Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Preprocessing and Ground Truth Segmentation
2.3. nnU-Net Framework
2.4. Evaluation Metrics
2.5. Computational Resources
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unsgaard, G.; Rygh, O.M.; Selbekk, T.; Müller, T.B.; Kolstad, F.; Lindseth, F.; Hernes, T.A.N. Intra-Operative 3D Ultrasound in Neurosurgery. Acta Neurochir. 2006, 148, 235–253, discussion 253. [Google Scholar] [CrossRef] [PubMed]
- Del Bene, M.; Perin, A.; Casali, C.; Legnani, F.; Saladino, A.; Mattei, L.; Vetrano, I.G.; Saini, M.; DiMeco, F.; Prada, F. Advanced Ultrasound Imaging in Glioma Surgery: Beyond Gray-Scale B-Mode. Front. Oncol. 2018, 8, 576. [Google Scholar] [CrossRef]
- Moiyadi, A.V. Intraoperative Ultrasound Technology in Neuro-Oncology Practice-Current Role and Future Applications. World Neurosurg. 2016, 93, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; García-García, S.; Arrese, I.; Sarabia, R. Non-Navigated 2D Intraoperative Ultrasound: An Unsophisticated Surgical Tool to Achieve High Standards of Care in Glioma Surgery. J. Neurooncol. 2024, 167, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Bø, H.K.; Solheim, O.; Kvistad, K.-A.; Berntsen, E.M.; Torp, S.H.; Skjulsvik, A.J.; Reinertsen, I.; Iversen, D.H.; Unsgård, G.; Jakola, A.S. Intraoperative 3D Ultrasound–Guided Resection of Diffuse Low-Grade Gliomas: Radiological and Clinical Results. J. Neurosurg. 2020, 132, 518–529. [Google Scholar] [CrossRef]
- Shetty, P.; Yeole, U.; Singh, V.; Moiyadi, A. Navigated Ultrasound-Based Image Guidance during Resection of Gliomas: Practical Utility in Intraoperative Decision-Making and Outcomes. Neurosurg. Focus 2021, 50, E14. [Google Scholar] [CrossRef] [PubMed]
- de Verdier, M.C.; Saluja, R.; Gagnon, L.; LaBella, D.; Baid, U.; Tahon, N.H.; Foltyn-Dumitru, M.; Zhang, J.; Alafif, M.; Baig, S.; et al. The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-Treatment MRI 2024. arXiv 2024, arXiv:2405.18368. [Google Scholar] [CrossRef]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Juvekar, P.; Dorent, R.; Kögl, F.; Torio, E.; Barr, C.; Rigolo, L.; Galvin, C.; Jowkar, N.; Kazi, A.; Haouchine, N.; et al. ReMIND: The Brain Resection Multimodal Imaging Database. Sci. Data 2024, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Fortin, M.; Unsgård, G.; Rivaz, H.; Reinertsen, I. REtroSpective Evaluation of Cerebral Tumors (RESECT): A Clinical Database of Pre-Operative MRI and Intra-Operative Ultrasound in Low-Grade Glioma Surgeries. Med. Phys. 2017, 44, 3875–3882. [Google Scholar] [CrossRef] [PubMed]
- Behboodi, B.; Carton, F.; Chabanas, M.; De Ribaupierre, S.; Solheim, O.; Munkvold, B.K.R.; Rivaz, H.; Xiao, Y.; Reinertsen, I. Open Access Segmentations of Intraoperative Brain Tumor Ultrasound Images. Med. Phys. 2024, 51, 6525–6532. [Google Scholar] [CrossRef] [PubMed]
