Normal Residual Lymphoid Cell Populations in Blood as Surrogate Biomarker of the Leukemia Cell Kinetics in CLL BinetA/Rai 0
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Leukemia Cell Kinetic Profiles in CLL Stage A/0 and Disease Features at Diagnosis vs. Follow-Up
3.2. Distribution of Normal Residual B- and T-Cell Populations in Blood According to the CLL Clone Kinetics Profile
3.3. Identification at Diagnosis of Surrogate Biomarkers of the CLL Clone Kinetics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallek, M.; Al-Sawaf, O. Chronic Lymphocytic Leukemia: 2022 Update on Diagnostic and Therapeutic Procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.; Dalla-Favera, R. Chronic Lymphocytic Leukaemia: From Genetics to Treatment. Nat. Rev. Clin. Oncol. 2019, 16, 684–701. [Google Scholar] [CrossRef]
- Molica, S.; Shanafelt, T.D.; Giannarelli, D.; Gentile, M.; Mirabelli, R.; Cutrona, G.; Levato, L.; Di Renzo, N.; Di Raimondo, F.; Musolino, C.; et al. The Chronic Lymphocytic Leukemia International Prognostic Index (CLL-IPI) Predicts Time to First Treatment in Early CLL: Independent Validation in a Prospective Cohort of Early Stage Patients. Am. J. Hematol. 2016, 91, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Shanafelt, T.D.; Rossi, D.; Laurenti, L.; Mauro, F.R.; Molica, S.; Cutrona, G.; Uccello, G.; Campanelli, M.; Vigna, E.; et al. Validation of the CLL-IPI and Comparison with the MDACC Prognostic Index in Newly Diagnosed Patients. Blood 2016, 128, 2093–2095. [Google Scholar] [CrossRef] [PubMed]
- Montserrat, E.; Sanchez-Bisono, J.; Viñolas, N.; Rozman, C. Lymphocyte Doubling Time in Chronic Lymphocytic Leukaemia: Analysis of Its Prognostic Significance. Br. J. Haematol. 1986, 62, 567–575. [Google Scholar] [CrossRef]
- Baumann, T.; Moia, R.; Gaidano, G.; Delgado, J.; Condoluci, A.; Villamor, N.; Payedimarri, A.B.; Costa, D.; Patriarca, A.; Jiménez-Vicente, C.; et al. Lymphocyte Doubling Time in Chronic Lymphocytic Leukemia Modern Era: A Real-Life Study in 848 Unselected Patients. Leukemia 2021, 35, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- International CLL-IPI Working Group. An International Prognostic Index for Patients with Chronic Lymphocytic Leukaemia (CLL-IPI): A Meta-Analysis of Individual Patient Data. Lancet Oncol. 2016, 17, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Alberti, A. Prognostic Value of the Lymphocyte Doubling Time in Chronic Lymphocytic Leukemia. Cancer 1987, 60, 2712–2716. [Google Scholar] [CrossRef]
- Lad, D.P.; Tejaswi, V.; Jindal, N.; Malhotra, P.; Khadwal, A.; Prakash, G.; Jain, A.; Sreedharanunni, S.; Sachdeva, M.S.; Naseem, S.; et al. Modified CLL International Prognostic Index (CLL-LIPI) Using Lymphocyte Doubling Time (LDT) in Place of IgHV Mutation Status in Resource-Limited Settings Predicts Time to First Treatment and Overall Survival. Leuk. Lymphoma 2020, 61, 1512–1515. [Google Scholar] [CrossRef]
