Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions
Simple Summary
Abstract
1. Introduction
2. De-Intensification Trials
2.1. Adjuvant Clinical Trials
Trial | Patient Population | Stratification Method | Intervention | Conclusions |
---|---|---|---|---|
DIREKHT (2014–2021) [37] Germany and Austria | 150 HNSCC (94 OPSCCs; 77 HPV associated) Inclusion criteria: primary tumor and neck dissection with resection margin ≥1 mm; no distant metastases | Tumor stage, resection margins, and lymph node criteria | Arm A: dose reduction in the primary tumor region to 56 Gy Arm B: omission of contralateral neck radiotherapy Arm C: combination of dose reduction and omission of contralateral neck radiotherapy | De-intensified therapy maintained excellent oncologic outcomes (low locoregional recurrence (1%) in OPSCC) while reducing toxicity. Higher recurrence in oral cavity cancer highlights the need for careful patient selection. |
ECOG-ACRIN E3311 (2013–2017) [38] USA | 359 evaluable HPV-associated OPSCCs Inclusion criteria: T1-T2; N1-N2b | Surgical pathology (e.g., margins and ENE) | Arm A: low risk, observation Arm B: intermediate risk, 50 Gy PORT Arm C: intermediate risk, 60 Gy PORT Arm D: high risk, 66 Gy PORT + cisplatin | De-intensification (50 Gy) feasible in intermediate-risk patients, with excellent survival (2-year PFS > 94%). Observation sufficient for low-risk patients. High-risk patients need intensified treatment. |
AVOID (2014–2017) [39] USA | 60 HPV-associated OPSCCs Inclusion criteria: pT1-pT2 N1-3 with no adverse pathological features (e.g., PNI, lymphovascular invasion, and close margins) | Tumor and nodal pathologies | Radiation targeted cervical lymph nodes only (doses varied by involvement: 60 Gy to involved nodes; 54 Gy to adjacent regions) | De-intensified PORT to lymph nodes is safe, achieving high local control (98%) and reducing treatment burden. Toxicity was minimal. |
PATHOS Trial (2015–) [40] United Kingdom | HPV-associated OPSCC Inclusion criteria: T1-T3; N0-N2b | Tumor and nodal pathologies and smoking history | Arm A: low risk, observation Arm B: intermediate risk, 60 Gy vs. 50 Gy PORT Arm C: high risk: 60 Gy PORT + cisplatin vs. RT alone | Ongoing trial aiming to assess risk-based treatment to minimize toxicity while maintaining survival. |
MC1273 Trial (2013–2016) [43] USA | 194 HPV-associated OPSCCs Inclusion criteria: smoking history of 10 pack years or less and negative margins | ENE for (arm A1 vs. arm A2) | Arm A1: de-escalated RT (30 Gy) + concurrent docetaxel Arm A2: de-escalated RT (36 Gy) + concurrent docetaxel Arm B: standard RT (60 Gy ± cisplatin) | De-escalation achieved similar 3-year PFS (87% vs. 90%) and comparable local/regional/distant metastasis-free survival rates. Elevated distant metastasis rates in patients with high-risk features (e.g., pN2 and ENE) indicate that treatment should not be de-escalated for these cases. |
Sampieri et al., 2024 [44] (2012–2022) South Korea and Italy | 300 HPV-associated OPSCCs Inclusion criteria: locoregionally advanced biopsy proven HPV; stage III-IV (AJCC-v7); successful completion of TORS | Neoadjuvant chemotherapy (NAC) use | Arm A: NAC (cisplatin and TS-1) + TORS Arm B: upfront TORS | NAC reduced pathological staging and high-risk features. NAC + TORS resulted in functional benefits by reducing need for CRT, reserved for recurrence. |
Sadeghi et al., 2020 [45] (2008–2018) North America | 197 HPV-associated OPCs Inclusion criteria: stage III-IV (AJCC-v7); treatment naïve; undergoing curative intent treatment | NAC use | Arm A: NAC (cisplatin and docetaxel) + TORS Arm B: concurrent chemoradiotherapy (CCRT) | NAC + TORS achieved superior 5-year DFS (96% vs. 68%) and no distant-only metastasis. Reduced toxicity compared to CCRT. |
NRG Oncology RTOG 1016 (2011–2014) [46] USA and Canada | 849 HPV-associated OPSCCs Inclusion criteria: stage T1–T2, N2a–N3 M0 or T3–T4, N0–N3 M0 (AJCC-v7); Zubrod performance status 0 or 1 | None | Arm A: radiotherapy + cetuximab Arm B: radiotherapy + cisplatin | Cisplatin significantly outperformed cetuximab in OS, PFS, and locoregional control. Cisplatin remains the standard of care. The trial was stopped early. |
