Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial–Mesenchymal Transition Markers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Isolated Tumor-Derived Cancer Cells (iCCs)
2.3. Induction of Epithelial–Mesenchymal Transition
2.4. Western Blotting
2.5. APC Gene Sequence
2.6. CTC Detection
2.7. Characterization of the iCCs and CTCs
2.8. Pathological Information of CRC Patients
3. Results
3.1. Study Concept
3.2. Construction of a Panel for the Detection of APC Mutation, CK, and Vim
3.3. Evaluation of the Analytical Performance of the Constructed Method Using iCCs
3.4. Validity Evaluation of CK and Vim as CTC Markers
3.5. Detection of CTCs Using CK and Vim in CRC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Racila, E.; Euhus, D.; Weiss, A.J.; Rao, C.; Mcconnell, J.; Terstappen, L.W.M.M.; Uhr, J.W. Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. USA 1998, 95, 4589–4594. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.A.; Cooper, B.W.; Lazarus, H.M.; Mackay, W.; Moss, T.J.; Ciobanu, N.; Tallman, M.S.; Kennedy, M.J.; Davidson, N.E.; Sweet, D. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 1993, 82, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Ghossein, R.A.; Bhattacharya, S.; Rosai, J. Molecular detection of micrometastases and circulating tumor cells in solid tumors. Clin. Cancer Res. 1999, 5, 1950–1960. [Google Scholar] [PubMed]
- Allard, W.J.; Matera, J.; Miller, M.C.; Repollet, M.; Connelly, M.C.; Rao, C.; Tibbe, A.G.J.; Uhr, J.W.; Terstappen, L.W.M.M. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 2004, 10, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Luis, R.F.; Luis, S.J.M.; Isabel, G.R.; Jesüs, M.S.; Carlos, O.G. Prognostic significance of circulating tumor cell count in patients with metastatic hormone-sensitive prostate cancer. Urology 2012, 80, 1328–1332. [Google Scholar] [CrossRef]
- Bas, F.; Marco, R.G.; Walter, J.B.M.; Istvan, V.; Job, V.D.P.; Arjan, G.J.T.; Leon, W.M.M.T. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012, 14, R133. [Google Scholar] [CrossRef]
- Sha-Sha, J.; Bo, D.; Yong-Geng, F.; Kai, Q.; Qun-You, T.; Ru-Wen, W. Circulating tumor cells prior to initial treatment is an important prognostic factor of survival in non-small cell lung cancer: A meta-analysis and system review. Meta-Analysis 2019, 19, 262. [Google Scholar] [CrossRef]
- Ye, Q.; Ling, S.; Zheng, S.; Xu, X. Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. Mol. Cancer 2019, 18, 114. [Google Scholar] [CrossRef]
- Castro-Giner, F.; Aceto, N. Tracking cancer progression: From circulating tumor cells to metastasis. Genome Med. 2020, 12, 31. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid biopsy: Current technology and clinical applications. J. Hematol. Oncol. 2022, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Maly, V.; Maly, O.; Kolostova, K.; Bobek, V. Circulating tumor cells in diagnosis and treatment of lung cancer. In Vivo 2019, 33, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Glenn, D.; Michael, H.; David, B.; Edward, M.; David, K.; Julian, F.B. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008, 10, R69. [Google Scholar] [CrossRef]
