The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential
Simple Summary
Abstract
1. Introduction to Cancer
2. Introduction to Osteoprotegerin
3. OPG/RANK/RANKL Pathway & Cancer
4. Methodology
5. Breast Cancer
5.1. OPG in the Pathogenesis of Breast Cancer
5.2. Single Nucleotide Polymorphisms (SNPs) of the OPG Gene & Breast Cancer
5.3. OPG and TNF Related Apoptosis-Inducing Ligand (TRAIL)
5.4. Indirect Tumor-Promoting Effects of OPG
5.5. OPG Protein Serum Levels & Breast Cancer Subtypes
5.6. OPG and Breast Cancer Risk with BRCA Gene Mutations
6. Role of OPG in Promoting Cancers
6.1. Proliferation and Angiogenesis
6.2. Aneuploidy
6.3. Role of Osteoprotegerin in Interleukin-1 Beta-Induced Tumorigenesis of Breast Cancer Cells
6.4. Impact of RANK Signaling Pathway on BRCA-1 Associated Breast Cancer Development
7. Anti-Tumor Properties of OPG
7.1. Key Molecular Pathways in Breast Cancer Tumorigenesis: RANKL/RANK and β-Catenin Signaling
7.2. Protective Role of Stromal Fibroblasts in Breast Tumorigenesis
7.3. Recombinant OPG in Mouse Models
8. OPG as a Biomarker
Levels of Circulating OPG in Different Breast Cancer Subtypes
9. Therapeutic Opportunities Derived from Osteoprotegerin Pathway Modulations in Breast Cancer
9.1. Targeting the OPG/TRAIL Interaction
9.2. Modulating the OPG/RANK/RANKL Pathway & Recombinant OPG (rOPG)
9.3. OPG-Targeted Antibody Therapy, Anti-Angiogenesis Approaches, & SNP-Based Personalized Therapy
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OPG | Osteoprotegerin |
TNFRSF11B | Tumor Necrosis Factor Receptor Superfamily Member 11B |
RANK | Receptor Activator of Nuclear Factor-κB |
RANKL | Receptor Activator of Nuclear Factor-κB Ligand |
TRAIL | TNF-Related Apoptosis-Inducing Ligand |
SNP | Single Nucleotide Polymorphism |
BRCA | Breast Cancer Gene |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
TNF | Tumor Necrosis Factor |
DR | Death Receptor (e.g., DR4 & DR5) |
PTHrP | Parathyroid Hormone-Related Protein |
M-CSF | Macrophage Colony-Stimulating Factor |
IL | Interleukin (e.g., IL-1α, IL-6, IL-8, IL-1B) |
EPIC | European Prospective Investigation into Cancer and Nutrition |
ER | Estrogen Receptor (e.g., ER-positive or ER-negative) |
TNBC | Triple-Negative Breast Cancer |
MMP-2 | Matrix Metalloproteinase-2 |
AI | Aromatase Inhibitor |
MS-AEs | Musculoskeletal Adverse Events |
HMEC | Human Mammary Epithelial Cells |
HMVEC-d | Human Microvascular Endothelial Cells (dermal) |
MAPK | Mitogen-Activated Protein Kinase |
PI | Propidium Iodide |
IAK-1 | Increase-in-Ploidy and Aurora-related Kinase 1 |
Bub1 | Budding Uninhibited by Benzimidazoles 1 |
BubR1 | Budding Uninhibited by Benzimidazoles-Related 1 |
BRCA1 | Breast Cancer 1 (Gene) |
BRCA2 | Breast Cancer 2 (Gene) |
HRT | Hormone Replacement Therapy |
WNT | Wingless-related Integration Site |
EMT | Epithelial-Mesenchymal Transition |
STAT3 | Signal Transducer and Activator of Transcription 3 |
rOPG | Recombinant Osteoprotegerin |
OS | Overall Survival |
DFS | Disease-Free Survival |
ER− | Estrogen Receptor Negative |
ER+ | Estrogen Receptor Positive |
PAH | Pulmonary Arterial Hypertension |
VEGF | Vascular Endothelial Growth Factor |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2024. CA A Cancer J. Clin. 2024, 74, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024, 286–287, 18–24. [Google Scholar] [CrossRef]
- Cawley, K.M.; Bustamante-Gomez, N.C.; Guha, A.G.; MacLeod, R.S.; Xiong, J.; Gubrij, I.; Liu, Y.; Mulkey, R.; Palmieri, M.; Thostenson, J.D.; et al. Local production of osteoprotegerin by osteoblasts suppresses bone resorption. Cell Rep. 2020, 32, 108052. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Huang, Z.; Chen, X.; Zhang, B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 2008, 29, 155–192. [Google Scholar] [CrossRef]