- Morabito, F.; Tripepi, G.; Moia, R.; Recchia, A.G.; Boggione, P.; Mauro, F.R.; Bossio, S.; D’Arrigo, G.; Martino, E.A.; Vigna, E.; et al. Lymphocyte Doubling Time As A Key Prognostic Factor To Predict Time To First Treatment In Early-Stage Chronic Lymphocytic Leukemia. Front. Oncol. 2021, 11, 684621. [Google Scholar] [CrossRef]
- Burger, J.A. The CLL Cell Microenvironment. Adv. Exp. Med. Biol. 2013, 792, 25–45. [Google Scholar] [CrossRef] [PubMed]
- van Attekum, M.H.; Eldering, E.; Kater, A.P. Chronic Lymphocytic Leukemia Cells Are Active Participants in Microenvironmental Cross-Talk. Haematologica 2017, 102, 1469–1476. [Google Scholar] [CrossRef]
- Taghiloo, S.; Asgarian-Omran, H. Cross-Talk Between Leukemic and Immune Cells at the Tumor Microenvironment in Chronic Lymphocytic Leukemia: An Update Review. Eur. J. Haematol. 2024, 113, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Chiorazzi, N. B Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Trends Immunol. 2013, 34, 592–601. [Google Scholar] [CrossRef]
- Schmid, V.K.; Hobeika, E. B Cell Receptor Signaling and Associated Pathways in the Pathogenesis of Chronic Lymphocytic Leukemia. Front. Oncol. 2024, 14, 1339620. [Google Scholar] [CrossRef]
- Burger, J.A.; Quiroga, M.P.; Hartmann, E.; Bürkle, A.; Wierda, W.G.; Keating, M.J.; Rosenwald, A. High-Level Expression of the T-Cell Chemokines CCL3 and CCL4 by Chronic Lymphocytic Leukemia B Cells in Nurselike Cell Cocultures and After BCR Stimulation. Blood 2009, 113, 3050–3058. [Google Scholar] [CrossRef] [PubMed]
- Arruga, F.; Gyau, B.B.; Iannello, A.; Vitale, N.; Vaisitti, T.; Deaglio, S. Immune Response Dysfunction in Chronic Lymphocytic Leukemia: Dissecting Molecular Mechanisms and Microenvironmental Conditions. Int. J. Mol. Sci. 2020, 21, 1825. [Google Scholar] [CrossRef]
- Stevenson, F.K.; Forconi, F.; Kipps, T.J. Exploring the Pathways to Chronic Lymphocytic Leukemia. Blood 2021, 138, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Platsoucas, C.D.; Galinski, M.; Kempin, S.; Reich, L.; Clarkson, B.; Good, R.A. Abnormal T Lymphocyte Subpopulations in Patients with B Cell Chronic Lymphocytic Leukemia: An Analysis by Monoclonal Antibodies. J. Immunol. 1982, 129, 2305–2312. [Google Scholar] [CrossRef]
- Scrivener, S.; Goddard, R.V.; Kaminski, E.R.; Prentice, A.G. Abnormal T-Cell Function in B-Cell Chronic Lymphocytic Leukaemia. Leuk. Lymphoma 2003, 44, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.; Wong, R.; Mason, M.; Fegan, C.; Man, S.; Pepper, C. Expansion of a CD8+PD-1+ Replicative Senescence Phenotype in Early Stage CLL Patients Is Associated with Inverted CD4:CD8 Ratios and Disease Progression. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Forconi, F.; Moss, P. Perturbation of the Normal Immune System in Patients with CLL. Blood 2015, 126, 573–581. [Google Scholar] [CrossRef]
