The HOX Gene Family’s Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors
Simple Summary
Abstract
1. Introduction
2. HOX Gene Family’s Role in Myeloid Leukemia
2.1. Role of HOXA10 in Acute Myeloid Leukemia
2.2. Role of HOXB5 in Acute Myeloid Leukemia
2.3. Role of HOXA5 in Chronic Myeloid Leukemia
3. Multiple Myeloma
3.1. Role of HOXB7 in Multiple Myeloma
3.2. Role of HOXC6 in Multiple Myeloma
4. Thyroid Cancer
4.1. Role of HOXD10 in Papillary Thyroid Cancer
4.2. Role of HOXD9 in Anaplastic Thyroid Cancer
4.3. Role of HOXA9 in Papillary Thyroid Cancer
5. Breast Cancer
Role of HOXC8 in Breast Cancer
6. Ovarian Cancer
6.1. Role of HOXB13 in Ovarian Cancer
6.2. Role of HOXD4 in Ovarian Cancer
7. Gastric Cancer
7.1. Role of HOXA10 in Gastric Cancer
7.2. Role of HOXB9 in Gastric Cancer
7.3. Role of HOXA5 in Gastric Cancer
7.4. Role of HOXC9 in Gastric Cancer
8. Renal Cancer
8.1. Role of HOXD1 in Renal Cancer
8.2. Role of HOXC11 in Kidney Renal Clear Cell Carcinoma
8.3. Role of HOXA13 in Kidney Renal Clear Cell Carcinoma
9. Colon Cancer
9.1. Role of HOXD10 in Colon Cancer
9.2. Role of HOXA5 in Colon Cancer
9.3. Role of HOXD8 in Colon Cancer
10. Melanoma
10.1. Role of HOXC10 in Melanoma
10.2. Role of HOXA1 in Melanoma
10.3. Role of HOXC13 in Melanoma
11. Lung Cancer
11.1. Role of HOXA1 in Lung Cancer
11.2. Role of HOXA13 in Non-Small-Cell Lung Cancer
11.3. Role of HOXB3 in Lung Adenocarcinoma
12. Glioblastoma
12.1. Role of HOXC6 in Glioblastoma
12.2. Role of HOXD10 in Glioblastoma
12.3. Role of HOXA10 in Glioblastoma
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lappin, T.R.; Grier, D.G.; Thompson, A.; Halliday, H.L. HOX genes: Seductive science, mysterious mechanisms. Ulster Med. J. 2006, 75, 23–31, Erratum in: Ulst. Med J. 2006, 75, 135. [Google Scholar] [PubMed] [PubMed Central]
- Lewis, E. A gene complex controlling segmentation in Drosophila. Nature 1978, 276, 565–570. [Google Scholar] [CrossRef]
- Gaunt, S.J. Conservation in the Hox code during morphological evolution. Int. J. Dev. Biol. 1994, 38, 549–552. [Google Scholar] [PubMed]
- Maini, P.K.; Solursh, M. Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 1991, 129, 91–133. [Google Scholar] [CrossRef] [PubMed]
- Di-Poï, N.; Montoya-Burgos, J.; Miller, H.; Pourquie, O.; Milinkovitch, M.C.; Duboule, D. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 2010, 464, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Myers, P. Hox genes in development: The Hox code. Nat. Educ. 2008, 1, 2. [Google Scholar]
- Duboule, D. The vertebrate limb: A model system to study the Hox/HOM gene network during development and evolution. Bioessays 1992, 14, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.C.; Nelson, C.E.; Morgan, B.A.; Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 1995, 121, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Bürglin, T.R.; Affolter, M. Homeodomain proteins: An update. Chromosoma 2016, 125, 497–521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duverger, O.; Morasso, M.I. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J. Cell. Physiol. 2008, 216, 337–346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hubert, K.A.; Wellik, D.M. Hox genes in development and beyond. Development 2023, 150, dev192476. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, T.; Wang, Y.; Xie, M.; Ji, X.; Luo, X.; Huang, W.; Xia, L. Homeobox Genes in Cancers: From Carcinogenesis to Recent Therapeutic Intervention. Front Oncol. 2021, 11, 770428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, N.; Sukumar, S. The Hox genes and their roles in oncogenesis. Nat. Rev. Cancer 2010, 10, 361–371. [Google Scholar] [CrossRef]
- Bhatlekar, S.; Fields, J.Z.; Boman, B.M. Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int. 2018, 2018, 3569493. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, Q.; Wei, G.-H. The Role of HOX Transcription Factors in Cancer Predisposition and Progression. Cancers 2019, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Bhatlekar, S.; Fields, J.Z.; Boman, B.M. HOX genes and their role in the development of human cancers. Stem Cells Int. 2014, 92, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.; Thompson, A.; Kwasniewska, A.; McGonigle, G.; Halliday, H.; Lappin, T. The pathophysiology of HOX genes and their role in cancer. J. Pathol. Soc. Great Br. Irel. 2005, 205, 154–171. [Google Scholar] [CrossRef]
- Cillo, C.; Faiella, A.; Cantile, M.; Boncinelli, E. Homeobox Genes and Cancer. Exp. Cell Res. 1999, 248, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Milnerowicz, S.; Maszewska, J.; Skowera, P.; Stelmach, M.; Lejman, M. AML under the Scope: Current Strategies and Treatment Involving FLT3 Inhibitors and Venetoclax-Based Regimens. Int. J. Mol. Sci. 2023, 24, 15849. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fleischmann, M.; Schnetzke, U.; Hochhaus, A.; Scholl, S. Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers 2021, 13, 5722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, C.; Ju, Q.; Zhang, C.; Gong, M.; Li, Z.-L.; Gao, Y.-Y. Overexpression of HOXA10 is associated with unfavorable prognosis of acute myeloid leukemia. BMC Cancer 2020, 20, 586. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Qu, Y.; Yue, P.; Yan, X. The Prognostic Value and Function of HOXB5 in Acute Myeloid Leukemia. Front. Genet. 2021, 12, 678368. [Google Scholar] [CrossRef] [PubMed]
- Eden, R.E.; Coviello, J.M. Chronic Myelogenous Leukemia; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK531459/ (accessed on 10 October 2024).