TROG12.01 (2013–2018) [47] Australia and New Zealand | 189 HPV-associated OPSCCs Inclusion criteria: AJCC-v7 stage III (excluding T1-2N1) or stage IV (excluding T4 and/or N3 and/or N2b-c if smoking history >10 pack years and/or distant metastases) | None | Arm A: IMRT (70 Gy/35 fractions) + cisplatin Arm B: IMRT (70 Gy/35 fractions) + cetuximab | Cisplatin superior to cetuximab in FFS and distant failure rates. No symptom burden reduction with cetuximab. Cisplatin remains preferred for low-risk cases. |
NRG-HN005 (2019–2023) [48] USA | 382 HPV-associated OPSCCs Inclusion criteria: stage T1-2N1M0 or T3N0-N1M0 (AJCC-v8) and ≤10 pack year smoking history | None | Arm A (control): 70 Gy IMRT + cisplatin Arm B: 60 Gy IMRT + cisplatin Arm C: 60 Gy IMRT + nivolumab | The experimental arms failed to demonstrate non-inferiority compared to arm A, which had 98% PFS rate through 2 years. The trial will not continue to phase III. |
Samuels et al., 2016 (2003–2011) [49] USA | 53 HPV-associated OPCs Inclusion criteria: stage III or IV, non-T4, non-N3, with little or no smoking history (≤10 pack years) | Chemotherapy use | Arm A: IMRT + carboplatin/paclitaxel Arm B: IMRT + cetuximab | No significant improvement in QOL or dysphagia with cetuximab compared to carboplatin/paclitaxel. Cetuximab not a viable de-intensification strategy for HPV-associated OPSCC. |
Rosenberg et al., 2022 (2020–2022) [50] USA | 46 HPV-associated OPSCCs Inclusion criteria: AJCC-v8 N1 (≥3 cm), N2-N3 nodal disease, or T3-T4 primary tumor | cfHPV-DNA reductions | Arm A: a ≥50% reduction in cfHPV-DNA levels: single-modality de-escalated treatment, such as TORS or radiation alone at 50 Gy Arm B: 30–50% underwent intermediate de-escalation (chemoradiation at 50 Gy with cisplatin) Arm C: reductions < 30% required regular-dose chemoradiation at 70 Gy | Post-treatment detectable cfHPV-DNA strongly predicted recurrence, with a sensitivity of 100% and a positive predictive value of 80% for identifying recurrences. This study is an initial demonstration of the utility of cfHPV-DNA to help stratify patients. |
Lee et al., 2024 (2017–2024) [51] USA | 152 HPV-associated OPSCCs Inclusion criteria: T0-2/N1-N2c | Hypoxic status determined by FMISO-PET | Arm A: nonhypoxic; 30 Gy over 3 weeks Arm B: hypoxic; 70 Gy over 7 weeks | There was a 94% PFS rate in arm A and 96% in arm B, suggesting that stratifying for hypoxic status maintains PFS. |
2.2. Neoadjuvant Clinical Trials
2.3. Definitive Chemoradiation Trials
2.4. Biomarker-Driven Trials
2.5. Challenges and Future Directions
3. Candidate Molecular and Cellular Biomarkers for Risk Stratification
3.1. E6*/FL Ratio
Study | Biomarker | Patient Cohort | Measure of HPV Used in Study | Biomarker Type | Results |
---|---|---|---|---|---|
Qin et al., 2020 [57] | E6*:E6FL influence score | 54 HNSCC | RNA-seq | RNA-seq gene set score | High E6*:E6FL influence score had worse OS (p = 0.02) |
Spector et al., 2016 [59] | E7 serum antibodies | 52 OPSCC | PCR | Enzyme-linked immunosorbent assay (ELISA) from blood | Recurrent patients were more likely to have E7 serum antibodies (p = 0.002) |
Koneva et al., 2018 [61] | HPV integration | 66 HNSCC | RNA-seq | RNA-seq | Non-integrated (episomal) had better OS (p = 0.0436) |
Nulton TJ, et al., 2018 [62] | E2/E7 | 56 HNC | RNA-seq | RNA-seq gene expression score | Lower E2/E7 ratio had worse survival (30% 5 yr. OS) compared to higher E2/E7 (72% 5 yr. OS), p = 0.034 |
Misawa K, et al., 2020 [63] | CALML5, DNAJC5G, and LYD6D methylation | 35 OPC | PCR and p16 IHC | DNA methylation | DFS was significantly shorter when GPT, LY6D, MAL, and MRGPRF were methylated (p = 0.021, p = 0.019, p = 0.012, and p = 0.007, respectively) |
Chen J, et al., 2024 [64] | SNV1339A>G, SNV1950A>C, and SNV4298A>G | 40 OPC cases | HPV16 WGS | SNV | High-risk HPV SNVs were associated with substantially poorer 3-year OS; patients with at least one high-risk SNV had a median survival of 3.6 years, compared to 4.2 years for those without any of these variants (HR = 1.29 × 103; p < 1.0 × 10−6) |