- Criado, I.; Muñoz-Criado, S.; Rodríguez-Caballero, A.; Nieto, W.G.; Romero, A.; Fernández-Navarro, P.; Alcoceba, M.; Contreras, T.; González, M.; Orfao, A.; et al. Host Virus and Pneumococcus-Specific Immune Responses in High-Count Monoclonal B-Cell Lymphocytosis and Chronic Lymphocytic Leukemia: Implications for Disease Progression. Haematologica 2017, 102, 1238–1246. [Google Scholar] [CrossRef]
- Criado, I.; Blanco, E.; Rodríguez-Caballero, A.; Alcoceba, M.; Contreras, T.; Gutiérrez, M.L.; Romero, A.; Fernández-Navarro, P.; González, M.; Solano, F.; et al. Residual Normal B-Cell Profiles in Monoclonal B-Cell Lymphocytosis versus Chronic Lymphocytic Leukemia. Leukemia 2018, 32, 2701–2705. [Google Scholar] [CrossRef] [PubMed]
- Hauswirth, A.W.; Almeida, J.; Nieto, W.G.; Teodosio, C.; Rodriguez-Caballero, A.; Romero, A.; López, A.; Fernandez-Navarro, P.; Vega, T.; Perez-Andres, M.; et al. Monoclonal B-Cell Lymphocytosis (MBL) with Normal Lymphocyte Counts Is Associated with Decreased Numbers of Normal Circulating B-Cell Subsets. Am. J. Hematol. 2012, 87, 721–724. [Google Scholar] [CrossRef]
- Galigalidou, C.; Zaragoza-Infante, L.; Iatrou, A.; Chatzidimitriou, A.; Stamatopoulos, K.; Agathangelidis, A. Understanding Monoclonal B Cell Lymphocytosis: An Interplay of Genetic and Microenvironmental Factors. Front. Oncol. 2021, 11, 769612. [Google Scholar] [CrossRef]
- te Raa, G.D.; Tonino, S.H.; Remmerswaal, E.B.M.; van Houte, A.J.; Koene, H.R.; van Oers, M.H.; Kater, A.P. Chronic Lymphocytic Leukemia Specific T-Cell Subset Alterations Are Clone-Size Dependent and Not Present in Monoclonal B Lymphocytosis. Leuk. Lymphoma 2012, 53, 2321–2325. [Google Scholar] [CrossRef]
- Rodrigues, C.; Laranjeira, P.; Pinho, A.; Silva, I.; Silva, S.; Coucelo, M.; Oliveira, A.C.; Simões, A.T.; Damásio, I.; Silva, H.M.; et al. CD20+ T Cells in Monoclonal B Cell Lymphocytosis and Chronic Lymphocytic Leukemia: Frequency, Phenotype and Association with Disease Progression. Front. Oncol. 2024, 14, 1380648. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; van der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for Highly Sensitive and Standardized Detection of Minimal Residual Disease in Multiple Myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef]
- Perez-Andres, M.; Paiva, B.; Nieto, W.G.; Caraux, A.; Schmitz, A.; Almeida, J.; Vogt, R.F.; Marti, G.E.; Rawstron, A.C.; Van Zelm, M.C.; et al. Human Peripheral Blood B-Cell Compartments: A Crossroad in B-Cell Traffic. Cytom. B Clin. Cytom. 2010, 78 (Suppl. S1), S47–S60. [Google Scholar] [CrossRef]