- Quintás-Cardama, A.; Cortes, J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. J. Am. Soc. Hematol. 2009, 19, 1619–1630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Osman, A.E.G.; Deininger, M.W. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev. 2021, 49, 100825. [Google Scholar] [CrossRef]
- Yohannan, B.; George, B. B-Lymphoid Blast Phase-Chronic Myeloid Leukemia: Current Therapeutics. Int. J. Mol. Sci. 2022, 23, 11836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lebert-Ghali, C.-E.; Fournier, M.; Kettyle, L.; Thompson, A.; Sauvageau, G.; Bijl, J.J. Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells. Blood 2016, 127, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Thorsteinsdottir, U.; Sauvageau, G.; Hough, M.R.; Dragowska, W.; Lansdorp, P.M.; Lawrence, H.J.; Largman, C.; Humphries, R.K. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell. Biol. 1997, 17, 495–505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alawieh, D.; Cysique-Foinlan, L.; Willekens, C.; Renneville, A. RAS mutations in myeloid malignancies: Revisiting old questions with novel insights and therapeutic perspectives. Blood Cancer J. 2024, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Sujobert, P.; Bardet, V.; Cornillet-Lefebvre, P.; Hayflick, J.S.; Prie, N.; Verdier, F.; Vanhaesebroeck, B.; Muller, O.; Pesce, F.; Ifrah, N.; et al. Essential role for the p110δ isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005, 106, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Simpson, S.E.; Scialla, T.J.; Bagg, A.; Carroll, M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003, 102, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, J.; Elie, C.; Bardet, V.; Chapuis, N.; Park, S.; Broët, P.; Cornillet-Lefebvre, P.; Lioure, B.; Ugo, V.; Blanchet, O.; et al. Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 2007, 110, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhang, P.Y.; Gao, W.; Yu, J.; Robson, S.C. Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Front. Oncol. 2023, 13, 1244280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, H.J.; Gregory, M.A.; Zaberezhnyy, V.; Goodspeed, A.; Jordan, C.T.; Kieft, J.S.; DeGregori, J. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. eLife 2022, 11, e79940. [Google Scholar] [CrossRef] [PubMed]
- de Beauchamp, L.; Himonas, E.; Helgason, G.V. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Ősz, Á.; Budczies, J.; Krizsán, S.; Szombath, G.; Demeter, J.; Bödör, C.; Győrffy, B. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J. Adv. Res. 2019, 20, 105–116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Döhner, H.; Wei, A.H.; Roboz, G.J.; Montesinos, P.; Thol, F.R.; Ravandi, F.; Dombret, H.; Porkka, K.; Sandhu, I.; Skikne, B.; et al. Prognostic impact of NPM1 and FLT3 mutations in patients with AML in first remission treated with oral azacitidine. Blood 2022, 140, 1674–1685. [Google Scholar] [CrossRef] [PubMed]
- Gaidzik, V.; Teleanu, V.; Papaemmanuil, E.; Weber, D.; Paschka, P.; Hahn, J.; Wallrabenstein, T.; Kolbinger, B.; Kohne, C.H.; Horst, H.A.; et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016, 30, 2160–2168. [Google Scholar] [CrossRef]
- Bosman, M.C.J.; Schuringa, J.J.; Vellenga, E. Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit. Rev. Oncol. Hematol. 2016, 98, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kagoya, Y.; Yoshimi, A.; Kataoka, K.; Nakagawa, M.; Kumano, K.; Arai, S.; Kobayashi, H.; Saito, T.; Iwakura, Y.; Kurokawa, M. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J. Clin. Invest. 2014, 124, 528–542. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strathdee, G.; Holyoake, T.L.; Sim, A.; Parker, A.; Oscier, D.G.; Melo, J.V.; Meyer, S.M.; Eden, T.; Dickinson, A.M.; Mountford, J.C.; et al. Inactivation of HOXA Genes by Hypermethylation in Myeloid and Lymphoid Malignancy is Frequent and Associated with Poor Prognosis. Clin. Cancer Res. 2007, 13, 5048–5055. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarasimhan, R.; Liang, G. The Role of DNA Methylation in Cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elias, M.H.; Azlan, H.; Sulong, S.; Baba, A.A.; Ankathil, R. Aberrant DNA methylation at HOXA4 and HOXA5 genes are associated with resistance to imatinib mesylate among chronic myeloid leukemia patients. Cancer Rep. 2018, 1, e1111. [Google Scholar] [CrossRef] [PubMed]
- Boussi, L.S.; Avigan, Z.M.; Rosenblatt, J. Immunotherapy for the treatment of multiple myeloma. Front. Immunol. 2022, 13, 1027385. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Kumar, S. Multiple Myeloma: Diagnosis and Treatment. Mayo Clin. Proc. 2016, 91, 101–119. [Google Scholar] [CrossRef]
- Albagoush, S.A.; Shumway, C.; Azevedo, A.M. Multiple Myeloma; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534764/ (accessed on 3 October 2024).
- Hudlebusch, H.R.; Lodahl, M.; Johnsen, H.E.; Rasmussen, T. Expression of HOXA genes in patients with multiple myeloma. Leuk. Lymphoma 2004, 45, 1215–1217. [Google Scholar] [CrossRef] [PubMed]
- Storti, P.; Donofrio, G.; Colla, S.; Airoldi, I.; Bolzoni, M.; Agnelli, L.; Abeltino, M.; Todoerti, K.; Lazzaretti, M.; Mancini, C.; et al. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia 2011, 25, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Ria, R.; Reale, A.; De Luisi, A.; Ferrucci, A.; Moschetta, M.; Vacca, A. Bone marrow angiogenesis and progression in multiple myeloma. Am. J. Blood Res. 2011, 1, 76–89. [Google Scholar] [PubMed] [PubMed Central]
- Ribatti, D.; Vacca, A. New Insights in Anti-Angiogenesis in Multiple Myeloma. Int. J. Mol. Sci. 2018, 19, 2031. [Google Scholar] [CrossRef] [PubMed Central]
- Ridiandries, A.; Tan, J.T.; Bursill, C.A. The Role of CC-Chemokines in the Regulation of Angiogenesis. Int. J. Mol. Sci. 2016, 17, 1856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Colla, S.; Giuliani, N.; Storti, P.; Lazzaretti, M.; Todoerti, K.; Lisignoli, G.; Agnelli, L.; Manferdini, C.; Bonomini, S.; Galla, L.; et al. HOXB7 Overexpression in Mesenchymal Cells Stimulates the Production of Pro-Angiogenic Molecules: Potential Role in Multiple Myeloma Associated Angiogenesis. Blood 2008, 112, 2743. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Hou, X.; Gou, L.; Li, Y.; Ma, Y.; Ma, Y. High expression of HOXC6 predicts a poor prognosis and induces proliferation and inflammation in multiple myeloma cells. Genes Genom. 2023, 45, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, Z.; Cheng, H.; Mao, X.; Sui, W.; Deng, S.; Wei, X.; Lv, J.; Du, C.; Xu, J.; et al. Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci. Rep. 2020, 10, 20508. [Google Scholar] [CrossRef]
- Jourdan, M.; Tarte, K.; Legouffe, E.; Brochier, J.; Rossi, J.F.; Klein, B. Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur. Cytokine Netw. 1999, 10, 65–70. [Google Scholar] [PubMed] [PubMed Central]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid Cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Schneider, D.F.; Chen, H. New developments in the diagnosis and treatment of thyroid cancer. CA Cancer J. Clin. 2013, 63, 373–394. [Google Scholar] [CrossRef]
- Xing, M. BRAF mutation in thyroid cancer. Endocr.Relat. Cancer 2005, 12, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.M.; Wen, D.; Qu, N.; Zhu, Y.X. Prognostic and clinical significance of HOXC9 and HOXD10 in papillary thyroid cancer. Transl. Cancer Res. 2021, 10, 3317–3325. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Limaiem, F.; Rehman, A.; Mazzoni, T. Papillary Thyroid Carcinoma; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536943/ (accessed on 1 October 2024).