Ward et al., 2013 [65] | Tumor-infiltrating lymphocytes | 149 OPSCC | HPV ISH | H&E imaging | High TIL was better for DSS (p < 0.001); TIL levels predicted similarly for PFS (p < 0.001) |
Nordfors et al., 2013 [66] | CD8+ cells | 216 OPSCC | DNA | Immunohistochemistry | High CD8+ was better for OS (p < 0.001) and DFS (p = 0.004) |
Van Abel et al., 2020 [67] | T-cell fraction | 65 OPSCC | HPV ISH | Immunosequencing | High TCF was a strong predictor of PFS (p = 0.02) and CSS (p < 0.05) |
Hong et al., 2019 [68] | PDL1 | 81 OPSCC | DNA and p16 IHC | Immunohistochemistry | PDL1 negative cases showed more locoregional recurrence (p = 0.027) and worse OS (p = 0.008) |
Solomon et al., 2018 [69] | PDL1 | 190 OPSCC | p16 IHC | Immunohistochemistry | High PDL1 expression was associated with OS (p = 0.023) |
Solomon et al., 2018 [69] | CD8+ cells | 190 OPSCC | p16 IHC | Immunohistochemistry | High CD8+ TIL abundance was associated with improved OS (p = 0.017) |
Zeng et al., 2022 [70] | UWO3 | 906 OPSCC | p16 IHC, PCR, and DNA | RNA-seq gene set score | High UWO3 had better DFS than low and moderate UWO3 (p = 3.6 × 10−5; p = 0.006) |
Locati et al., 2019 [71] | CI1/CI2/CI3 subtype | 346 HNSCC | DNA (59.5%); RNA-seq (28%); Other (12.5%) | Microarray subtyping | CI1 had better OS than CI3 or CI2 (p = 4.76 × 10−9) |
3.2. HPV Expression
3.3. DNA Methylation
3.4. HPV Single-Nucleotide Variations
3.5. Immune Infiltration Scores
3.6. Whole Genome/Transcriptome Subtyping
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef]
- Faraji, F.; Rettig, E.M.; Tsai, H.-L.; El Asmar, M.; Fung, N.; Eisele, D.W. The Prevalence of Human Papillomavirus in Oropharyngeal Cancer Is Increasing Regardless of Sex or Race, and the Influence of Sex and Race on Survival Is Modified by Human Papillomavirus Tumor Status. Cancer 2019, 125, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Reuschenbach, M.; Tinhofer, I.; Wittekindt, C.; Wagner, S.; Klussmann, J.P. A Systematic Review of the HPV-attributable Fraction of Oropharyngeal Squamous Cell Carcinomas in Germany. Cancer Med. 2019, 8, 1908. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Jones, O.S.; Breeze, C.E.; Gilson, R. Gender-Neutral HPV Vaccination in the UK, Rising Male Oropharyngeal Cancer Rates, and Lack of HPV Awareness. Lancet Infect. Dis. 2019, 19, 131–132. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Pfeiffer, R.M.; Hernandez, B.Y.; Xiao, W.; Kim, E.; Jiang, B.; Goodman, M.T.; Sibug-Saber, M.; Cozen, W.; et al. Human Papillomavirus and Rising Oropharyngeal Cancer Incidence in the United States. J. Clin. Oncol. 2023, 41, 3081–3088. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Grønhøj, C.; Jensen, D.H.; Carlander, A.F.; Agander, T.; Kiss, K. The Current Epidemic of HPV-Associated Oropharyngeal Cancer: An 18-Year Danish Population-Based Study with 2169 Patients. Eur. J. Cancer 2020, 134, 52–59. [Google Scholar] [CrossRef]
- Carlander, A.F.; Jakobsen, K.K.; Bendtsen, S.K.; Garset-Zamani, M.; Lynggaard, C.D.; Jensen, J.S.; Grønhøj, C.; von Buchwald, C. A Contemporary Systematic Review on Repartition of HPV-Positivity in Oropharyngeal Cancer Worldwide. Viruses 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Hasegawa, M.; Matayoshi, S.; Kiyuna, A.; Yamashita, Y.; Maeda, H.; Suzuki, M. Prevalence and Clinical Features of Human Papillomavirus in Head and Neck Squamous Cell Carcinoma in Okinawa, Southern Japan. Eur. Arch. Otorhinolaryngol. 2011, 268, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.W.; Ji, Y.B.; Song, C.M.; Myung, J.K.; Park, H.J.; Tae, K. Positive Rate of Human Papillomavirus and Its Trend in Head and Neck Cancer in South Korea. Front. Surg. 2021, 8, 833048. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Rao, Y.; Qiu, J.; Song, Y.; Pang, W.; Qiu, K.; Dong, Y.; Liu, Q.; Zhao, Y.; Liu, J.; et al. Survival Outcomes Related to Treatment Modalities in Patients with Oropharyngeal Squamous Cell Carcinoma. Ear Nose Throat J. 2022, 01455613221115608. [Google Scholar] [CrossRef] [PubMed]