- Blanco, E.; Pérez-Andrés, M.; Arriba-Méndez, S.; Contreras-Sanfeliciano, T.; Criado, I.; Pelak, O.; Serra-Caetano, A.; Romero, A.; Puig, N.; Remesal, A.; et al. Age-Associated Distribution of Normal B-Cell and Plasma Cell Subsets in Peripheral Blood. J. Allergy Clin. Immunol. 2018, 141, 2208–2219.e16. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Perez-Andres, M.; Sanoja-Flores, L.; Wentink, M.; Pelak, O.; Martín-Ayuso, M.; Grigore, G.; Torres-Canizales, J.; López-Granados, E.; Kalina, T.; et al. Selection and Validation of Antibody Clones against IgG and IgA Subclasses in Switched Memory B-Cells and Plasma Cells. J. Immunol. Methods 2019, 475, 112372. [Google Scholar] [CrossRef] [PubMed]
- Hultin, L.E.; Chow, M.; Jamieson, B.D.; O’Gorman, M.R.G.; Menendez, F.A.; Borowski, L.; Denny, T.N.; Margolick, J.B. Comparison of Interlaboratory Variation in Absolute T-Cell Counts by Single-Platform and Optimized Dual-Platform Methods. Cytom. B Clin. Cytom. 2010, 78, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Quijano, S.; López, A.; Rasillo, A.; Sayagués, J.M.; Barrena, S.; Sánchez, M.L.; Teodosio, C.; Giraldo, P.; Giralt, M.; Pérez, M.C.; et al. Impact of Trisomy 12, Del(13q), Del(17p), and Del(11q) on the Immunophenotype, DNA Ploidy Status, and Proliferative Rate of Leukemic B-Cells in Chronic Lymphocytic Leukemia. Cytom. B Clin. Cytom. 2008, 74, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Henriques, A.; Rodríguez-Caballero, A.; Nieto, W.G.; Langerak, A.W.; Criado, I.; Lécrevisse, Q.; González, M.; Pais, M.L.; Paiva, A.; Almeida, J.; et al. Combined Patterns of IGHV Repertoire and Cytogenetic/Molecular Alterations in Monoclonal B Lymphocytosis versus Chronic Lymphocytic Leukemia. PLoS ONE 2013, 8, e67751. [Google Scholar] [CrossRef] [PubMed]
- Agathangelidis, A.; Chatzidimitriou, A.; Chatzikonstantinou, T.; Tresoldi, C.; Davis, Z.; Giudicelli, V.; Kossida, S.; Belessi, C.; Rosenquist, R.; Ghia, P.; et al. Immunoglobulin Gene Sequence Analysis in Chronic Lymphocytic Leukemia: The 2022 Update of the Recommendations by ERIC, the European Research Initiative on CLL. Leukemia 2022, 36, 1961–1968. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) Genes Are Associated with a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef]
- Döhner, H.; Stilgenbauer, S.; Benner, A.; Leupolt, E.; Kröber, A.; Bullinger, L.; Döhner, K.; Bentz, M.; Lichter, P. Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2000, 343, 1910–1916. [Google Scholar] [CrossRef]
- Blanco, G.; Vardi, A.; Puiggros, A.; Gómez-Llonín, A.; Muro, M.; Rodríguez-Rivera, M.; Stalika, E.; Abella, E.; Gimeno, E.; López-Sánchez, M.; et al. Restricted T Cell Receptor Repertoire in CLL-like Monoclonal B Cell Lymphocytosis and Early Stage CLL. Oncoimmunology 2018, 7, e1432328. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Puiggros, A.; Sherry, B.; Nonell, L.; Calvo, X.; Puigdecanet, E.; Chiu, P.Y.; Kieso, Y.; Ferrer, G.; Palacios, F.; et al. CLL-like Monoclonal B Cell Lymphocytosis Displays an Increased Inflammatory Signature That Is Reduced in Early Stage Chronic Lymphocytic Leukemia. Exp. Hematol. 2021, 95, 68–80. [Google Scholar] [CrossRef]