- Maksimovic, S.; Jakovljevic, B.; Gojkovic, Z. Lymph Node Metastases Papillary Thyroid Carcinoma and their Importance in Recurrence of Disease. Med Arch. 2018, 72, 108–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, Y.; Peng, Y.; Gao, D.; Zhang, M.; Yang, W.; Linghu, E.; Herman, J.G.; Fuks, F.; Dong, G.; Guo, M. Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma. Clin. Epigenetics 2017, 9, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mo, R.J.; Lu, J.M.; Wan, Y.P.; Hua, W.; Liang, Y.X.; Zhuo, Y.J.; Kuang, Q.W.; Liu, Y.L.; He, H.C.; Zhong, W.D. Decreased HoxD10 Expression Promotes a Proliferative and Aggressive Phenotype in Prostate Cancer. Curr. Mol. Med. 2017, 17, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Xue, M.; Zhong, J.; Wang, X.; Gan, L.; Lam, E.K.; Liu, X.; Zhang, J.; Zhou, T.; et al. Homeobox D10 gene, a candidate tumor suppressor, is downregulated through promoter hypermethylation and associated with gastric carcinogenesis. Mol. Med. 2012, 18, 389–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhong, Y.; Yu, F.; Yang, L.; Wang, Y.; Liu, L.; Jia, C.; Cai, H.; Yang, J.; Sheng, S.; Lv, Z.; et al. HOXD9/miR-451a/PSMB8 axis is implicated in the regulation of cell proliferation and metastasis via PI3K/AKT signaling pathway in human anaplastic thyroid carcinoma. J. Transl. Med. 2023, 21, 817. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, M.; Huang, H.; Wu, J.; Meng, D. Identification of Hub Genes in Anaplastic Thyroid Carcinoma: Evidence From Bioinformatics Analysis. Technol. Cancer Res. Treat. 2020, 19, 1533033820962135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, D.H.; Wen, D.Y.; Luo, Y.H.; Chen, G.; Yang, H.; Chen, J.Q.; He, Y. The diagnostic and prognostic values of Ki-67/MIB-1 expression in thyroid cancer: A meta-analysis with 6,051 cases. OncoTargets Ther. 2017, 10, 3261–3276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.; Wang, X.; Gong, Y.; Deng, J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int. 2021, 21, 695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, Y.; Kim, H.K.; Lee, J.; Soh, E.Y.; Kim, J.-H.; Song, I.; Chung, Y.-S.; Choi, Y.J. Transcription Factor HOXA9 is Linked to the Calcification and Invasion of Papillary Thyroid Carcinoma. Sci. Rep. 2019, 9, 6773. [Google Scholar] [CrossRef]
- Oh, E.M.; Chung, Y.S.; Song, W.J.; Lee, Y.D. The pattern and significance of the calcifications of papillary thyroid microcarcinoma presented in preoperative neck ultrasonography. Ann. Surg. Treat. Res. 2014, 86, 115–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ha, J.; Lee, J.; Jo, K.; Han, J.S.; Kim, M.H.; Jung, C.K.; Kang, M.I.; Cha, B.Y.; Lim, D.J. Calcification Patterns in Papillary Thyroid Carcinoma are Associated with Changes in Thyroid Hormones and Coronary Artery Calcification. J. Clin. Med. 2018, 7, 183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asghar, M.Y.; Knuutinen, T.; Holm, E.; Nordström, T.; Nguyen, V.D.; Zhou, Y.; Törnquist, K. Suppression of Calcium Entry Modulates the Expression of TRβ1 and Runx2 in Thyroid Cancer Cells, Two Transcription Factors That Regulate Invasion, Proliferation and Thyroid-Specific Protein Levels. Cancers 2022, 14, 5838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, D.-F.; Kondo, T.; Nakazawa, T.; Oishi, N.; Kawasaki, T.; Mochizuki, K.; Yamane, T.; Katoh, R. Transcription factor Runx2 is a regulator of epithelial–mesenchymal transition and invasion in thyroid carcinomas. Lab. Investig. 2012, 92, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.; Alkabban, F.M.; Ferguson, T. Breast Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482286/ (accessed on 5 October 2024).
- Deng, C.X. BRCA1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006, 34, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y. Biology of HER2 and Its Importance in Breast Cancer. Oncology 2001, 61 (Suppl. S2), 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Curigliano, G. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Magalhaes, M.C.; Jelovac, D.; Connolly, R.M.; Wolff, A.C. Treatment of HER2-positive breast cancer. Breast 2014, 23, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Dean-Colomb, W.; Esteva, F.J. Her2-positive breast cancer: Herceptin and beyond. Eur. J. Cancer 2008, 44, 2806–2812. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Cardenas, R.; Wang, B.; Persson, J.; Mongan, N.P.; Grabowska, A.; Allegrucci, C. HOXC8 regulates self-renewal, differentiation and transformation of breast cancer stem cells. Mol. Cancer 2017, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Panigoro, S.S.; Kurnia, D.; Kurnia, A.; Haryono, S.J.; Albar, Z.A. ALDH1 Cancer Stem Cell Marker as a Prognostic Factor in Triple-Negative Breast Cancer. Int. J. Surg. Oncol. 2020, 2020, 7863243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ordaz-Ramos, A.; Tellez-Jimenez, O.; Vazquez-Santillan, K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front. Cell Dev. Biol. 2023, 11, 1221175. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian Cancer. Lancet 2014, 384, 1376–1388. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(13)62146-7/abstract (accessed on 12 October 2024). [CrossRef]
- Zhang, M.; Cheng, S.; Jin, Y.; Zhao, Y.; Wang, Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2021, 1875, 188503. [Google Scholar] [CrossRef] [PubMed]
- Ghose, A.; McCann, L.; Makker, S.; Mukerjee, U.; Gullapalli, S.V.N.; Erekkath, J.; Shih, S.; Mahajan, I.; Sanchez, E.; Uccello, M.; et al. Diagnostic biomarkers in ovarian cancer: Advances beyond CA125 and HE4. Ther. Adv. Med. Oncol. 2024, 16, 17588359241233225. [Google Scholar] [CrossRef]