- Mercier, L.; Del Maestro, R.F.; Petrecca, K.; Araujo, D.; Haegelen, C.; Collins, D.L. Online Database of Clinical MR and Ultrasound Images of Brain Tumors. Med. Phys. 2012, 39, 3253–3261. [Google Scholar] [CrossRef]
- Dorent, R.; Torio, E.; Haouchine, N.; Galvin, C.; Frisken, S.; Golby, A.; Kapur, T.; Wells, W. Patient-Specific Real-Time Segmentation in Trackerless Brain Ultrasound 2024. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024. [Google Scholar]
- Canalini, L.; Klein, J.; Miller, D.; Kikinis, R. Segmentation-Based Registration of Ultrasound Volumes for Glioma Resection in Image-Guided Neurosurgery. Int. J. CARS 2019, 14, 1697–1713. [Google Scholar] [CrossRef] [PubMed]
- Carton, F.-X.; Chabanas, M.; Munkvold, B.K.R.; Reinertsen, I.; Noble, J.H. Automatic Segmentation of Brain Tumor in Intraoperative Ultrasound Images Using 3D U-Net. In Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling; Fei, B., Linte, C.A., Eds.; SPIE: Houston, TX, USA, 2020; p. 27. [Google Scholar]
- Carton, F.-X.; Noble, J.H.; Le Lann, F.; Munkvold, B.K.R.; Reinertsen, I.; Chabanas, M. Multiclass Segmentation of Brain Intraoperative Ultrasound Images with Limited Data. In Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling; Linte, C.A., Siewerdsen, J.H., Eds.; SPIE: Houston, TX, USA, 2021; p. 19. [Google Scholar]
- Angel-Raya, E.; Chalopin, C.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Wein, W.; Lindner, D. Segmentation of Brain Tumour in 3D Intraoperative Ultrasound Imaging. Robot. Comput. Surg. 2021, 17, e2320. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, R.A.; Pollok, A.; Mangliers, T.; Karar, M.E.; Mathis-Ullrich, F.; Burgert, O. Deep Automatic Segmentation of Brain Tumours in Interventional Ultrasound Data. Curr. Dir. Biomed. Eng. 2022, 8, 133–137. [Google Scholar] [CrossRef]
- Faanes, M.; Helland, R.H.; Solheim, O.; Reinertsen, I. Automatic Brain Tumor Segmentation in 2D Intra-Operative Ultrasound Images Using MRI Tumor Annotations. arXiv 2024, arXiv:2411.14017. [Google Scholar]
- Carton, F.-X.; Chabanas, M.; Le Lann, F.; Noble, J.H. Automatic Segmentation of Brain Tumor Resections in Intraoperative Ultrasound Images Using U-Net. J. Med. Imaging 2020, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Weld, A.; Dixon, L.; Anichini, G.; Patel, N.; Nimer, A.; Dyck, M.; O’Neill, K.; Lim, A.; Giannarou, S.; Camp, S. Challenges with Segmenting Intraoperative Ultrasound for Brain Tumours. Acta Neurochir. 2024, 166, 317. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Isensee, F.; Wald, T.; Ulrich, C.; Baumgartner, M.; Roy, S.; Maier-Hein, K.; Jaeger, P.F. nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024. [Google Scholar]
- Ostmeier, S.; Axelrod, B.; Isensee, F.; Bertels, J.; Mlynash, M.; Christensen, S.; Lansberg, M.G.; Albers, G.W.; Sheth, R.; Verhaaren, B.F.J.; et al. USE-Evaluator: Performance Metrics for Medical Image Segmentation Models Supervised by Uncertain, Small or Empty Reference Annotations in Neuroimaging. Med. Image Anal. 2023, 90, 102927. [Google Scholar] [CrossRef]