- Ghia, P.; Strola, G.; Granziero, L.; Geuna, M.; Guida, G.; Sallusto, F.; Ruffing, N.; Montagna, L.; Piccoli, P.; Chilosi, M.; et al. Chronic Lymphocytic Leukemia B Cells Are Endowed with the Capacity to Attract CD4+, CD40L+ T Cells by Producing CCL22. Eur. J. Immunol. 2002, 32, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Herishanu, Y.; Pérez-Galán, P.; Liu, D.; Biancotto, A.; Pittaluga, S.; Vire, B.; Gibellini, F.; Njuguna, N.; Lee, E.; Stennett, L.; et al. The Lymph Node Microenvironment Promotes B-Cell Receptor Signaling, NF-kappaB Activation, and Tumor Proliferation in Chronic Lymphocytic Leukemia. Blood 2011, 117, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Criado, I.; Nieto, W.G.; Oliva-Ariza, G.; Fuentes-Herrero, B.; Teodosio, C.; Lecrevisse, Q.; Lopez, A.; Romero, A.; Almeida, J.; Orfao, A.; et al. Age- and Sex-Matched Normal Leukocyte Subset Ranges in the General Population Defined with the EuroFlow Lymphocyte Screening Tube (LST) for Monoclonal B-Cell Lymphocytosis (MBL) vs. Non-MBL Subjects. Cancers 2023, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, A.D.; Hamblin, T.J. The Immunodeficiency of Chronic Lymphocytic Leukaemia. Br. Med. Bull. 2008, 87, 49–62. [Google Scholar] [CrossRef]
- Ramsay, A.G.; Johnson, A.J.; Lee, A.M.; Gorgün, G.; Le Dieu, R.; Blum, W.; Byrd, J.C.; Gribben, J.G. Chronic Lymphocytic Leukemia T Cells Show Impaired Immunological Synapse Formation That Can Be Reversed with an Immunomodulating Drug. J. Clin. Investig. 2008, 118, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Riches, J.C.; Davies, J.K.; McClanahan, F.; Fatah, R.; Iqbal, S.; Agrawal, S.; Ramsay, A.G.; Gribben, J.G. T Cells from CLL Patients Exhibit Features of T-Cell Exhaustion but Retain Capacity for Cytokine Production. Blood 2013, 121, 1612–1621. [Google Scholar] [CrossRef]
- Parikh, S.A.; Leis, J.F.; Chaffee, K.G.; Call, T.G.; Hanson, C.A.; Ding, W.; Chanan-Khan, A.A.; Bowen, D.; Conte, M.; Schwager, S.; et al. Hypogammaglobulinemia in Newly Diagnosed Chronic Lymphocytic Leukemia: Natural History, Clinical Correlates, and Outcomes. Cancer 2015, 121, 2883–2891. [Google Scholar] [CrossRef] [PubMed]
- Os, A.; Bürgler, S.; Ribes, A.P.; Funderud, A.; Wang, D.; Thompson, K.M.; Tjønnfjord, G.E.; Bogen, B.; Munthe, L.A. Chronic Lymphocytic Leukemia Cells Are Activated and Proliferate in Response to Specific T Helper Cells. Cell Rep. 2013, 4, 566–577. [Google Scholar] [CrossRef] [PubMed]
- van Attekum, M.H.A.; van Bruggen, J.A.C.; Slinger, E.; Lebre, M.C.; Reinen, E.; Kersting, S.; Eldering, E.; Kater, A.P. CD40 Signaling Instructs Chronic Lymphocytic Leukemia Cells to Attract Monocytes via the CCR2 Axis. Haematologica 2017, 102, 2069–2076. [Google Scholar] [CrossRef]