- Johnson, C.C.; Kessel, B.; Riley, T.L.; Ragard, L.R.; Williams, C.R.; Xu, J.-L.; Buys, S.S. Prostate, lung, colorectal and ovarian cancer project team. The epidemiology of CA-125 in women without evidence of ovarian cancer in the Prostate, Lung, Colorectal and Ovarian Cancer (PLCO) Screening Trial. Gynecol. Oncol. 2008, 110, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Akinwunmi, B.O.; Babic, A.; Vitonis, A.F.; Cramer, D.W.; Titus, L.; Tworoger, S.S.; Terry, K.L. Chronic medical conditions and CA125 levels among women without ovarian cancer. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Liu, J.; Yoshida, H.; Rosen, D.; Naora, H. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat. Med. 2005, 11, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S.; VandenHeuvel, G.B.; Igarashi, P. A conserved Hox axis in the mouse and human female reproductive system: Late establishment and persistent adult expression of the Hoxa cluster genes. Biol. Reprod. 1997, 57, 1338–1345. [Google Scholar] [CrossRef]
- Ota, T.; Gilks, B.; Longacre, T.; Leung, P.C.K.; Auersperg, N. HOXA7 in epithelial ovarian cancer: Interrelationships between differentiation and clinical features. Reprod. Sci. 2007, 14, 605–614. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Li, Y.; Wu, A.; Fan, L.; Huang, W.; Fu, C.; Deng, Z.; Wang, K.; Zhang, Y.; et al. HOXC10 promotes tumour metastasis by regulating the EMT-related gene Slug in ovarian cancer. Aging 2020, 12, 19375–19398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nameki, R.; Chang, H.; Reddy, J.; Corona, R.I.; Lawrenson, K. Transcription factors in epithelial ovarian cancer: Histotype-specific drivers and novel therapeutic targets. Pharmacol. Ther. 2021, 220, 107722. [Google Scholar] [CrossRef] [PubMed]
- Naora, H.; Montz, F.J.; Chai, C.-Y.; Roden, R.B.S. Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc. Natl. Acad. Sci. 2001, 98, 15209–15214. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Kajiyama, H.; Ito, S.; Chen, D.; Shibata, K.; Hamaguchi, M.; Kikkawa, F.; Senga, T. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells. Oncotarget 2015, 6, 13359–13370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gu, A.; Jie, Y.; Yao, Q.; Zhang, Y.; Mingyan, E. Slug Is Associated With Tumor Metastasis and Angiogenesis in Ovarian Cancer. Reprod. Sci. 2017, 24, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Wang, Z.; Provencher, H.; Muir, B.; Dahiya, S.; Carney, E.; Leong, C.O.; Sgroi, D.C.; Orsulic, S. HOXB13 promotes ovarian cancer progression. Proc. Natl. Acad. Sci. USA 2007, 104, 17093–17098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, B.; Guo, X. Prognostic significance of HOXD4 protein expression in human ovarian cancers. Iran J. Basic Med. Sci. 2021, 24, 1561–1567. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukkamalla, S.K.R.; Recio-Boiles, A.; Babiker, H.M. Gastric Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459142/ (accessed on 2 December 2024).
- NIH; National Cancer Institute. Stomach Cancer Survival Rates and Prognosis. 31 May 2023. Available online: https://www.cancer.gov/types/stomach/survival (accessed on 16 October 2024).
- NIH; National Cancer Institute. Stomach Cancer Diagnosis. 31 May 2023. Available online: https://www.cancer.gov/types/stomach/diagnosis (accessed on 16 October 2024).
- Sato, Y.; Okamoto, K.; Kawano, Y.; Kasai, A.; Kawaguchi, T.; Sagawa, T.; Sogabe, M.; Miyamoto, H.; Takayama, T. Novel Biomarkers of Gastric Cancer: Current Research and Future Perspectives. J. Clin. Med. 2023, 12, 4646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sentani, K.; Oue, N.; Naito, Y.; Sakamoto, N.; Anami, K.; Oo, H.Z.; Uraoka, N.; Aoyagi, K.; Sasaki, H.; Yasui, W. Upregulation of HOXA10 in gastric cancer with the intestinal mucin phenotype: Reduction during tumor progression and favorable prognosis. Carcinogenesis 2012, 33, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, H.K.; Kim, H.S.; Yang, H.K.; Kim, Y.I.; Kim, W.H. MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas. Cancer 2001, 92, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Sardar, A.A.; Jalal, J.A.; Ameen, K.S.H. Immunohistochemical Expression of CDX2 in Gastric Carcinoma. Iran J. Pathol. 2022, 17, 143–149. [Google Scholar] [PubMed] [PubMed Central]
- Kato, F.; Wada, N.; Hayashida, T.; Fukuda, K.; Nakamura, R.; Takahashi, T.; Kitagawa, Y. Experimental and clinicopathological analysis of HOXB9 in gastric cancer. Oncol. Lett. 2019, 17, 3097–3102. [Google Scholar] [CrossRef] [PubMed]
- Schimanski, C.; Schlaegel, F.; Jordan, M.; Moehler, M.; Sgourakis, G.; Drescher, D.G.; Galle, P.R.; Lang, H.; Gockel, I. VEGF-D Correlates with Metastatic Disease in Gastric Cancer Patients Undergoing Surgery. World J. Surg. 2011, 35, 1010–1016. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, T.; Tang, Q.; Xiao, J. HOXA5 inhibits tumor growth of gastric cancer under the regulation of microRNA-196a. Gene 2019, 681, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Khalilian, S.; Imani, S.Z.H.; Abedinlou, H.; Omrani, M.A.; Ghafouri-Fard, S. miR-196a in the carcinogenesis and other disorders with an especial focus on its biomarker capacity. Pathol. Res. Pract. 2024, 260, 155433. [Google Scholar] [CrossRef]
- Zhao, X.F.; Yang, Y.S.; Park, Y.K. HOXC9 overexpression is associated with gastric cancer progression and a prognostic marker for poor survival in gastric cancer patients. Int. J. Clin. Oncol. 2020, 25, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, T.; Yu, Y.; Yan, Y.; Wu, C. Upregulation of HOXC9 generates interferon-gamma resistance in gastric cancer by inhibiting the DAPK1/RIG1/STAT1 axis. Cancer Sci. 2021, 112, 3455–3468. [Google Scholar] [CrossRef] [PubMed]
- Schiavoni, V.; Campagna, R.; Pozzi, V.; Cecati, M.; Milanese, G.; Sartini, D.; Salvolini, E.; Galosi, A.B.; Emanuelli, M. Recent Advances in the Management of Clear Cell Renal Cell Carcinoma: Novel Biomarkers and Targeted Therapies. Cancers 2023, 15, 3207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muglia, V.F.; Prando, A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015, 48, 166–174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, S.; Kanwar, S.S. Biomarkers in renal cell carcinoma and their targeted therapies: A review. Explor. Target. Anti-Tumor Ther. 2023, 4, 941–961. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandey, J.; Syed, W. Renal Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558975/ (accessed on 3 October 2024).