- Yan, L.; Qiuying, L.; Tingsong, C.; Tianhao, S.; Xufeng, Z.; Ping, S.; Lantao, L.; Jianming, L.; Tinghui, J.; Xiaofei, L. Clinical verification of vimentin/EpCAM immunolipid magnetic sorting system in monitoring CTCs in arterial and venous blood of advanced tumor. J. Nanobiotechnol. 2021, 19, 185. [Google Scholar] [CrossRef]
- Lyberopoulou, A.; Aravantinos, G.; Efstathopoulos, E.P.; Nikiteas, N.; Bouziotis, P.; Isaakidou, A.; Papalois, A.; Marinos, E.; Gazouli, M. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue. PLoS ONE 2015, 10, e0123902. [Google Scholar] [CrossRef] [PubMed]
- De Luca, F.; Rotunno, G.; Salvianti, F.; Galardi, F.; Pestrin, M.; Gabellini, S.; Simi, L.; Mancini, I.; Vannucchi, A.M.; Pazzagli, M. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 2016, 7, 26107–26119. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Watanabe, M.; Fujimura, Y.; Yagishita, S.; Shimoyama, T.; Maeda, Y.; Kanda, S.; Yunokawa, M.; Tamura, K.; Tamura, T. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells. Cancer Sci. 2016, 107, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, A.; Tang, X.; Chen, Y.; Tang, E.; Jiang, H. Comparative mutational analysis of distal colon cancer with rectal cancer. Oncol. Lett. 2020, 19, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shay, J.W. Multiple roles of APC and its therapeutic implications in colorectal cancer. J. Natl. Cancer Inst. 2017, 109, djw332. [Google Scholar] [CrossRef] [PubMed]
- Fujino, S.; Ito, A.; Ohue, M.; Yasui, M.; Mizushima, T.; Doki, Y.; Mori, M.; Miyoshi, N. Phenotypic heterogeneity of 2D organoid reflects clinical tumor characteristics. Biochem. Biophys. Res. Commun. 2019, 513, 332–339. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shirai, K.; Ijiri, Y.; Morita, E.; Yoshida, T.; Iwanaga, S.; Yanagida, M. Integrated system for detection and molecular characterization of circulating tumor cells. PLoS ONE 2020, 15, e0237506. [Google Scholar] [CrossRef]
- Shirai, K.; Guan, G.; Meihui, T.; Xiaoling, P.; Oka, Y.; Takahashi, Y.; Bhagat, A.A.S.; Yanagida, M.; Iwanaga, S.; Matsubara, N. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood. Lab Chip 2022, 22, 4418–4429. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.N.; Ahn, D.H.; Kang, N.; Yeo, C.D.; Kim, Y.K.; Lee, K.Y.; Kim, T.-J.; Lee, S.H.; Park, M.S.; Yim, H.W. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci. Rep. 2020, 10, 10597. [Google Scholar] [CrossRef] [PubMed]
- Juanes, M.A. Cytoskeletal control and Wnt signalling-APC’S dual contributions in stem cell division and colorectal cancer. Cancers 2020, 12, 3811. [Google Scholar] [CrossRef]
- Christie, M.; Jorissen, R.N.; Mouradov, D.; Sakthianandeswaren, A.; Li, S.; Day, F.; Tsui, C.; Lipton, L.; Desai, J.; Jones, I.T. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct Wnt/β-catenin signalling thresholds for tumourigenesis. Oncogene 2013, 32, 4675–4682. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-S.; Chen, J.-S.; Shao, H.-J.; Wu, J.-C.; Lai, J.-M.; Lu, S.-H.; Hung, T.-F.; Chiu, Y.-C.; You, J.-F.; Hsieh, P.-S. Circulating tumor cell count correlates with colorectal neoplasm progression and is a prognostic marker for distant metastasis in non-metastatic patients. Sci. Rep. 2016, 6, 24517. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, Y.; Muro, K.; Saito, Y.; Ito, Y.; Ajioka, Y.; Hamaguchi, T.; Hasegawa, K.; Hotta, K.; Ishida, H.; Ishiguro, M. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int. J. Clin. Oncol. 2020, 25, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhan, H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020, 468, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Jianping, J.; Weiqiang, M.; Xue, L.; Dakui, C.; Haiying, C.; Haiqin, W. Detection of PD-L1 expression and epithelial-mesenchymal transition of circulating tumor cells in non-small cell lung cancer. Exp. Ther. Med. 2024, 28, 294. [Google Scholar] [CrossRef]
- Cristina, R.; Guido, C.; Chiara, N.; Angela, G.; Walter, G.; Alain, G.; Eugenio, G.; Enrico, C.; Paola, G. PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: A molecular shield to evade immune system? Oncoimmunology 2017, 6, e1315488. [Google Scholar] [CrossRef]
- Saitoh, M. Involvement of partial EMT in cancer progression. J. Biochem. 2018, 164, 257–264. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence (5′–3′) |
---|---|
APC Exon13 Fw | TTTCTATTCTTACTGCTAGCATT |
APC Exon13 Rev | ATACACAGGTAAGAAATTAGGA |
APC Exon14 Fw | AGGGACGGGCAATAGGATAG |
APC Exon14 Rev | GGTCTTTTTGAGAGTATGAATTCTG |
APC Exon15-1 Fw | ACTGCATACACATTGTGACCT |
APC Exon15-1 Rev | TCCCCGTGACCTGTATGGAG |
APC Exon15-2 Fw | ACACCTCAAGTTCCAACCACA |
APC Exon15-2 Rev | TCTGCCTCTTTCTCTTGGTTT |
APC Exon15-3 Fw | GTTCATCCAGCCTGAGTGCT |
APC Exon15-3 Rev | CAGGGGGCTCAGTCTCTTTG |
APC Exon15-4 Fw | ACTCCGGTTTGCTTTTCTCA |
APC Exon15-4 Rev | TCTTAAGGTTGGGCTTGGAGC |
APC Exon15-5 Fw | GGACTAAATCAGATGAATAATGG |
APC Exon15-5 Rev | CCATCAAGAGTGCCTCCCAA |
iCCs Gene Sequence | |||
---|---|---|---|
Mutant | Wild-Type | ||
iCCs MI-FCM | Mutant | 9 | 1 |
Wild-type | 0 | 3 |
Pathological Stage | No. of Patients | No. of PatientsCTC ≥ 1 | CTC-Positive Rate | No. of Patients CK−/Vim+ CTC ≥ 1 | CK−/Vim+ CTC-Positive Rate | No. of Patients CTM ≥ 1 | CTM Positive Rate |
---|---|---|---|---|---|---|---|
Stage Ⅰ | 13 | 8 | 62% | 1 | 8% | 1 | 8% |
Stage Ⅱ | 30 | 22 | 73% | 10 | 33% | 4 | 13% |
Stage Ⅲ | 25 | 24 | 96% | 17 | 68% | 9 | 36% |
Stage Ⅳ | 6 | 6 | 100% | 6 | 100% | 5 | 83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, Y.; Ijiri, Y.; Fujino, S.; Elnaz, N.; Kishimoto, A.; Shirai, K.; Iwanaga, S.; Yanagida, M.; Bhagat, A.A.S.; Miyoshi, N. Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial–Mesenchymal Transition Markers. Cancers 2025, 17, 303. https://doi.org/10.3390/cancers17020303
Takahashi Y, Ijiri Y, Fujino S, Elnaz N, Kishimoto A, Shirai K, Iwanaga S, Yanagida M, Bhagat AAS, Miyoshi N. Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial–Mesenchymal Transition Markers. Cancers. 2025; 17(2):303. https://doi.org/10.3390/cancers17020303
Chicago/Turabian StyleTakahashi, Yusuke, Yuichi Ijiri, Shiki Fujino, Nakhaei Elnaz, Ayuko Kishimoto, Kentaro Shirai, Shigeki Iwanaga, Masatoshi Yanagida, Ali Asgar S. Bhagat, and Norikatsu Miyoshi. 2025. "Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial–Mesenchymal Transition Markers" Cancers 17, no. 2: 303. https://doi.org/10.3390/cancers17020303
APA StyleTakahashi, Y., Ijiri, Y., Fujino, S., Elnaz, N., Kishimoto, A., Shirai, K., Iwanaga, S., Yanagida, M., Bhagat, A. A. S., & Miyoshi, N. (2025). Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial–Mesenchymal Transition Markers. Cancers, 17(2), 303. https://doi.org/10.3390/cancers17020303