- Overgaard, N.H.; Jung, J.-W.; Steptoe, R.J.; Wells, J.W. CD4+/CD8+ Double-Positive T Cells: More than Just a Developmental Stage? J. Leukoc. Biol. 2015, 97, 31–38. [Google Scholar] [CrossRef]
- Suni, M.A.; Ghanekar, S.A.; Houck, D.W.; Maecker, H.T.; Wormsley, S.B.; Picker, L.J.; Moss, R.B.; Maino, V.C. CD4+CD8Dim T Lymphocytes Exhibit Enhanced Cytokine Expression, Proliferation and Cytotoxic Activity in Response to HCMV and HIV-1 Antigens. Eur. J. Immunol. 2001, 31, 2512–2520. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.J.; Sivakumaran, M.; Parapia, L.A.; Balfour, I.; Norfolk, D.R.; Kaeda, J.; Scott, C.S. A Distinct Large Granular Lymphocyte (LGL)/NK-Associated (NKa) Abnormality Characterized by Membrane CD4 and CD8 Coexpression. The Yorkshire Leukaemia Group. Br. J. Haematol. 1992, 82, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Akpinarli, A.; Maris, C.; Hipkiss, E.L.; Lane, M.; Kwon, E.-K.M.; Muranski, P.; Restifo, N.P.; Antony, P.A. Naive Tumor-Specific CD4+ T Cells Differentiated In Vivo Eradicate Established Melanoma. J. Exp. Med. 2010, 207, 651–667. [Google Scholar] [CrossRef]
- Quezada, S.A.; Simpson, T.R.; Peggs, K.S.; Merghoub, T.; Vider, J.; Fan, X.; Blasberg, R.; Yagita, H.; Muranski, P.; Antony, P.A.; et al. Tumor-Reactive CD4+ T Cells Develop Cytotoxic Activity and Eradicate Large Established Melanoma After Transfer into Lymphopenic Hosts. J. Exp. Med. 2010, 207, 637–650. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, A.; García-Montero, A.C.; Bárcena, P.; Almeida, J.; Ruiz-Cabello, F.; Tabernero, M.D.; Garrido, P.; Muñoz-Criado, S.; Sandberg, Y.; Langerak, A.W.; et al. Expanded Cells in Monoclonal TCR-αβ+/CD4+/NKa+/CD8−/+dim T-LGL Lymphocytosis Recognize hCMV Antigens. Blood 2008, 112, 4609–4616. [Google Scholar] [CrossRef]
- Garrido, P.; Almeida, J.; Romero, J.M.; Cantón, J.; Sandberg, Y.; Bárcena, P.; Lima, M.; Langerak, A.W.; Orfao, A.; Ruiz-Cabello, F. Evaluation of Functional Single Nucleotide Polymorphisms of Different Genes Coding for the Immunoregulatory Molecules in Patients with Monoclonal Large Granular Lymphocyte Lymphocytosis. Hum. Immunol. 2008, 69, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bagot, M.; Echchakir, H.; Mami-Chouaib, F.; Delfau-Larue, M.H.; Charue, D.; Bernheim, A.; Chouaib, S.; Boumsell, L.; Bensussan, A. Isolation of Tumor-Specific Cytotoxic CD4+ and CD4+CD8dim+ T-Cell Clones Infiltrating a Cutaneous T-Cell Lymphoma. Blood 1998, 91, 4331–4341. [Google Scholar] [CrossRef]
- Porakishvili, N.; Roschupkina, T.; Kalber, T.; Jewell, A.P.; Patterson, K.; Yong, K.; Lydyard, P.M. Expansion of CD4+ T Cells with a Cytotoxic Phenotype in Patients with B-chronic Lymphocytic Leukaemia (B-CLL). Clin. Exp. Immunol. 2001, 126, 29–36. [Google Scholar] [CrossRef]