- Cui, Y.; Zhang, C.; Li, Y.; Ma, S.; Cao, W.; Guan, F. HOXD1 functions as a novel tumor suppressor in kidney renal clear cell carcinoma. Cell Biol. Int. 2021, 45, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Tretbar, S.; Krausbeck, P.; Müller, A.; Friedrich, M.; Vaxevanis, C.; Bukur, J.; Jasinski-Bergner, S.; Seliger, B. TGF-β inducible epithelial-to-mesenchymal transition in renal cell carcinoma. Oncotarget 2019, 10, 1507–1524. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Sun, H.; Wang, W.; Cao, L. A pan-cancer analysis of the role of HOXD1, HOXD3, and HOXD4 and validation in renal cell carcinoma. Aging 2023, 15, 10746–10766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, Y.; Zhang, C.; Wang, Y.; Ma, S.; Cao, W.; Guan, F. HOXC11 functions as a novel oncogene in human colon adenocarcinoma and kidney renal clear cell carcinoma. Life Sci. 2020, 243, 117230. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; Seligson, D.B.; Klatte, T.; Yu, H.; Leppert, J.T.; Moore, L.; O’Toole, T.; Gibbons, J.; Belldegrun, A.S.; Figlin, R.A. Prognostic relevance of the mTOR pathway in renal cell carcinoma. Cancer 2007, 109, 2257–2267. [Google Scholar] [CrossRef]
- Heravi, G.; Yazdanpanah, O.; Podgorski, I.; Matherly, L.H.; Liu, W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev. 2022, 41, 17–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, F.G.; Zhang, Z.W.; Xin, D.Q.; Shi, C.J.; Wu, J.P.; Guo, Y.L.; Guan, Y.F. Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol. Sin. 2005, 26, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Zhu, Y.; Yuan, H.-X.; Zhang, J.-P.; Gua, J.-M.; Lin, Z.-M. Overexpression of HOXC11 homeobox gene in clear cell renal cell carcinoma induces cellular proliferation and is associated with poor prognosis. Tumor Biol. 2015, 36, 2821–2829. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, L.; Ma, X.; Li, H.; Gu, L.; Gao, Y.; Fan, Y.; Zhang, Y.; Zhang, X. Prognostic and clinicopathological role of high Ki-67 expression in patients with renal cell carcinoma: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 44281. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, Y.; Yan, M.; Zhang, C.; Xue, J.; Zhang, Q.; Ma, S.; Guan, F.; Cao, W. Comprehensive analysis of the HOXA gene family identifies HOXA13 as a novel oncogenic gene in kidney renal clear cell carcinoma. J. Cancer Res. Clin. Oncol. 2020, 146, 1993–2006. [Google Scholar] [CrossRef] [PubMed]
- Kovacova, J.; Juracek, J.; Poprach, A.; Buchler, T.; Fiala, O.; Radova, L.; Svoboda, M.; Kopkova, A.; Vecera, M.; Slaby, O. Abstract 1800: miR-376b and miR-4668 predict therapeutic response to sunitinib in metastatic renal cell carcinoma. Cancer Res. 2019, 79 (Suppl. S13), 1800. [Google Scholar] [CrossRef]
- Liu, G.; Kang, X.; Guo, P.; Shang, Y.; Du, R.; Wang, X.; Chen, L.; Yue, R.; Kong, F. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin 1. Ren. Fail. 2020, 42, 333–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Z.; Lu, Z.; Li, L.; Ma, M.; Long, F.; Wu, R.; Huang, L.; Chou, J.; Yang, K.; Zhang, Y.; et al. Identification and Validation of Ferroptosis-Related LncRNA Signatures as a Novel Prognostic Model for Colon Cancer. Front. Immunol. 2022, 12, 783362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alves Martins, B.A.; de Bulhões, G.F.; Cavalcanti, I.N.; Martins, M.M.; de Oliveira, P.G.; Martins, A.M.A. Biomarkers in Colorectal Cancer: The Role of Translational Proteomics Research. Front. Oncol. 2019, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Arvelo, F.; Sojo, F.; Cotte, C. Biology of colorectal cancer. Ecancermedicalscience 2015, 9, 520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolf, A.M.D.; Fontham, E.T.H.; Church, T.R.; Flowers, C.R.; Guerra, C.E.; LaMonte, S.J.; Etzioni, R.; McKenna, M.T.; Oeffinger, K.C.; Shih, Y.C.T.; et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA A Cancer J. Clin. 2018, 68, 250–281. [Google Scholar] [CrossRef]
- Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases 2018, 6, 869–881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, Y.H.; Wang, H.Y.; Lai, Y.; Zhong, W.; Liang, W.; Yan, F.; Yu, Z.; Chen, J.; Lin, Y. Epigenetic inactivation of HOXD10 is associated with human colon cancer via inhibiting the RHOC/AKT/MAPK signaling pathway. Cell Commun. Signal 2019, 17, 9. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, J.; Song, P. Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells. Oncol. Lett. 2019, 17, 2266–2270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, S.M.; Gulhati, P.; Rampy, B.A.; Han, Y.; Rychahou, P.G.; Doan, H.Q.; Weiss, H.L.; Evers, B.M. Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer. J. Am. Coll. Surg. 2010, 210, 767–778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maharati, A.; Moghbeli, M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun. Signal. 2023, 21, 201. [Google Scholar] [CrossRef]
- Ha, Y.J.; Tak, K.H.; Kim, S.-K.; Kim, C.W.; Lee, J.L.; Roh, S.A.; Cho, D.-H.; Kim, S.-Y.; Kim, Y.S.; Kim, J.C. Biological Characteristics and Clinical Significance of ITGB1 and RHOC in Patients With Recurrent Colorectal Cancer. Anticancer. Res. 2019, 39, 4853–4864. [Google Scholar] [CrossRef]
- Ordóñez-Morán, P.; Dafflon, C.; Imajo, M.; Nishida, E.; Huelsken, J. HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer. Cancer Cell 2015, 28, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Imkeller, K.; Ambrosi, G.; Klemm, N.; Cabezudo, A.C.; Henkel, L.; Huber, W.; Boutros, M. Metabolic balance in colorectal cancer is maintained by optimal Wnt signaling levels. Mol. Syst. Biol. 2022, 18, e10874. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, M.; Deng, K. Blocking the Wnt/β-catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int. J. Oncol. 2023, 62, 24. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Bultinck, J.; Myant, K.; Jaenicke, L.A.; Walz, S.; Müller, J.; Gmachl, M.; Treu, M.; Boehmelt, G.; Ade, C.P.; et al. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol. Med. 2014, 6, 1525–1541. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saeed, H.; Leibowitz, B.J.; Zhang, L.; Yu, J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist. Updates 2023, 69, 100963. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, H.; Li, H.; Dou, W.; Wang, J.; Zhang, J.; Liu, T.; Wu, Y.; Liu, Y.; Wang, X. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res. Ther. 2022, 13, 244. [Google Scholar] [CrossRef]