- Marcadet, L.; Bouredji, Z.; Argaw, A.; Frenette, J. The Roles of RANK/RANKL/OPG in Cardiac, Skeletal, and Smooth Muscles in Health and Disease. Front. Cell Dev. Biol. 2022, 10, 903657. [Google Scholar] [CrossRef] [PubMed]
- Dutka, M.; Bobiński, R.; Wojakowski, W.; Francuz, T.; Pająk, C.; Zimmer, K. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signalling axis in heart failure and other cardiovascular diseases. Heart Fail. Rev. 2021, 27, 1395–1411. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, J.; Liu, P.; Wang, Q.; Liu, L.; Zhao, H. The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front. Endocrinol. 2022, 13, 1063815. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.F.; Appelman-Dijkstra, N.M.; Van Der Burg, S.H.; Kroep, J.R. The anti-tumor effect of RANKL inhibition in malignant solid tumors—A systematic review. Cancer Treat. Rev. 2018, 62, 18–28. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xiu, Y.; Li, J.; Xing, L.; Yao, Z. NF-κB-Mediated Regulation of Osteoclastogenesis. Endocrinol. Metab. 2015, 30, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Xu, J.; Cui, H. The Recent Research Progress of NF-κB Signaling on the Proliferation, Migration, Invasion, Immune Escape and Drug Resistance of Glioblastoma. Int. J. Mol. Sci. 2023, 24, 10337. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Sharma-Walia, N. Osteoprotegerin-rich tumor microenvironment: Implications in breast cancer. Oncotarget 2016, 7, 42777–42791. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, J.M.; Zhou, J.; Wu, G.S. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers 2023, 15, 2752. [Google Scholar] [CrossRef] [PubMed]
- Geerts, D.; Chopra, C.S.; Connelly, L. Osteoprotegerin: Relationship to Breast Cancer Risk and Prognosis. Front. Oncol. 2020, 10, 462. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Mengistu, G.; Edessa, D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: Potential targets for anticancer therapy. Onco Targets Ther. 2017, 10, 3801–3810. [Google Scholar] [CrossRef] [PubMed]
- Deligiorgi, M.V.; Panayiotidis, M.Ι.; Grınıatsos, J.; Trafalis, D.T. Harnessing the versatile role of OPG in bone oncology: Counterbalancing RANKL and TRAIL signaling and beyond. Clin. Exp. Metastasis 2019, 37, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Takegahara, N.; Kim, H.; Choi, Y. RANKL biology. Bone 2022, 159, 116353. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Oliva, D.; Barrena-Blázquez, S.; Jiménez-Álvarez, L.; Fraile-Martinez, O.; García-Montero, C.; López-González, L.; Torres-Carranza, D.; García-Puente, L.M.; Carranza, S.T.; Álvarez-Mon, M.; et al. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Choi, Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front. Immunol. 2014, 5, 511. [Google Scholar] [CrossRef]
- Infante, M.; Fabi, A.; Cognetti, F.; Gorini, S.; Caprio, M.; Fabbri, A. RANKL/RANK/OPG system beyond bone remodeling: Involvement in breast cancer and clinical perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 12. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.; Alkabban, F.M.; Ferguson, T. Breast Cancer. National Library of Medicine; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- World Cancer Research Fund International. Breast Cancer Statistics|World Cancer Research Fund International [Internet]. 2022. Available online: https://www.wcrf.org/cancer-trends/breast-cancer-statistics/ (accessed on 8 January 2025).