- Grisar, K.; Dok, R.; Schoenaers, J.; Dormaar, T.; Hauben, E.; Jorissen, M.; Nuyts, S.; Politis, C. Differences in Human Papillomavirus-Positive and -Negative Head and Neck Cancers in Belgium: An 8-Year Retrospective, Comparative Study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Wilde, D.C.; Castro, P.D.; Bera, K.; Lai, S.; Madabhushi, A.; Corredor, G.; Koyuncu, C.; Lewis, J.S.; Lu, C.; Frederick, M.J.; et al. Oropharyngeal Cancer Outcomes Correlate with P16 Status, Multinucleation and Immune Infiltration. Mod. Pathol. 2022, 35, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, T.Y.; Zuo, Z.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.J.; Stojanov, P.; Cho, J.; et al. Integrative and Comparative Genomic Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas. Clin. Cancer Res. 2015, 21, 632–641. [Google Scholar] [CrossRef]
- Simoens, C.; Gheit, T.; Ridder, R.; Gorbaslieva, I.; Holzinger, D.; Lucas, E.; Rehm, S.; Vermeulen, P.; Lammens, M.; Vanderveken, O.M.; et al. Accuracy of High-Risk HPV DNA PCR, P16(INK4a) Immunohistochemistry or the Combination of Both to Diagnose HPV-Driven Oropharyngeal Cancer. BMC Infect. Dis. 2022, 22, 676. [Google Scholar] [CrossRef]
- Gallus, R.; Nauta, I.H.; Marklund, L.; Rizzo, D.; Crescio, C.; Mureddu, L.; Tropiano, P.; Delogu, G.; Bussu, F. Accuracy of P16 IHC in Classifying HPV-Driven OPSCC in Different Populations. Cancers 2023, 15, 656. [Google Scholar] [CrossRef] [PubMed]
- Romagosa, C.; Simonetti, S.; López-Vicente, L.; Mazo, A.; Lleonart, M.E.; Castellvi, J.; Ramon y Cajal, S. P16(Ink4a) Overexpression in Cancer: A Tumor Suppressor Gene Associated with Senescence and High-Grade Tumors. Oncogene 2011, 30, 2087–2097. [Google Scholar] [CrossRef] [PubMed]
- Shinn, J.R.; Davis, S.J.; Lang-Kuhs, K.A.; Rohde, S.; Wang, X.; Liu, P.; Dupont, W.D.; Plummer, D.; Thorstad, W.L.; Chernock, R.D.; et al. Oropharyngeal Squamous Cell Carcinoma with Discordant P16 and HPV mRNA Results: Incidence and Characterization in a Large, Contemporary United States Cohort. Am. J. Surg. Pathol. 2021, 45, 951–961. [Google Scholar] [CrossRef]
- Pannone, G.; Rodolico, V.; Santoro, A.; Lo Muzio, L.; Franco, R.; Botti, G.; Aquino, G.; Pedicillo, M.C.; Cagiano, S.; Campisi, G.; et al. Evaluation of a Combined Triple Method to Detect Causative HPV in Oral and Oropharyngeal Squamous Cell Carcinomas: P16 Immunohistochemistry, Consensus PCR HPV-DNA, and In Situ Hybridization. Infect. Agent. Cancer 2012, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Kabagenyi, F.; Otiti, J.; Namwagala, J.; Kamulegeya, A.; Kalungi, S. A Descriptive Study of Human Papilloma Virus in Upper Aero-Digestive Squamous Cell Carcinoma at Uganda Cancer Institute Assessed by P16 Immunohistochemistry. Cancers Head Neck 2020, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, M.; Leivo, I.; Saarilahti, K.; Mäkitie, A.A.; Mattila, P.S. Increased Incidence of Oropharyngeal Cancer and P16 Expression. Acta Otolaryngol. 2011, 131, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xie, Z.; Luo, G.; Yan, H.; Qian, H.-Z.; Fu, L.; Wang, B.; Huang, R.; Cao, F.; Lin, H.; et al. Global Burden of Oropharyngeal Cancer Attributable to Human Papillomavirus by Anatomical Subsite and Geographic Region. Cancer Epidemiol. 2022, 78, 102140. [Google Scholar] [CrossRef] [PubMed]
- Näsman, A.; Attner, P.; Hammarstedt, L.; Du, J.; Eriksson, M.; Giraud, G.; Ahrlund-Richter, S.; Marklund, L.; Romanitan, M.; Lindquist, D.; et al. Incidence of Human Papillomavirus (HPV) Positive Tonsillar Carcinoma in Stockholm, Sweden: An Epidemic of Viral-Induced Carcinoma? Int. J. Cancer 2009, 125, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.K.; Anderson, W.F.; Lortet-Tieulent, J.; Curado, M.P.; Ferlay, J.; Franceschi, S. Worldwide Trends in Incidence Rates for Oral Cavity and Oropharyngeal Cancers. J. Clin. Oncol. 2013, 31, 4550–4559. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, J.; Cheng, H.; Zhao, M.; Zhou, D.; Zhang, M.; Jia, J.; Luo, L. Characteristics of Human Papillomavirus Infection among Oropharyngeal Cancer Patients: A Systematic Review and Meta-Analysis. Arch. Oral Biol. 2024, 157, 105830. [Google Scholar] [CrossRef] [PubMed]
- Cancer Tomorrow. Available online: https://gco.iarc.who.int/today/ (accessed on 6 January 2025).