- Mansour, M.A.; Senga, T. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. Int. J. Biochem. Cell Biol. 2017, 88, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Jiang, L.; Sun, Y.; Li, H. Effect of E-cadherin on Prognosis of Colorectal Cancer: A Meta-Analysis Update. Mol. Diagn. Ther. 2022, 26, 397–409. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA A Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Jazirehi, A.R. Molecular Analysis of Elements of Melanoma Insensitivity to TCR-Engineered Adoptive Cell Therapy. Int. J. Mol. Sci. 2021, 22, 11726. [Google Scholar] [CrossRef]
- Thornton, J.; Chabra, G.; Singh, C.K.; Guzmán-Pérez, G.; Shirley, C.A.; Ahmad, N. Mechanisms of Immunotherapy Resistance in Cutaneous Melanoma: Recognizing a Shapeshifter. Front. Oncol. 2022, 12, 880876. [Google Scholar] [CrossRef] [PubMed]
- Eddy, K.; Chen, S. Overcoming Immune Evasion in Melanoma. Int. J. Mol. Sci. 2020, 21, 8984. [Google Scholar] [CrossRef]
- Takahashi, J.; Nagasawa, S. Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int. J. Mol. Sci. 2020, 21, 9324. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhang, W.; Liu, S.; Leng, X.; Hu, C.; Sun, H. HOXC10 promotes growth and migration of melanoma by regulating Slug to activate the YAP/TAZ signaling pathway. Discov. Onc. 2021, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Satyamoorthy, K.; Herlyn, M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001, 61, 3819–3825. [Google Scholar] [PubMed]
- Arumi-Planas, M.; Rodriguez-Baena, F.J.; Cabello-Torres, F.; Gracia, F.; Lopez-Blau, C.; Nieto, M.A.; Sanches-Laorden, B. Microenvironmental Snail1-induced immunosuppression promotes melanoma growth. Oncogene 2023, 42, 2659–2672. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhou, L.; Andl, T.; Zhang, Y. YAP1 controls the N-cadherin-mediated tumor-stroma interaction in melanoma progression. Oncogene 2024, 43, 884–898. [Google Scholar] [CrossRef]
- Wardwell-Ozgo, J.; Dogruluk, T.; Gifford, A.; Zhang, Y.; Heffernan, T.P.; van Doorn, R.; Creighton, C.J.; Chin, L.; Scott, K.L. HOXA1 drives melanoma tumor growth and metastasis and elicits an invasion gene expression signature that prognosticates clinical outcome. Oncogene 2014, 33, 1017–1026. [Google Scholar] [CrossRef]
- Kodama, S.; Podyma-Inoue, K.A.; Uchihashi, T.; Kurioka, K.; Takahashi, H.; Sugauchi, A.; Takahashi, K.; Inubushi, T.; Kogo, M.; Tanaka, S.; et al. Progression of melanoma is suppressed by targeting all transforming growth factor-β isoforms with an Fc chimeric receptor. Oncol. Rep. 2021, 46, 197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gelmi, M.C.; Houtzagers, L.E.; Strub, T.; Krossa, I.; Jager, M.J. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int. J. Mol. Sci. 2022, 23, 6001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantile, M.; Scognamiglio, G.; Anniciello, A.; Farina, M.; Gentilcore, G.; Santonastaso, C.; Fulciniti, F.; Cillo, C.; Franco, R.; Asxierto, P.A.; et al. Increased HOX C13 expression in metastatic melanoma progression. J. Transl. Med. 2012, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Weiner, A.B.; Faisal, F.A.; Davicioni, E.; Karnes, R.J.; Griend, D.J.V.; Lotan, T.L.; Schaeffer, E.M. Somatic HOXB13 Expression Correlates with Metastatic Progression in Men with Localized Prostate Cancer Following Radical Prostatectomy. Eur. Urol. Oncol. 2021, 4, 955–962.PMID. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, X.; Fong, K.W.; Gritsina, G.; Wang, F.; Baca, S.C.; Brea, L.T.; Berchuck, J.E.; Spisak, S.; Ross, J.; Morrissey, C.; et al. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat. Genet. 2022, 54, 670–683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, S.B.; Alsubait, S. In Non–Small Cell Lung Cancer; StatPearls Publishing; Treasure Island, FL, USA. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562307/ (accessed on 14 October 2024).
- Garinet, S.; Wang, P.; Mansuet-Lupo, A.; Fournel, L.; Wislez, M.; Blons, H. Updated Prognostic Factors in Localized NSCLC. Cancers 2022, 14, 1400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.W.; Dhahbi, J. Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods. Sci. Rep. 2021, 11, 13323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paesmans, M. Prognostic and predictive factors for lung cancer. Breathe 2012, 9, 112–121. [Google Scholar] [CrossRef]
- Uramoto, H.; Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polanco, D.; Pinilla, L.; Gracia-Lavedan, E.; Mas, A.; Bertran, S.; Fierro, G.; Seminario, A.; Gómez, S.; Barbé, F. Prognostic value of symptoms at lung cancer diagnosis: A three-year observational study. J. Thorac. Dis. 2021, 13, 1485–1494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Li, X.; He, R.; Wang, X.; Zhang, T.; Qin, Y.; Zhang, R.; Deng, Y.; Wang, H.; Luo, D.; et al. Upregulation of HOXA1 promotes tumorigenesis and development of non-small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis. Int. J. Oncol. 2018, 53, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.M.; Gatto, A.; Hanson, K.J.; Zhao, R.L.; Raj, N.; Ozawa, M.G.; Seoane, J.A.; Bieging-Rolett, K.T.; Wang, M.; Li, I.; et al. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature 2023, 619, 851–859. [Google Scholar] [CrossRef]
- Xiao, F.; Bai, Y.; Chen, Z.; Li, Y.; Luo, L.; Huang, J.; Yang, J.; Liao, H.; Guo, L. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur. J. Cancer 2014, 50, 1541–1554. [Google Scholar] [CrossRef]
- Han, W.; Ren, X.; Yang, Y.; Li, H.; Zhao, L.; Lin, Z. microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac. Cancer 2020, 11, 1679–1688. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; He, B.; Dong, Y.; He, G.-J.; Qi, X.-W.; Li, Y.; Yang, Y.-F.; Rao, Y.; Cen, Z.-S.; Han, F.; et al. Homeobox-A13 Acts as a Functional Prognostic and Diagnostic Biomarker via Regulating P53 and Wnt Signaling Pathways in Lung Cancer. Cancer Biomark. 2021, 31, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Steels, E.; Paesmans, M.; Berghmans, T.; Branle, F.; Lemaitre, F.; Mascaux, C.; Meert, A.P.; Vallot, F.; Lafitte, J.J.; Sculier, J.P. Role of p53 as prognostic factor for survival in lung cancer: A systematic review of the literature with a meta-analysis. Eur. Resoiratory J. 2001, 18, 705–719. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Somasundaram, A.; Ding, F.; Gaither-Davis, A.; Pennathur, A.; LaFramboise, W.A.; Dacic, S.; Kurlan, B.F.; Stabile, L.P.; Burns, T.F. Alterations in the Β-catenin pathway in non-small cell lung cancer to define a distinct molecular subtype with prognostic and therapeutic implications. J. Clin. Oncol. 2017, 35, 11584. [Google Scholar] [CrossRef]