- Noble, J.A. Ultrasound Image Segmentation and Tissue Characterization. Proc. Inst. Mech. Eng. H 2010, 224, 307–316. [Google Scholar] [CrossRef]
- Noble, J.A.; Boukerroui, D. Ultrasound Image Segmentation: A Survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010. [Google Scholar] [CrossRef] [PubMed]
- Alruily, M.; Said, W.; Mostafa, A.M.; Ezz, M.; Elmezain, M. Breast Ultrasound Images Augmentation and Segmentation Using GAN with Identity Block and Modified U-Net 3+. Sensors 2023, 23, 8599. [Google Scholar] [CrossRef]
- Hesse, L.S.; Aliasi, M.; Moser, F.; Haak, M.C.; Xie, W.; Jenkinson, M.; Namburete, A.I.L. Subcortical Segmentation of the Fetal Brain in 3D Ultrasound Using Deep Learning. NeuroImage 2022, 254, 119117. [Google Scholar] [CrossRef]
- Muñoz, M.; Cosarinsky, G.; Cruza, J.F.; Camacho, J. Deep Learning-Based Lung Ultrasound Image Segmentation for Real-Time Analysis. In Proceedings of the 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada, 3 September 2023; pp. 1–4. [Google Scholar]
- Bass, V.; Mateos, J.; Rosado-Mendez, I.M.; Márquez, J. Ultrasound Image Segmentation Methods: A Review; AIP Publishing: Melville, NY, USA; Merida, Mexico, 2021; p. 050018. [Google Scholar]
- Wang, C.; Zhang, J.; Liu, S. Medical Ultrasound Image Segmentation With Deep Learning Models. IEEE Access 2023, 11, 10158–10168. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Zhang, J.; Dai, Y. Rethinking the Unpretentious U-Net for Medical Ultrasound Image Segmentation. Pattern Recognit. 2023, 142, 109728. [Google Scholar] [CrossRef]
Variable | Datasets/Centers | ||||||
---|---|---|---|---|---|---|---|
RHUH | ReMIND | TMC | CHRUT | UPALER | INCC | MGH | |
Total of subjects | 58 | 45 | 35 | 29 | 15 | 10 | 5 |
Mean Age | 61.66 ± 11.22 | 42.49 ± 15.16 | 47.62 ± 10.72 | 48.16 ± 13.76 | 67.33 ± 12.98 | 58.9 ± 18.77 | NA |
Sex | NA | ||||||
Male | 36 (62.07%) | 17 (37.78%) | 24 (68.57%) | 9 (30%) | 5 (33.33%) | 6 (60%) | |
Female | 22 (37.93%) | 28 (62.22%) | 11 (31.43%) | 13 (43.33%) | 10 (66.67%) | 4 (40%) | |
NA | - | - | - | 8 (26.67%) | - | - | |
WHO grade | |||||||
2 | - | 11 (24.44%) | - | 8 (27.59%) | - | - | - |
3 | - | 12 (26.67%) | - | 8 (27.59%) | - | - | - |
4 | 58 (100%) | 16 (35.56%) | 35 (100%) | 13 (44.83%) | 10 (66.67%) | 10 (100%) | 5 (100%) |
NA | - | 6 (13.33%) | - | - | 5 (33.33%) | - | NA |
IDH status | |||||||
Mutant | 8 (13.79%) | 23 (51.1%) | 4 (11.43%) | 9 (31.03%) | - | - | - |
Wild-Type | 50 (86.21%) | 16 (35.56%) | 31 (88.57%) | 11 (44.83%) | - | 10 (100%) | - |
NA | - | 6 (13.33%) | - | 7 (24.14%) | 15 (100%) | - | 5 (100%) |
US manufacturer | Hitachi | BK | BK/Sonowand AS | Supersonic | Esaote | Esaote | BK |