- D’Souza, G.; Westra, W.H.; Wang, S.J.; van Zante, A.; Wentz, A.; Kluz, N.; Rettig, E.; Ryan, W.R.; Ha, P.K.; Kang, H.; et al. Differences in the Prevalence of Human Papillomavirus (HPV) in Head and Neck Squamous Cell Cancers by Sex, Race, Anatomic Tumor Site, and HPV Detection Method. JAMA Oncol. 2017, 3, 169–177. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Kreimer, A.R.; Viscidi, R.; Pawlita, M.; Fakhry, C.; Koch, W.M.; Westra, W.H.; Gillison, M.L. Case-Control Study of Human Papillomavirus and Oropharyngeal Cancer. N. Engl. J. Med. 2007, 356, 1944–1956. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Di Palo, M.P.; Folliero, V.; Cannatà, D.; Franci, G.; Martina, S.; Amato, M. Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review. Cancers 2023, 15, 5540. [Google Scholar] [CrossRef] [PubMed]
- Akbari, E.; Milani, A.; Seyedinkhorasani, M.; Bolhassani, A. HPV Co-Infections with Other Pathogens in Cancer Development: A Comprehensive Review. J. Med. Virol. 2023, 95, e29236. [Google Scholar] [CrossRef] [PubMed]
- Ragin, C.C.R.; Taioli, E. Survival of Squamous Cell Carcinoma of the Head and Neck in Relation to Human Papillomavirus Infection: Review and Meta-Analysis. Int. J. Cancer 2007, 121, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Torabi, S.J.; Yarbrough, W.G.; Mehra, S.; Osborn, H.A.; Judson, B. Association of Human Papillomavirus Status at Head and Neck Carcinoma Subsites with Overall Survival. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.X.; Puccinelli, C.L.; Price, D.L.; Karp, E.E.; Price, K.A.; Ma, D.J.; Lohse, C.; Moore, E.J.; Abel, K.M.V. The Prognostic Role of Medical Comorbidities in Surgically Treated Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma. Oral Oncol. 2020, 108, 104822. [Google Scholar] [CrossRef]
- Langendijk, J.A. Impact of Late Treatment-Related Toxicity on Quality of Life among Patients with Head and Neck Cancer Treated with Radiotherapy. J. Clin. Oncol. 2008, 26, 3770–3776. [Google Scholar] [CrossRef] [PubMed]
- Owosho, A.A.; Wiley, R.; Stansbury, T.; Gbadamosi, S.O.; Ryder, J.S. Trends in Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma Incidence, Vermont 1999–2013. J. Community Health 2018, 43, 731–737. [Google Scholar] [CrossRef]
- Patel, R.R.; Ludmir, E.B.; Augustyn, A.; Zaorsky, N.G.; Lehrer, E.J.; Ryali, R.; Trifiletti, D.M.; Adeberg, S.; Amini, A.; Verma, V. De-Intensification of Therapy in Human Papillomavirus Associated Oropharyngeal Cancer: A Systematic Review of Prospective Trials. Oral Oncol. 2020, 103, 104608. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Crowder, H.R.; Gorelik, D.; Badger, C.; Schottler, J.; Li, N.-W.; Siegel, R.; Sadeghi, N.; Thakkar, P.G.; Joshi, A.S.; et al. Comparison of Quality of Life Outcomes in a De-Intensification Treatment Regimen for P16 + Oropharyngeal Cancer. Eur. Arch. Otorhinolaryngol. 2022, 279, 4533–4540. [Google Scholar] [CrossRef]
- Haderlein, M.; von der Grün, J.; Balermpas, P.; Rödel, C.; Hautmann, M.G.; Steger, F.; Bohr, C.; Hehr, T.; Stromberger, C.; Budach, V.; et al. De-Intensification of Postoperative Radiotherapy in Head and Neck Cancer Irrespective of Human Papillomavirus Status—Results of a Prospective Multicenter Phase II Trial (DIREKHT Trial). Front. Oncol. 2024, 14, 1447123. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Flamand, Y.; Weinstein, G.S.; Li, S.; Quon, H.; Mehra, R.; Garcia, J.J.; Chung, C.H.; Gillison, M.L.; Duvvuri, U.; et al. Phase II Randomized Trial of Transoral Surgery and Low-Dose Intensity Modulated Radiation Therapy in Resectable P16+ Locally Advanced Oropharynx Cancer: An ECOG-ACRIN Cancer Research Group Trial (E3311). J. Clin. Oncol. 2022, 40, 138–149. [Google Scholar] [CrossRef]