- Liu, D.; Nakano, J.; Ishikawa, S.; Yokomise, H.; Ueno, M.; Kadota, K.; Urushihara, M.; Huang, C.L. Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer 2007, 58, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Yin, X.; Zhang, L.; Cui, Y.; Ma, X. High expression of HOXB3 predicts poor prognosis and correlates with tumor immunity in lung adenocarcinoma. Mol. Biol. Rep. 2022, 49, 2607–2618. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Lin, H.; Han, C.; Feng, Z.; Wang, Y.; Lin, J.; Qiu, B.; Yan, L.; Li, B.; Xu, Z.; et al. Computerized tumor-infiltrating lymphocytes density score predicts survival of patients with resectable lung adenocarcinoma. iScience 2022, 25, 105605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verdugo, E.; Puerto, I.; Medina, M.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun. 2022, 42, 1083–1111. [Google Scholar] [CrossRef]
- Shan, F.Y.; Zhao, D.; Tirado, C.A.; Fonkem, E.; Zhang, Y.; Feng, D.; Huang, J.H. Glioblastomas: Molecular Diagnosis and Pathology; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Schaff, L.R.; Mellinghoff, I.K. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA 2023, 329, 574–587. [Google Scholar] [CrossRef]
- Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Gu, L.; Li, Y.; Zheng, Z.; Chen, W.; Wang, Y.; Wang, Y.; Xing, H.; Shi, Y.; Liu, D.; et al. Histological and molecular glioblastoma, IDH-wildtype: A real-world landscape using the 2021 WHO classification of central nervous system tumors. Front Oncol. 2023, 13, 1200815. [Google Scholar] [CrossRef]
- Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [Google Scholar] [CrossRef] [PubMed]
- Seker-Polat, F.; Pinarbasi Degirmenci, N.; Solaroglu, I.; Bagci-Onder, T. Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers 2022, 14, 443. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, F.; Ali, H.; Lathia, J.D.; Chen, P. Immunotherapy for glioblastoma: Current state, challenges, and future perspectives. Cell. Mol. Immunol. 2024, 21, 1354–1375. [Google Scholar] [CrossRef] [PubMed]
- Eryi, S.; Zheng, L.; Honghua, C.; Su, Z.; Han, X.; Donggang, P.; Zhou, Z.; Liping, Z.; Bo, C. HOXC6 Regulates the Epithelial-Mesenchymal Transition through the TGF-β/Smad Signaling Pathway and Predicts a Poor Prognosis in Glioblastoma. J. Oncol. 2022, 8016102. [Google Scholar] [CrossRef]
- Yang, P.; Kang, W.; Pan, Y.; Zhao, X.; Duan, L. Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma. Cancer Manag. Res. 2019, 11, 8167–8179. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.F.; Wu, M.J.; Xiao, B.; Hu, Q.; Fan, Y.H.; Zhu, X.G. Knockdown of HOXC6 inhibits glioma cell proliferation and induces cell cycle arrest by targeting WIF-1 in vitro and vivo. Pathol. Res. Pract. 2018, 214, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, K.; Xie, Q.; Zhang, X.; Zhang, X.; Chen, K.; Qian, R. Identification of HOXD10 as a Marker of Poor Prognosis in Glioblastoma Multiforme. OncoTargets Ther. 2021, 14, 5183–5195. [Google Scholar] [CrossRef] [PubMed]
- Yachi, K.; Tsuda, M.; Kohsaka, S.; Wang, L.; Oda, Y.; Tanikawa, S.; Ohba, Y.; Tanaka, S. miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Sig. Transduct Target Ther. 2018, 3, 33. [Google Scholar] [CrossRef]
- Sun, L.; Yan, W.; Wang, Y.; Sun, G.; Luo, H.; Zhang, J.; Wang, X.; You, Y.; Yang, Z.; Liu, N. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res. 2011, 1389, 9–18. [Google Scholar] [CrossRef]
- He, Z.-C.; Liu, Q.; Yang, K.-D.; Chen, C.; Zhang, X.-N.; Wang, W.-Y.; Zeng, H.; Wang, B.; Liu, Y.-Q.; Luo, M.; et al. HOXA5 is amplified in glioblastoma stem cells and promotes tumor progression by transcriptionally activating PTPRZ1. Cancer Letter. 2022, 553, 215605. [Google Scholar] [CrossRef]
- Rodriguez, S.M.B.; Staicu, G.A.; Sevastre, A.S.; Baloi, C.; Ciubotaru, V.; Dricu, A.; Tataranu, L.G. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int. J. Mol. Sci. 2022, 23, 4602. [Google Scholar] [CrossRef]
- Xie, X.P.; Laks, D.R.; Sun, D.; Ganbold, M.; Wang, Z.; Pedraza, A.M.; Bale, T.; Tabar, V.; Brennan, C.; Zhou, X.; et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev. Cell. 2022, 57, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bertoni, H.; Johnson, A.; Rui, Y.; Lal, B.; Sall, S.; Malloy, M.; Coulter, J.B.; Lugo-Fagundo, M.; Shudir, S.; Khela, H.; et al. Sox2 induces glioblastoma cell stemness and tumor propagation by repressing TET2 and deregulating 5hmC and 5mC DNA modifications. Signal Transduct. Target. Ther. 2022, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Shadbad, M.A.; Orang, F.N.; Baradaran, B. CD133 significance in glioblastoma development: In silico and in vitro study. Eur. J. Med. Res. 2024, 29, 154. [Google Scholar] [CrossRef]
- Ge, W.; Kan, R.L.; Yilgor, C.; Fazzari, E.; Nano, P.R.; Azizad, D.J.; Li, M.; Ito, J.Y.; Tse, C.; Tum, H.A.; et al. Human Organoid Tumor Transplantation Identifies Functional Glioblastoma-Microenvironmental Communication Mediated by PTPRZ1. bioRxiv 2024. [Google Scholar] [CrossRef]
- An, L.; Yang, Y.; Liu, Q.; Dou, F.; Wang, L.; Cheng, Y.; Wang, C.; Ruan, Q.; Zhou, L.; Gua, H.; et al. Mechanism of glioma stem cells with high expression of PTPRZ1 inducing TAMs polarization to M2 immunosuppressive phenotype. J. Army Med. Univ. 2024, 46, 796–803. [Google Scholar] [CrossRef]
- Morgan, R.; El-Tanani, M.; Hunter, K.D.; Harrington, K.J.; Pandha, H.S. Targeting HOX/PBX dimers in cancer. Oncotarget 2017, 8, 32322–32331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morgan, R.; Pirard, P.M.; Shears, L.; Sohal, J.; Pettengell, R.; Pandha, H.S. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 2007, 67, 5806–5813. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.Y.; Zhou, T.; Du, Y.B.; Shi, Q.; Chen, K.N. Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma. Cancer Sci. 2019, 110, 1735–1745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arunachalam, E.; Rogers, W.; Simpson, G.R.; Moller-Levet, C.; Bolton, G.; Ismael, M.; Smith, C.; Keegen, K.; Bagwan, I.; Brend, T.; et al. HOX and PBX gene dysregulation as a therapeutic target in glioblastoma multiforme. BMC Cancer 2022, 22, 400. [Google Scholar] [CrossRef]