- Lu, T.; Kao, C.; Lin, C.; Huang, D.; Chiu, C.; Huang, Y.; Wu, H. DNA methylation and histone modification regulate silencing of OPG during tumor progression. J. Cell Biochem. 2009, 107, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Alho, I.; Vendrell, I.; Melo, M.; Brás, R.; Costa, A.L.; Sousa, A.R.; Mansinho, A.; Abreu, C.; Pulido, C.; et al. The prognostic role of RANK SNP rs34945627 in breast cancer patients with bone metastases. Oncotarget 2016, 7, 41380–41389. [Google Scholar] [CrossRef]
- Wang, J.; Lu, K.; Song, Y.; Zhao, S.; Ma, W.; Xuan, Q.; Tang, D.; Zhao, H.; Liu, L.; Zhang, Q. RANKL and OPG Polymorphisms Are Associated with Aromatase Inhibitor-Related Musculoskeletal Adverse Events in Chinese Han Breast Cancer Patients. PLoS ONE 2015, 10, e0133964. [Google Scholar] [CrossRef]
- Emery, J.G.; McDonnell, P.; Burke, M.B.; Deen, K.C.; Lyn, S.; Silverman, C.; Dul, E.; Appelbaum, E.R.; Eichman, C.; DiPrinzio, R.; et al. Osteoprotegerin Is a Receptor for the Cytotoxic Ligand TRAIL. J. Biol. Chem. 1998, 273, 14363–14367. [Google Scholar] [CrossRef] [PubMed]
- Holen, I.; Cross, S.S.; Neville-Webbe, H.L.; Cross, N.A.; Balasubramanian, S.P.; Croucher, P.I.; Evans, C.A.; Lippitt, J.M.; Coleman, R.E.; Eaton, C.L. Osteoprotegerin (OPG) Expression by Breast Cancer Cells in vitro and Breast Tumours in vivo—A Role in Tumour Cell Survival? Breast Cancer Res. Treat. 2005, 92, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Vitovski, S.; Phillips, J.S.; Sayers, J.; Croucher, P.I. Investigating the Interaction between Osteoprotegerin and Receptor Activator of NF-κB or Tumor Necrosis Factor-related Apoptosis-inducing Ligand. J. Biol. Chem. 2007, 282, 31601–31609. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.S.; Yang, Z.; Brown, N.J.; Balasubramanian, S.P.; Evans, C.A.; Woodward, J.K.; Neville-Webbe, H.L.; Lippitt, J.M.; Reed, M.W.; Coleman, R.E.; et al. Osteoprotegerin (OPG)—A potential new role in the regulation of endothelialcell phenotype and tumour angiogenesis? Int. J. Cancer 2006, 118, 1901–1908. [Google Scholar] [CrossRef]
- Goswami, S.; Sharma-Walia, N. Osteoprotegerin secreted by inflammatory and invasive breast cancer cells induces aneuploidy, cell proliferation and angiogenesis. BMC Cancer 2015, 15, 935. [Google Scholar] [CrossRef] [PubMed]
- Weichhaus, M.; Segaran, P.; Renaud, A.; Geerts, D.; Connelly, L. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis. Cancer Med. 2014, 3, 1112–1125. [Google Scholar] [CrossRef] [PubMed]
- Vik, A.; Brodin, E.E.; Mathiesen, E.B.; Brox, J.; Jørgensen, L.; Njølstad, I.; Brækkan, S.K.; Hansen, J.-B. Serum osteoprotegerin and future risk of cancer and cancer-related mortality in the general population: The Tromsø study. Eur. J. Epidemiol. 2014, 30, 219–230. [Google Scholar] [CrossRef]
- Fortner, R.T.; Sarink, D.; Schock, H.; Johnson, T.; Tjønneland, A.; Olsen, A.; Overvad, K.; Affret, A.; His, M.; Boutron-Ruault, M.-C.; et al. Osteoprotegerin and breast cancer risk by hormone receptor subtype: A nested case-control study in the EPIC cohort. BMC Med. 2017, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, B. Cancer treatment-induced bone loss: Role of denosumab in non-metastatic breast cancer. Breast Cancer 2022, 14, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Endo Greer, Y.; Dine, J.L.; Lipkowitz, S. Targeting TRAIL death receptors in triple-negative breast cancers: Challenges and strategies for cancer therapy. Cells 2022, 11, 3717. [Google Scholar] [CrossRef] [PubMed]
- Nolan, E.; Vaillant, F.; Branstetter, D.; Pal, B.; Giner, G.; Whitehead, L.; Lok, S.W.; Mann, G.B.; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer; Rohrbach, K.; et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat. Med. 2016, 22, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Odén, L.; Akbari, M.; Zaman, T.; Singer, C.F.; Sun, P.; Narod, S.A.; Salmena, L.; Kotsopoulos, J. Plasma osteoprotegerin and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Oncotarget 2016, 7, 86687–86694. [Google Scholar] [CrossRef]