- Swisher-McClure, S.; Lukens, J.N.; Aggarwal, C.; Ahn, P.; Basu, D.; Bauml, J.M.; Brody, R.; Chalian, A.; Cohen, R.B.; Fotouhi-Ghiam, A.; et al. A Phase 2 Trial of Alternative Volumes of Oropharyngeal Irradiation for De-Intensification (AVOID): Omission of the Resected Primary Tumor Bed After Transoral Robotic Surgery for Human Papilloma Virus-Related Squamous Cell Carcinoma of the Oropharynx. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Owadally, W.; Hurt, C.; Timmins, H.; Parsons, E.; Townsend, S.; Patterson, J.; Hutcheson, K.; Powell, N.; Beasley, M.; Palaniappan, N.; et al. PATHOS: A Phase II/III Trial of Risk-Stratified, Reduced Intensity Adjuvant Treatment in Patients Undergoing Transoral Surgery for Human Papillomavirus (HPV) Positive Oropharyngeal Cancer. BMC Cancer 2015, 15, 602. [Google Scholar] [CrossRef]
- Ma, D.J.; Price, K.A.; Moore, E.J.; Patel, S.H.; Hinni, M.L.; Garcia, J.J.; Graner, D.E.; Foster, N.R.; Ginos, B.; Neben-Wittich, M.; et al. Phase II Evaluation of Aggressive Dose De-Escalation for Adjuvant Chemoradiotherapy in Human Papillomavirus-Associated Oropharynx Squamous Cell Carcinoma. J. Clin. Oncol. 2019, 37, 1909–1918. [Google Scholar] [CrossRef]
- Moore, E.J.; Van Abel, K.M.; Routman, D.M.; Lohse, C.M.; Price, K.A.R.; Neben-Wittich, M.; Chintakuntlawar, A.V.; Price, D.L.; Kasperbauer, J.L.; Garcia, J.J.; et al. Human Papillomavirus Oropharynx Carcinoma: Aggressive de-Escalation of Adjuvant Therapy. Head Neck 2021, 43, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.J.; Price, K.; Eric, M.J.; Patel, S.H.; Hinni, M.L.; Ginos, B.F.; Fruth, B.; Foster, N.R.; Chintakuntlawar, A.V.; Neben-Wittich, M.A.; et al. Long-Term Results for MC1273, A Phase II Evaluation of De-Escalated Adjuvant Radiation Therapy for Human Papillomavirus Associated Oropharyngeal Squamous Cell Carcinoma (HPV+ OPSCC). Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S61. [Google Scholar] [CrossRef]
- Sampieri, C.; Cioccoloni, E.; Costantino, A.; Kim, D.; Lee, K.; Meccariello, G.; Cammaroto, G.; Vicini, C.; Kim, S.-H. Neoadjuvant Chemotherapy Followed by Transoral Robotic Surgery versus Upfront Surgery for Locoregionally Advanced Oropharyngeal Carcinoma: A Propensity Score Matched Analysis. Head Neck 2025, 47, 175–188. [Google Scholar] [CrossRef]
- Sadeghi, N.; Mascarella, M.A.; Khalife, S.; Ramanakumar, A.V.; Richardson, K.; Joshi, A.S.; Taheri, R.; Fuson, A.; Bouganim, N.; Siegel, R. Neoadjuvant Chemotherapy Followed by Surgery for HPV-Associated Locoregionally Advanced Oropharynx Cancer. Head Neck 2020, 42, 2145–2154. [Google Scholar] [CrossRef]
- Gillison, M.L.; Trotti, A.M.; Harris, J.; Eisbruch, A.; Harari, P.M.; Adelstein, D.J. Radiotherapy plus Cetuximab or Cisplatin in Human Papillomavirus-Positive Oropharyngeal Cancer (NRG Oncology RTOG 1016): A Randomised, Multicentre, Non-Inferiority Trial. Lancet 2019, 393, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Rischin, D.; King, M.; Kenny, L.; Porceddu, S.; Wratten, C.; Macann, A.; Jackson, J.E.; Bressel, M.; Herschtal, A.; Fisher, R.; et al. Randomized Trial of Radiation Therapy with Weekly Cisplatin or Cetuximab in Low-Risk HPV-Associated Oropharyngeal Cancer (TROG 12.01)—A Trans-Tasman Radiation Oncology Group Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 876–886. [Google Scholar] [CrossRef]
- Yom, S.S.; Harris, J.; Caudell, J.J.; Geiger, J.L.; Waldron, J.; Gillison, M.; Subramaniam, R.M.; Yao, M.; Xiao, C.; Kovalchuk, N.; et al. Interim Futility Results of NRG-HN005, A Randomized, Phase II/III Non-Inferiority Trial for Non-Smoking P16+ Oropharyngeal Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, S2–S3. [Google Scholar] [CrossRef]
- Samuels, S.E.; Tao, Y.; Lyden, T.; Haxer, M.; Spector, M.; Malloy, K.M.; Prince, M.E.; Bradford, C.R.; Worden, F.P.; Schipper, M.; et al. Comparisons of Dysphagia and Quality of Life (QOL) in Comparable Patients with HPV-Positive Oropharyngeal Cancer Receiving Chemo-Irradiation or Cetuximab-Irradiation. Oral Oncol. 2016, 54, 68–74. [Google Scholar] [CrossRef]
