Radiomics Value for Predicting the Survival of Patients with Locally Advanced Cervical Squamous Cell Cancer Treated with Concurrent Chemoradiotherapy. Cancer Imaging 2022, 22, 35. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, S.; Zhang, S.; Wang, M.; Ding, Y.; Fang, J.; Wu, Q.; Qian, W.; Liu, Z.; Sun, K.; et al. Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients with Cervical Cancer. JAMA Netw. Open 2020, 3, e2011625. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, H.K.; Park, E.Y.; Kim, J.H.; Lee, J.H.; Kim, Y.S.; Kim, H.J.; Kim, H.; Yoo, C.W.; Lee, S.; et al. Randomized Multicenter Phase II Trial of Prophylactic Irradiation of Para-aortic Lymph Nodes in Advanced Cervical Cancer According to Tumor Hypoxia: Korean Radiation Oncology Group (KROG 07-01) Study. Int. J. Cancer 2022, 151, 2182–2194. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.-Y.; Yoon, M.S.; Kim, Y.S.; Lee, J.H.; Kim, H.J.; Kim, H.; Kim, Y.-J.; Yoo, C.W.; Nam, B.-H.; et al. Prophylactic Irradiation of Para-Aortic Lymph Nodes for Patients with Locally Advanced Cervical Cancers with and without High CA9 Expression (KROG 07-01): A Randomized, Open-Label, Multicenter, Phase 2 Trial. Radiother. Oncol. 2016, 120, 383–389. [Google Scholar] [CrossRef]
- Chopra, S.; Bosse, T.; Horeweg, N.; Deodhar, K.; Menon, S.; Rafael, T.; Pai, V.; Rijstenberg, L.; Van Kemenade, F.; Kannan, S.; et al. Biomarker Expression and Clinical Outcomes in International Study of Chemoradiation and Magnetic Resonance Imaging-Based Image-Guided Brachytherapy for Locally Advanced Cervical Cancer: BIOEMBRACE. Int. J. Radiat. Oncol. 2024, 121, 97–106. [Google Scholar] [CrossRef]
- Ma, J.; Ke, L.; Liu, Q. The Pretreatment Platelet-to-Lymphocyte Ratio Predicts Clinical Outcomes in Patients with Cervical Cancer: A Meta-Analysis. Medicine 2018, 97, e12897. [Google Scholar] [CrossRef]
- Kang, S.; Nam, B.-H.; Park, J.-Y.; Seo, S.-S.; Ryu, S.-Y.; Kim, J.W.; Kim, S.-C.; Park, S.-Y.; Nam, J.-H. Risk Assessment Tool for Distant Recurrence After Platinum-Based Concurrent Chemoradiation in Patients with Locally Advanced Cervical Cancer: A Korean Gynecologic Oncology Group Study. J. Clin. Oncol. 2012, 30, 2369–2374. [Google Scholar] [CrossRef]
- Han, K.; Zou, J.; Zhao, Z.; Baskurt, Z.; Zheng, Y.; Barnes, E.; Croke, J.; Ferguson, S.E.; Fyles, A.; Gien, L.; et al. Clinical Validation of Human Papilloma Virus Circulating Tumor DNA for Early Detection of Residual Disease After Chemoradiation in Cervical Cancer. J. Clin. Oncol. 2024, 42, 431–440. [Google Scholar] [CrossRef]
- Sasidharan, A.; Mahantshetty, U.M.; Engineer, R.; Chopra, S.; Gupta, S.; Shrivastava, S.K. Outcome After First Relapse in Patients with Locally Advanced Cervical Cancer Treated with Radical Radio (Chemo) Therapy. Int. J. Radiat. Oncol. 2016, 96, E293. [Google Scholar] [CrossRef]
Study (Design) | N of Patients (% PAO+) | N of Boosted Nodes | Median N of Nodes per Patient (Range) | %PET Staged | RT Technique | Elective PAO Irradiation (Criteria) | Median Boost Dose † | INC | RC/LRC/DFS | Grade 3+ Toxicity | Poor Prognostic Factors on RC |
---|---|---|---|---|---|---|---|---|---|---|---|
Vargo et al. 2014 (Retrospective) [10] | 61 (33% PAO+) | 179 | 2 (1–16) | 100% | IMRT | Yes (Pelvic node +) | 55 Gy EQD2 55.9 Gy | 99% at 29 months | RC at 3 years: 94% DFS at 3 years: 57% | Late overall: 4% | None identified |
Lindegaard et al. 2017 (Retrospective) [16] | 23 (%PAO+ not specified) | 74 | 2 (1–10) | 100% | VMAT | Yes (>2 pelvic node + OR common iliac node +) | Small pelvis: 55 Gy EQD2 55.9 Gy Common iliac/PAO: 57.5 Gy EQD2 58.9 Gy One large node: 60 Gy EQD2 62 Gy | 99% at 3 months | RC at 9 months: 87% | Not examined | Not analyzed |
Dang et al. 2019 (Retrospective) [11] | 74 (46% PAO+) | Not specified | 3 (1–7) | 0% | IMRT | No | 62.5 Gy EQD2 65.1 | 100% at 3 years | Not examined | Acute GI/GU: 8.1%/0% Late GI/GU: 5.5%/0% One G4 rectovaginal fistula | Not analyzed |
Jethwa et al. 2020 (Retrospective) [12] | 59 (44% PAO+) | Not specified | 3 (2–6) | 93% | VMAT | Yes (Common iliac node +) | 56.25 Gy EQD2 57.4 Gy | 95% at 30 months | LRC at 3 years: 89% | Acute GI/GU: 3%/0% Late GI/GU: 6%/ 6% | Not analyzed |