- Rébé, C.; Ghiringhelli, F. Interleukin-1β and cancer. Cancers 2020, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.T.M.; Geerts, D.; Roseman, K.; Renaud, A.; Connelly, L. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells. Mol. Cancer 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dong, A.; Meegol Rasteh, A.; Wang, P.; Weng, J. Identification of the novel exhausted T cell CD8+ markers in breast cancer. Sci. Rep. 2024, 14, 19142. [Google Scholar] [CrossRef] [PubMed]
- Nilkhet, S.; Mongkolpobsin, K.; Sillapachaiyaporn, C.; Wongsirojkul, N.; Tencomnao, T.; Chuchawankul, S. M1 macrophages polarized by crude polysaccharides isolated from Auricularia polytricha exhibit anti-tumor effect on human breast cancer cells. Sci. Rep. 2024, 14, 8179. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Uzelac, A.; Kotsopoulos, J. Delineating the role of osteoprotegerin as a marker of breast cancer risk among women with a BRCA1 mutation. Hered. Cancer Clin. Pract. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef] [PubMed]
- Sefidbakht, S.; Saeedipour, H.; Saffar, H.; Mirzaian, E. Determination of β-catenin Expression in Breast Cancer and Its Relationship with Clinicopathologic Parameters. Asian Pac. J. Cancer Prev. 2021, 22, 3493–3498. [Google Scholar] [CrossRef] [PubMed]
- Sadlonova, A.; Bowe, D.B.; Novak, Z.; Mukherjee, S.; Duncan, V.E.; Page, G.P.; Frost, A.R. Identification of Molecular Distinctions Between Normal Breast-Associated Fibroblasts and Breast Cancer-Associated Fibroblasts. Cancer Microenviron. 2009, 2, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Alraouji, N.N.; Hendrayani, S.F.; Ghebeh, H.; Al-Mohanna, F.H.; Aboussekhra, A. Osteoprotegerin (OPG) mediates the anti-carcinogenic effects of normal breast fibroblasts and targets cancer stem cells through inhibition of the β-catenin pathway. Cancer Lett. 2021, 520, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Raut, D.; Vora, A.; Bhatt, L.K. The Wnt/β-catenin pathway in breast cancer therapy: A pre-clinical perspective of its targeting for clinical translation. Expert Rev. Anticancer. Ther. 2021, 22, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ashton, R.; Hensel, J.A.; Lee, J.H.; Khattar, V.; Wang, Y.; Deshane, J.S.; Ponnazhagan, S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol. Cancer Ther. 2020, 19, 2585–2597. [Google Scholar] [CrossRef] [PubMed]
- Behrens, A.; Wurmthaler, L.; Heindl, F.; Gass, P.; Häberle, L.; Volz, B.; Hack, C.C.; Emons, J.; Erber, R.; Hartmann, A.; et al. RANK and RANKL Expression in Tumors of Patients with Early Breast Cancer. Geburtshilfe Und Frauenheilkd 2023, 84, 77–85. [Google Scholar] [CrossRef]
- Kiechl, S.; Schramek, D.; Widschwendter, M.; Fourkala, E.-O.; Zaikin, A.; Jones, A.; Jaeger, B.; Rack, B.; Janni, W.; Scholz, C.; et al. Aberrant regulation of RANKL/OPG in women at high risk of developing breast cancer. Oncotarget 2016, 8, 3811–3825. [Google Scholar] [CrossRef] [PubMed]
- Moran, O.; Zaman, T.; Eisen, A.; Demsky, R.; Blackmore, K.; Knight, J.A.; Elser, C.; Ginsburg, O.; Zbuk, K.; Yaffe, M.; et al. Serum osteoprotegerin levels and mammographic density among high-risk women. Cancer Causes Control 2018, 29, 507–517. [Google Scholar] [CrossRef]
- Montinaro, A.; Walczak, H. Harnessing TRAIL-induced cell death for cancer therapy: A Long Walk with thrilling discoveries. Cell Death Differ. 2022, 30, 237–249. [Google Scholar] [CrossRef]
- Lemke, J.; von Karstedt, S.; Zinngrebe, J.; Walczak, H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014, 21, 1350–1364. [Google Scholar] [CrossRef] [PubMed]
- Snajdauf, M.; Havlova, K.; Vachtenheim, J., Jr.; Ozaniak, A.; Lischke, R.; Bartunkova, J.; Smrz, D.; Strizova, Z. The TRAIL in the treatment of human cancer: An update on clinical trials. Front. Mol. Biosci. 2021, 8, 628332. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Huang, Y.; Liu, H.; Dilger, J.P.; Lin, J. Comparing volatile and intravenous anesthetics in a mouse model of breast cancer metastasis. Cancer Res. 2018, 78, 2162. [Google Scholar] [CrossRef]
- Lu, J.; Hu, D.; Zhang, Y.; Ma, C.; Shen, L.; Shuai, B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front. Oncol. 2023, 13, 1133828. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.S.; Yee, A.J. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients. Clin. Interv. Aging 2012, 7, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, K.C.; Steensma, M.R.; Williams, B.O.; Zhong, Z. Skeletal metastasis: Treatments, mouse models, and the Wnt Signaling. Chin. J. Cancer 2013, 32, 380–396. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.E.; Roudier, M.; Jones, J.; Armstrong, A.; Canon, J.; Dougall, W.C. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol. Cancer Ther. 2008, 7, 2160–2169. [Google Scholar] [CrossRef]