- Rosenberg, A.J.; Izumchenko, E.; Pearson, A.; Gooi, Z.; Blair, E.; Karrison, T.; Juloori, A.; Ginat, D.; Cipriani, N.; Lingen, M.; et al. Prospective Study Evaluating Dynamic Changes of Cell-Free HPV DNA in Locoregional Viral-Associated Oropharyngeal Cancer Treated with Induction Chemotherapy and Response-Adaptive Treatment. BMC Cancer 2022, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Sherman, E.J.; Schöder, H.; Wray, R.; Boyle, J.O.; Singh, B.; Grkovski, M.; Paudyal, R.; Cunningham, L.; Zhang, Z.; et al. Hypoxia-Directed Treatment of Human Papillomavirus–Related Oropharyngeal Carcinoma. J. Clin. Oncol. 2024, 42, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Pilar, A.; O’Sullivan, B.; Huang, S.H. Risk Stratification of HPV-Associated Oropharyngeal Squamous Cell Carcinoma: Are All Tumors Created Equally? Curr. Otorhinolaryngol. Rep. 2022, 10, 68–84. [Google Scholar] [CrossRef]
- Abou Kors, T.; Meier, M.; Mühlenbruch, L.; Betzler, A.C.; Oliveri, F.; Bens, M.; Thomas, J.; Kraus, J.M.; Doescher, J.; von Witzleben, A.; et al. Multi-Omics Analysis of Overexpressed Tumor-Associated Proteins: Gene Expression, Immunopeptide Presentation, and Antibody Response in Oropharyngeal Squamous Cell Carcinoma, with a Focus on Cancer-Testis Antigens. Front. Immunol. 2024, 15, 1408173. [Google Scholar] [CrossRef] [PubMed]
- Pang, E.; Delic, N.C.; Hong, A.; Zhang, M.; Rose, B.R.; Lyons, J.G. Radiosensitization of Oropharyngeal Squamous Cell Carcinoma Cells by Human Papillomavirus 16 Oncoprotein E6∗I. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 860–865. [Google Scholar] [CrossRef]
- Sannigrahi, M.K.; Rajagopalan, P.; Lai, L.; Liu, X.; Sahu, V.; Nakagawa, H.; Jalaly, J.B.; Brody, R.M.; Morgan, I.M.; Windle, B.E.; et al. HPV E6 Regulates Therapy Responses in Oropharyngeal Cancer by Repressing the PGC-1α/ERRα Axis. JCI Insight 2022, 7, e159600. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Koneva, L.A.; Liu, Y.; Zhang, Y.; Arthur, A.E.; Zarins, K.R.; Carey, T.E.; Chepeha, D.; Wolf, G.T.; Rozek, L.S.; et al. Significant Association between Host Transcriptome-Derived HPV Oncogene E6* Influence Score and Carcinogenic Pathways, Tumor Size, and Survival in Head and Neck Cancer. Head Neck 2020, 42, 2375–2389. [Google Scholar] [CrossRef] [PubMed]
- Sedman, S.A.; Barbosa, M.S.; Vass, W.C.; Hubbert, N.L.; Haas, J.A.; Lowy, D.R.; Schiller, J.T. The Full-Length E6 Protein of Human Papillomavirus Type 16 Has Transforming and Trans-Activating Activities and Cooperates with E7 to Immortalize Keratinocytes in Culture. J. Virol. 1991, 65, 4860–4866. [Google Scholar] [CrossRef] [PubMed]
- Spector, M.E.; Sacco, A.G.; Bellile, E.; Taylor, J.M.G.; Jones, T.; Sun, K.; Brown, W.C.; Birkeland, A.C.; Bradford, C.R.; Wolf, G.T.; et al. E6 and E7 Antibody Levels Are Potential Biomarkers of Recurrence in Patients with Advanced-Stage Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. Clin. Cancer Res. 2017, 23, 2723–2729. [Google Scholar] [CrossRef]
- Stacey, S.N.; Jordan, D.; Williamson, A.J.K.; Brown, M.; Coote, J.H.; Arrand, J.R. Leaky Scanning Is the Predominant Mechanism for Translation of Human Papillomavirus Type 16 E7 Oncoprotein from E6/E7 Bicistronic mRNA. J. Virol. 2000, 74, 7284–7297. [Google Scholar] [CrossRef] [PubMed]
- Koneva, L.A.; Zhang, Y.; Virani, S.; Hall, P.B.; McHugh, J.B.; Chepeha, D.B.; Wolf, G.T.; Carey, T.E.; Rozek, L.S.; Sartor, M.A. HPV Integration in HNSCC Correlates with Survival Outcomes, Immune Response Signatures, and Candidate Drivers. Mol. Cancer Res. 2018, 16, 90–102. [Google Scholar] [CrossRef]