- Morgan, R.; Boxall, A.; Harrington, K.J.; Simpson, G.R.; Michael, A.; Pandha, H.S. Targeting HOX transcription factors in prostate cancer. BMC Urol. 2014, 14, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Platais, C.; Radhakrishnan, R.; Niklander Ebensperger, S.; Morgan, R.; Lambert, D.W.; Hunter, K.D. Targeting HOX-PBX interactions causes death in oral potentially malignant and squamous carcinoma cells but not normal oral keratinocytes. BMC Cancer 2018, 18, 723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morgan, R.; Simpson, G.; Gray, S.; Gillett, C.; Tabi, Z.; Spicer, J.; Harrington, K.J.; Pandha, H.S. HOX transcription factors are potential targets and markers in malignant mesothelioma. BMC Cancer 2016, 16, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morgan, R.; Boxall, A.; Harrington, K.J.; Simpson, G.R.; Gillett, C.; Michael, A.; Pandha, H.S. Targeting the HOX/PBX dimer in breast cancer. Breast Cancer Res Treat. 2012, 136, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.; Plowright, L.; Harrington, K.J.; Michael, A.; Pandha, H.S. Targeting HOX and PBX transcription factors in ovarian cancer. BMC Cancer 2010, 10, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marshall, H.; Morrison, A.; Studer, M.; Pöpperl, H.; Krumlauf, R. Retinoids and Hox genes. FASEB J. 1996, 10, 969–978. Available online: https://pubmed.ncbi.nlm.nih.gov/8801179 (accessed on 14 October 2024). [CrossRef] [PubMed]
- Szatmari, I.; Iacovino, M.; Kyba, M. The retinoid signaling pathway inhibits hematopoiesis and uncouples from the Hox genes during hematopoietic development. Stem Cells 2010, 28, 1518–1529. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhang, T.; Guo, Q.L.; Liu, C.Y.; Bai, Y.Q. Effect of ATRA on the expression of HOXA5 gene in K562 cells and its relationship with cell cycle and apoptosis. Mol. Med. Rep. 2016, 13, 4221–4228. [Google Scholar] [CrossRef]
- Kopec, K.; Jarboe, T.; DeSouza, N.R.; Islam, H.K.; Geliebter, J.; Tiwari, R.K. Differentiation driver gene HOXD4 as a potential prognostic indicator and therapeutic target in anaplastic thyroid cancer. Cancer Res. 2024, 84, 4633. [Google Scholar] [CrossRef]
- Steens, J.; Klein, D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front. Cell Dev. Biol. 2022, 10, 1002909. [Google Scholar] [CrossRef]
- Osmond, B.T.; Facey, C.O.; Opdenaker, L.O.; Zhang, C.; Boman, B.M. Role of HOX gene expression in differentiation of colon cancer stem cells. Cancer Res. 2024, 84, 5599. [Google Scholar] [CrossRef]
Gene Name | Cancer Type | Sample Type | Dysregulation Pattern | Clinical Relevance |
---|---|---|---|---|
HOXA1 | Melanoma | Tissue | Overexpression | Prognostic indicator |
Lung cancer | Diagnostic marker/therapeutic biomarker | |||
HOXA5 | Chronic myeloid leukemia | Bone marrow | Hypermethylation | Prognostic indicator |
Gastric cancer | Tissue | Decreased expression | ||
Colon cancer | ||||
Glioblastoma | Overexpression | |||
HOXA9 | Papillary thyroid cancer | Tissue | Decreased Expression | Prognostic indicator |
HOXA10 | Acute myeloid leukemia | Bone marrow | Overexpression | Prognostic indicator/therapeutic biomarker |
Gastric cancer | Tissue | Prognostic indicator | ||
HOXA13 | Kidney renal clear cell carcinoma | Tissue | Overexpression | Prognostic indicator |
Non-small-cell lung cancer | ||||
HOXB3 | Lung adenocarcinoma | Tissue | Overexpression | Prognostic indicator |
HOXB5 | Acute myeloid leukemia | Bone marrow | Overexpression | Prognostic indicator |
HOXB7 | Multiple myeloma | Tissue | Overexpression | Prognostic indicator/therapeutic biomarker |
HOXB9 | Gastric cancer | Tissue | Overexpression | Prognostic indicator/therapeutic biomarker |
HOXB13 | Ovarian cancer | Tissue | Overexpression | Diagnostic marker/prognostic indicator |
HOXC6 | Multiple myeloma | Peripheral blood | Overexpression | Prognostic indicator/therapeutic biomarker |
Glioblastoma | Tissue | Decreased expression | Prognostic indicator | |
HOXC8 | Breast cancer | Tissue | Decreased expression/methylation | Diagnostic marker |
HOXC9 | Gastric cancer | Tissue | Overexpression | Prognostic indicator |
HOXC10 | Melanoma | Tissue | Overexpression | Diagnostic marker |
HOXC11 | Kidney renal clear cell carcinoma | Tissue | Overexpression | Prognostic indicator |
HOXC13 | Melanoma | Tissue | Overexpression | Biomarker/prognostic indicator |
HOXD1 | Renal cancer | Tissue | Overexpression | Prognostic indicator/therapeutic biomarker |
HOXD4 | Ovarian cancer | Tissue | Overexpression | Prognostic indicator |
HOXD9 | Anaplastic thyroid cancer | Tissue | Overexpression | Diagnostic marker/prognostic indicator |
HOXD10 | Papillary thyroid cancer | Tissue | Decreased expression | Prognostic indicator |
Melanoma | Overexpression | Diagnostic marker | ||
Glioblastoma | Overexpression | Prognostic indicator/therapeutic and diagnostic marker |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopec, K.; Quaranto, D.; DeSouza, N.R.; Jarboe, T.; Islam, H.K.; Moscatello, A.; Li, X.-M.; Geliebter, J.; Tiwari, R.K. The HOX Gene Family’s Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers 2025, 17, 262. https://doi.org/10.3390/cancers17020262
Kopec K, Quaranto D, DeSouza NR, Jarboe T, Islam HK, Moscatello A, Li X-M, Geliebter J, Tiwari RK. The HOX Gene Family’s Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers. 2025; 17(2):262. https://doi.org/10.3390/cancers17020262
Chicago/Turabian StyleKopec, Kaci, Danielle Quaranto, Nicole R. DeSouza, Tara Jarboe, Humayun K. Islam, Augustine Moscatello, Xiu-Min Li, Jan Geliebter, and Raj K. Tiwari. 2025. "The HOX Gene Family’s Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors" Cancers 17, no. 2: 262. https://doi.org/10.3390/cancers17020262
APA StyleKopec, K., Quaranto, D., DeSouza, N. R., Jarboe, T., Islam, H. K., Moscatello, A., Li, X.-M., Geliebter, J., & Tiwari, R. K. (2025). The HOX Gene Family’s Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers, 17(2), 262. https://doi.org/10.3390/cancers17020262