- Lima, M.; Almeida, J.; Teixeira, M.d.A.; Alguero, M.d.C.; Santos, A.H.; Balanzategui, A.; Queirós, M.L.; Bárcena, P.; Izarra, A.; Fonseca, S.; et al. TCRαβ+/CD4+ Large Granular Lymphocytosis: A New Clonal T-Cell Lymphoproliferative Disorder. Am. J. Pathol. 2003, 163, 763–771. [Google Scholar] [CrossRef]
- Porakishvili, N.; Kardava, L.; Jewell, A.P.; Yong, K.; Glennie, M.J.; Akbar, A.; Lydyard, P.M. Cytotoxic CD4+ T Cells in Patients with B Cell Chronic Lymphocytic Leukemia Kill via a Perforin-Mediated Pathway. Haematologica 2004, 89, 435–443. [Google Scholar]
- Christopoulos, P.; Pfeifer, D.; Bartholomé, K.; Follo, M.; Timmer, J.; Fisch, P.; Veelken, H. Definition and Characterization of the Systemic T-Cell Dysregulation in Untreated Indolent B-Cell Lymphoma and Very Early CLL. Blood 2011, 117, 3836–3846. [Google Scholar] [CrossRef]
- Tonino, S.H.; van de Berg, P.J.; Yong, S.L.; ten Berge, I.J.; Kersten, M.J.; van Lier, R.A.W.; van Oers, M.H.; Kater, A.P. Expansion of Effector T Cells Associated with Decreased PD-1 Expression in Patients with Indolent B Cell Lymphomas and Chronic Lymphocytic Leukemia. Leuk. Lymphoma 2012, 53, 1785–1794. [Google Scholar] [CrossRef]
- Wu, J.; Xu, X.; Lee, E.-J.; Shull, A.Y.; Pei, L.; Awan, F.; Wang, X.; Choi, J.-H.; Deng, L.; Xin, H.-B.; et al. Phenotypic Alteration of CD8+ T Cells in Chronic Lymphocytic Leukemia Is Associated with Epigenetic Reprogramming. Oncotarget 2016, 7, 40558–40570. [Google Scholar] [CrossRef]
Sex- and Age-Matched HD | Stable CLL Clones (n = 53) | Increasing CLL Clones (n = 16) | p-Value | |||
---|---|---|---|---|---|---|
Diagnosis | Last Follow-Up | Diagnosis | Last Follow-Up | |||
N. of normal B-cells/µL | ||||||
Total B-cells | 160 (35–384) | 83 *** (28–224) | 56 (19–152) | 75 *** (18–194) | 74 (14–266) | 0.001 c |
Immature | 5.7 (<0.01–36) | 2.7 ** (0.24–17) | 1.7 (<0.01–12) | 1.6 * (0.50–8.7) | 2.6 (<0.01–18) | NS |
Naive | 79 (6.0–378) | 14 *** (1.1–64) | 8.8 (1.5–43) | 9.9 *** (2.3–29) | 9.1 (1.7–136) | 0.005 c |
MBC | 51 (8.0–185) | 64 (17–205) | 31 (11–90) | 64 (4.2–158) | 42 (3.1–132) | 0.001 c |
MBC/Naive ratio | 0.67 (0.04–4.5) | 3.6 *** (0.74–38) | 3.0 (0.51–44) | 4.5 *** (1.6–16) | 3.5 (0.31–37) | NS |
sIgM+ MBC | 26 (2.1–114) | 11 ** (0.08–62) | 9.6 (0.91–35) | 5.7 * (1.2–84) | 14 (0.89–64) | NS |
sIgM− MBC | 29 (5.6–98) | 45 *** (12–149) | 19 (4.6–66) | 62 *** (3.0–108) | 28 (2.2–82) | ≤0.02 c,d |
sIgM−/sIgM+ MBC ratio | 1.2 (0.30–6.5) | 1.6 * (0.49–40) | 1.9 (0.40–16) | 5.9 *** (0.74–18) | 1.9 (0.22–4.9) | ≤0.04 a,d |
PC | 1.8 (<0.01–24) | 1.5 (<0.01–12) | 1.7 (0.01–20) | 3.4 * (<0.01–19) | 4.3 (0.01–36) | ≤0.05 a,b |
N. of normal T-cells/µL | ||||||
Total T-cells | 1129 (435–3068) | 2689 *** (1335–6549) | 2531 (1371–5597) | 1991 *** (1170–7382) | 2534 (1166–15,857) | 0.008 d |
Tαβ CD4+CD8− cells | 620 (196–3224) | 1319 *** (634–3193) | 1415 (459–2679) | 1160 *** (648–4140) | 1517 (661–9038) | 0.006 d |