Jayatilakebanda et al. 2021 (Retrospective) [13] | 23 (22% PAO+) | Not specified | 2 (range not specified) | 70% | IMRT /VMAT | Yes (Common iliac node +) | 60 Gy EQD2 62 Gy | Not specified | RC at 3 years: 79% | Overall: 0% | Not analyzed |
Tiwari et al. 2021 (Prospective comparative—boost versus no-boost) [14] | 71 in boost arm (18% PAO+) | Not specified | <3 pelvic nodes (range not specified) | <7% | IMRT /VMAT (40%) 3D-CRT (60%) SIB (40%) SEB (60%) | No | 55–57.5 Gy (SIB) EQD2 55.9–58.9 Gy | Not specified | RC at 3 years: 93% | Acute GI and GU: 7% Late GI and GU: 2.8% | Pelvic nodal volume ≥ 3 cc Nodal diameter ≥ 2 cm Boost dose ≤ 58 Gy |
Lee et al. 2022 (Retrospective) [82] | 115 (%PAO+ not specified) | 411 | 2 (1–15) | 100% | 3D-CRT (66%) IMRT (27%) Combined (7%) SIB (27%) SEB (66%) SIB+SEB (7%) | No | EQD2 53.1 Gy | 94% at 2 years | RC at 44 months: 85.2% | Overall: 12% One grade 4 duodenum ulcer perforation | Neutrophil-to-lymphocyte ratio ≥3.1 Total radiation dose Initial nodal volume ≥5.29 mL |
Cheung et al. 2023 (Retrospective) [8] | 54 (39% PAO+) | 234 | 3 (1–16) | 76% | VMAT | Yes (>2 pelvic node + OR common iliac node +) | Small pelvis: 55 Gy EQD2 55.9 Gy Common iliac/PAO: 57.5 Gy EQD2 58.9 Gy | 99% at 2 years | RC at 2 years: 93% DFS at 2 years: 78% | Acute GI/GU: 2%/0% Late GI/GU: 2%/2% | Adenocarcinoma histology Primary tumor SUVmax (on LRC) |
Setting | Study Status | Trial Identifier | Study Location | Phase | Immunotherapy Class | Experimental Arm | Control Arm | Primary Outcomes/Results (If Available) |
---|---|---|---|---|---|---|---|---|
Conc./Adj. | Completed | CALLA (NCT03830866) [122] | International | III | Anti-PD-L1 | Durvalumab + CCRT | Placebo + CCRT |
|
Conc./Adj. | Active, not recruiting | KEYNOTE-A18 (NCT04221945) [18] | International | III | Anti-PD-1 | Pembrolizumab + CCRT | Placebo + CCRT |
|
Conc./Adj. | Active, not recruiting | AK104-305 (NCT05235516) [124] | China | III | PD-1/CTLA-4 bispecific antibody | Cadonilimab + CCRT | Placebo + CCRT |
|
Conc./Adj. | Active, not recruiting | ATEZOLACC (NCT03612791) [125] | France | II | Anti-PD-L1 | Atezolizumab + CCRT | CCRT |
|
Conc./Adj. | Recruiting | (NCT05084677) [126] | China | II Single-arm | Anti-PD-1 | Toripalimab + CCRT → consolidation chemo and Toripalimab | N/A |
|
Conc./Adj. | Prematurely closed | IMMUNOCERV (NCT04580771) [127] | US | II Single-arm | Immune nanoparticle liposomal HPV-16 E6/E7 multipeptide vaccine | PDS0101 + CCRT | N/A |
|
Conc./Adj. | Completed | NiCOL (NCT03298893) [128] | France | I | Anti-PD-1 | Nivolumab + CCRT | N/A |
|
Neoadj./Adj. | Active, not recruiting | COLIBRI (NCT04256213) [129] | France | II Single-arm | Anti-PD-1 Anti-CTLA4 | Nivolumab + Ipilimumab → CCRT → Nivolumab | N/A |
|
Neoadj./conc. OR conc. | Active, not recruiting | NRG-GY017 (NCT03738228) [130] | US | I | Anti-PD-L1 | Atezolizumab → Atezolizumab + CCRT | Atezolizumab + CCRT |
|
Adj. | Recruiting | eVOLVECervical (NCT06079671) [131] | International | III | PD-1/CTLA-4 bispecific antibody | CCRT → adj. Volrustomig | Placebo |
|
Adj. | Active, not recruiting | ATOMICC (NCT03833479) [132] | Spain and Turkey | II | Anti-PD-1 | CCRT → Dostarlimab | No further treatment |
|
Adj. | Completed | GOG-9929 (NCT01711515) [133] | US | I | Anti-CTLA4 | CCRT → Ipilimumab | N/A |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, E.S.-N.; Wu, P.Y. Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer. Cancers 2025, 17, 202. https://doi.org/10.3390/cancers17020202
Cheung ES-N, Wu PY. Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer. Cancers. 2025; 17(2):202. https://doi.org/10.3390/cancers17020202
Chicago/Turabian StyleCheung, Elki Sze-Nga, and Philip Yuguang Wu. 2025. "Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer" Cancers 17, no. 2: 202. https://doi.org/10.3390/cancers17020202
APA StyleCheung, E. S.-N., & Wu, P. Y. (2025). Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer. Cancers, 17(2), 202. https://doi.org/10.3390/cancers17020202