Type of probe | Curved | Curved | Curved | Linear | Linear | Linear | Curved |
Frequency | 4–8 Mhz | 5–13 Mhz | 3–8 Mhz | 4–15 Mhz | 3–11 Mhz | 3–11 Mhz | 5–13 Mhz |
Acquisition type | |||||||
2D | 58 (100%) | - | 11 (31.42%) | 29 (100%) | 15 (100%) | 10 (100%) | 5 (100%) |
3D | - | 45 (100%) | 24 (68.57%) | - | - | - | - |
Hold-Out Testing Cohort | |||||||
---|---|---|---|---|---|---|---|
Center/Dataset | Number of Patients | ASSD | DSC | HD 95 | IoU | Precision | Sensitivity |
All | 56 | 8.51 ± 1.63 | 0.9 ± 0.01 | 29.08 ± 7.02 | 0.82 ± 0.02 | 0.91 ± 0.02 | 0.91 ± 0.02 |
RHUH | 17 | 9.48 ± 3.7 | 0.9 ± 0.04 | 38.36 ± 17.89 | 0.81 ± 0.06 | 0.84 ± 0.06 | 0.95 ± 0.01 |
ReMIND | 13 | 3.61 ± 0.64 | 0.9 ± 0.03 | 13.0 ± 2.19 | 0.83 ± 0.04 | 0.95 ± 0.02 | 0.91 ± 0.04 |
TMC | 10 | 3.68 ± 5.91 | 0.93 ± 0.09 | 14.52 ± 27.41 | 0.87 ± 0.1 | 0.91 ± 0.05 | 0.96 ± 0.11 |
CHRUT | 8 | 17.38 ± 4.91 | 0.91 ± 0.03 | 60.72 ± 19.54 | 0.84 ± 0.04 | 0.95 ± 0.04 | 0.88 ± 0.03 |
UPALER | 4 | 9.85 ± 4.0 | 0.85 ± 0.09 | 39.65 ± 22.33 | 0.74 ± 0.12 | 0.89 ± 0.07 | 0.87 ± 0.15 |
INCC | 3 | 57.53 ± 46.45 | 0.76 ± 0.07 | 164.83 ± 266.57 | 0.61 ± 0.09 | 0.77 ± 0.07 | 0.74 ± 0.07 |
MGH | 1 | 7.46 ± 0.0 | 0.88 ± 0.0 | 27.22 ± 0.0 | 0.79 ± 0.0 | 0.87 ± 0.0 | 0.89 ± 0.0 |
External validation cohorts | |||||||
RESECT-SEG | 23 | 14.14 ± 0.23 | 0.65 ± 0.01 | 44.02 ± 0.76 | 0.48 ± 0.01 | 0.84 ± 0.01 | 0.61 ± 0.01 |
Imperial-NHS | 30 | 8.58 ± 1.78 | 0.93 ± 0.01 | 28.8 ± 7.62 | 0.86 ± 0.02 | 0.94 ± 0.01 | 0.91 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cepeda, S.; Esteban-Sinovas, O.; Singh, V.; Shetty, P.; Moiyadi, A.; Dixon, L.; Weld, A.; Anichini, G.; Giannarou, S.; Camp, S.; et al. Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS). Cancers 2025, 17, 315. https://doi.org/10.3390/cancers17020315
Cepeda S, Esteban-Sinovas O, Singh V, Shetty P, Moiyadi A, Dixon L, Weld A, Anichini G, Giannarou S, Camp S, et al. Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS). Cancers. 2025; 17(2):315. https://doi.org/10.3390/cancers17020315
Chicago/Turabian StyleCepeda, Santiago, Olga Esteban-Sinovas, Vikas Singh, Prakash Shetty, Aliasgar Moiyadi, Luke Dixon, Alistair Weld, Giulio Anichini, Stamatia Giannarou, Sophie Camp, and et al. 2025. "Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS)" Cancers 17, no. 2: 315. https://doi.org/10.3390/cancers17020315
APA StyleCepeda, S., Esteban-Sinovas, O., Singh, V., Shetty, P., Moiyadi, A., Dixon, L., Weld, A., Anichini, G., Giannarou, S., Camp, S., Zemmoura, I., Giammalva, G. R., Del Bene, M., Barbotti, A., DiMeco, F., West, T. R., Nahed, B. V., Romero, R., Arrese, I., ... Sarabia, R. (2025). Deep Learning-Based Glioma Segmentation of 2D Intraoperative Ultrasound Images: A Multicenter Study Using the Brain Tumor Intraoperative Ultrasound Database (BraTioUS). Cancers, 17(2), 315. https://doi.org/10.3390/cancers17020315