Tαβ CD4−CD8+ cells | 366 (13–1939) | 850 *** (273–2556) | 992 (267–2241) | 608 *** (194–2474) | 932 (184–5468) | 0.02 d |
Tαβ CD4+CD8−/ CD4−CD8+ cell ratio | 1.9 (0.31–43) | 1.8 (0.41–4.4) | 1.5 (0.40–4.3) | 1.7 (0.60–3.5) | 1.7 (0.95–5.2) | NS |
Tαβ CD4+CD8+ cells | 7.4 (0.70–94) | 49 *** (6.8–203) | 30 (2.0–139) | 46 (4.7–213) | 47 (1.7–258) | NS |
Tαβ CD4+CD8lo cells | 15 (2.4–436) | 45 *** (6.2–560) | 40 (6.4–435) | 25 (5.4–199) | 36 (6.8–303) | 0.03 a |
Tαβ CD4−CD8− cells | 11 (2.0–39) | 143 *** (30–499) | 159 (21–555) | 141 *** (37–756) | 244 (72–855) | 0.01 b |
Total Tγδ cells | NC | 73 (5.4–407) | 91 (13–350) | 92 (15–349) | 122 (16–757) | NS |
Univariate Analysis (Log-Rank Test) | Multivariate Analysis (Binary Logistic Regression) | Cox Regression | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
N. of clonal B-cells (≥15 × 109 cells/L) | 4.6 (2.0–10) | ≤0.001 | 15 (1.1–222) | 0.046 | 3.4 (1.1–10) | 0.03 |
IgM−/IgM+ MBC ratio (≥1.7) | 3.1 (1.3–7.2) | 0.013 | 14 (0.64–291) | 0.09 | 1.7 (0.73–5.0) | NS |
N. of plasma cells (≥2.1 cells/µL) | 1.9 (0.88–4.3) | 0.07 | 3.6 (0.25–51) | NS | 2.1 (0.73–6.1) | NS |
N. of Tαβ CD4+CD8lo T-cells (≤35 cells/µL) | 3.1 (1.4–6.7) | 0.004 | 33 (2.0–567) | 0.015 | 3.3 (1.2–9.7) | 0.027 |
IGHV mutational status (unmutated) | 4.0 (1.2–13) | ≤0.001 | 40 (2.3–686) | 0.011 | 4.4 (1.7–11) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solano, F.; Criado, I.; Moreno, N.; Gomez-Gonzalez, C.; Lerma-Verdejo, A.; Teodosio, C.; Martinez-Moya, M.D.; Luts, I.; Contreras, T.; Oliva-Ariza, G.; et al. Normal Residual Lymphoid Cell Populations in Blood as Surrogate Biomarker of the Leukemia Cell Kinetics in CLL BinetA/Rai 0. Cancers 2025, 17, 347. https://doi.org/10.3390/cancers17030347
Solano F, Criado I, Moreno N, Gomez-Gonzalez C, Lerma-Verdejo A, Teodosio C, Martinez-Moya MD, Luts I, Contreras T, Oliva-Ariza G, et al. Normal Residual Lymphoid Cell Populations in Blood as Surrogate Biomarker of the Leukemia Cell Kinetics in CLL BinetA/Rai 0. Cancers. 2025; 17(3):347. https://doi.org/10.3390/cancers17030347
Chicago/Turabian StyleSolano, Fernando, Ignacio Criado, Nahir Moreno, Carlos Gomez-Gonzalez, Ana Lerma-Verdejo, Cristina Teodosio, María Dolores Martinez-Moya, Iryna Luts, Teresa Contreras, Guillermo Oliva-Ariza, and et al. 2025. "Normal Residual Lymphoid Cell Populations in Blood as Surrogate Biomarker of the Leukemia Cell Kinetics in CLL BinetA/Rai 0" Cancers 17, no. 3: 347. https://doi.org/10.3390/cancers17030347
APA StyleSolano, F., Criado, I., Moreno, N., Gomez-Gonzalez, C., Lerma-Verdejo, A., Teodosio, C., Martinez-Moya, M. D., Luts, I., Contreras, T., Oliva-Ariza, G., Fuentes Herrero, B., Serrano-Lozano, J. M., Almeida, J., & Orfao, A. (2025). Normal Residual Lymphoid Cell Populations in Blood as Surrogate Biomarker of the Leukemia Cell Kinetics in CLL BinetA/Rai 0. Cancers, 17(3), 347. https://doi.org/10.3390/cancers17030347