- Vanderkerken, K.; De Leenheer, E.; Shipman, C.; Asosingh, K.; Willems, A.; Van Camp, B.; Croucher, P. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res. 2003, 63, 287–289. [Google Scholar]
- Hall, J.M.; Lee, M.K.; Newman, B.; Morrow, J.E.; Anderson, L.A.; Huey, B.; King, M.-C. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990, 250, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Farmer, A.A.; Chen, C.F.; Jones, D.C.; Chen, P.L.; Lee, W.H. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996, 56, 3168–3172, Correction in Cancer Res. 1996, 56, 4074. [Google Scholar]
- Gudmundsdottir, K.; Ashworth, A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006, 25, 5864–5874. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef]
- King, M.C.; Marks, J.H.; Mandell, J.B.; New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003, 302, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Tan, W.; Song, Q.; Pei, H.; Li, J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 813457. [Google Scholar] [CrossRef] [PubMed]
- Arnold, N.D.; Pickworth, J.A.; West, L.E.; Dawson, S.; Carvalho, J.A.; Casbolt, H.; Braithwaite, A.T.; Iremonger, J.; Renshall, L.; Germaschewski, V.; et al. A therapeutic antibody targeting osteoprotegerin attenuates severe experimental pulmonary arterial hypertension. Nat. Commun. 2019, 10, 5183. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, S.B.; Hudis, C.; Dickler, M.N. Bevacizumab in metastatic breast cancer: When may it be used? Ther. Adv. Med. Oncol. 2011, 3, 85–93. [Google Scholar] [CrossRef]
SNP | Effect | Therapeutic Implications | Study |
---|---|---|---|
rs3102735 | Minor C allele associated with a 1.5-fold increased risk of breast cancer tumorigenesis. | Screening for this SNP can help identify high-risk individuals for targeted prevention and early intervention. | Geerts et al. [14] |
rs2073618 | Minor allele C is linked to increased breast cancer frequency, but the GG major allele was found to be protective against breast cancer. This SNP in OPG has also been associated with the development of Aromatase Inhibitor-Related Musculoskeletal Adverse Events (AI-related MS-AEs). | Personalized therapies targeting the OPG/TRAIL pathway for carriers of this Minor C allele may reduce cancer progression. | Geerts et al. [14], Wang et al. [25] |
rs2073617 | Major T allele increases breast cancer frequency; the CC minor allele is protective. | SNP-based stratification could guide therapies in high-risk groups. | Geerts et al. [14] |
rs34945627 | Reduces disease-free survival and overall survival in breast cancer patients. | SNP profiling may help predict prognosis and tailor aggressive treatments for affected individuals. | Ferreira et al. [24] |
rs7984870 | This SNP of RANKL has been associated with Aromatase Inhibitor-Related Musculoskeletal Adverse Events (AI-related MS-AEs). | Incorporating SNP testing can help reduce adverse events by personalizing aromatase inhibitor regimens. | Wang et al. [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radhi, J.H.; El-Hagrasy, A.M.A.; Almosawi, S.H.; Alhashel, A.; Butler, A.E. The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential. Cancers 2025, 17, 337. https://doi.org/10.3390/cancers17030337
Radhi JH, El-Hagrasy AMA, Almosawi SH, Alhashel A, Butler AE. The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential. Cancers. 2025; 17(3):337. https://doi.org/10.3390/cancers17030337
Chicago/Turabian StyleRadhi, Janan Husain, Ahmed Mohsen Abbas El-Hagrasy, Sayed Husain Almosawi, Abdullatif Alhashel, and Alexandra E. Butler. 2025. "The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential" Cancers 17, no. 3: 337. https://doi.org/10.3390/cancers17030337
APA StyleRadhi, J. H., El-Hagrasy, A. M. A., Almosawi, S. H., Alhashel, A., & Butler, A. E. (2025). The Role of Osteoprotegerin in Breast Cancer: Genetic Variations, Tumorigenic Pathways, and Therapeutic Potential. Cancers, 17(3), 337. https://doi.org/10.3390/cancers17030337