- Nulton, T.J.; Kim, N.-K.; DiNardo, L.J.; Morgan, I.M.; Windle, B. Patients with Integrated HPV16 in Head and Neck Cancer Show Poor Survival. Oral Oncol. 2018, 80, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Misawa, K.; Imai, A.; Matsui, H.; Kanai, A.; Misawa, Y.; Mochizuki, D.; Mima, M.; Yamada, S.; Kurokawa, T.; Nakagawa, T.; et al. Identification of Novel Methylation Markers in HPV-Associated Oropharyngeal Cancer: Genome-Wide Discovery, Tissue Verification and Validation Testing in ctDNA. Oncogene 2020, 39, 4741–4755. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Yan, S.; Li, X.; Li, M.; Zhang, Y.; Zhang, S.; Li, F.; Song, M. Transoral Robotic Surgery and Human Papillomavirus Infection: Impact on Oropharyngeal Cancer Prognosis. J. Clin. Med. 2024, 13, 4455. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.J.; Thirdborough, S.M.; Mellows, T.; Riley, C.; Harris, S.; Suchak, K.; Webb, A.; Hampton, C.; Patel, N.N.; Randall, C.J.; et al. Tumour-Infiltrating Lymphocytes Predict for Outcome in HPV-Positive Oropharyngeal Cancer. Br. J. Cancer 2014, 110, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Nordfors, C.; Grün, N.; Tertipis, N.; Ährlund-Richter, A.; Haeggblom, L.; Sivars, L.; Du, J.; Nyberg, T.; Marklund, L.; Munck-Wikland, E.; et al. CD8+ and CD4+ Tumour Infiltrating Lymphocytes in Relation to Human Papillomavirus Status and Clinical Outcome in Tonsillar and Base of Tongue Squamous Cell Carcinoma. Eur. J. Cancer 2013, 49, 2522–2530. [Google Scholar] [CrossRef] [PubMed]
- Van Abel, K.M.; Routman, D.M.; Moore, E.J.; Ma, D.J.; Yin, L.X.; Fields, P.A.; Schofield, M.; Bartemes, K.R.; Chatzopoulos, K.; Price, D.L.; et al. T Cell Fraction Impacts Oncologic Outcomes in Human Papillomavirus Associated Oropharyngeal Squamous Cell Carcinoma. Oral Oncol. 2020, 111, 104894. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.M.; Ferguson, P.; Dodds, T.; Jones, D.; Li, M.; Yang, J.; Scolyer, R.A. Significant Association of PD-L1 Expression with Human Papillomavirus Positivity and Its Prognostic Impact in Oropharyngeal Cancer. Oral Oncol. 2019, 92, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.; Young, R.J.; Bressel, M.; Urban, D.; Hendry, S.; Thai, A.; Angel, C.; Haddad, A.; Kowanetz, M.; Fua, T.; et al. Prognostic Significance of PD-L1+ and CD8+ Immune Cells in HPV+ Oropharyngeal Squamous Cell Carcinoma. Cancer Immunol. Res. 2018, 6, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.Y.F.; Cecchini, M.J.; Barrett, J.W.; Shammas-Toma, M.; De Cecco, L.; Serafini, M.S.; Cavalieri, S.; Licitra, L.; Hoebers, F.; Brakenhoff, R.H.; et al. Immune-Based Classification of HPV-Associated Oropharyngeal Cancer with Implications for Biomarker-Driven Treatment de-Intensification. EBioMedicine 2022, 86, 104373. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Serafini, M.S.; Iannò, M.F.; Carenzo, A.; Orlandi, E.; Resteghin, C.; Cavalieri, S.; Bossi, P.; Canevari, S.; Licitra, L.; et al. Mining of Self-Organizing Map Gene-Expression Portraits Reveals Prognostic Stratification of HPV-Positive Head and Neck Squamous Cell Carcinoma. Cancers 2019, 11, 1057. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Anderson, W.F.; Gillison, M.L. Incidence Trends for Human Papillomavirus–Related and –Unrelated Oral Squamous Cell Carcinomas in the United States. J. Clin. Oncol. 2008, 26, 612–619. [Google Scholar] [CrossRef]
- Pan, C.; Issaeva, N.; Yarbrough, W.G. HPV-Driven Oropharyngeal Cancer: Current Knowledge of Molecular Biology and Mechanisms of Carcinogenesis. Cancers Head Neck 2018, 3, 12. [Google Scholar] [CrossRef]
- Della Fera, A.N.; Warburton, A.; Coursey, T.L.; Khurana, S.; McBride, A.A. Persistent Human Papillomavirus Infection. Viruses 2021, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 2017, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.A.; Warburton, A. The Role of Integration in Oncogenic Progression of HPV-Associated Cancers. PLoS Pathog. 2017, 13, e1006211. [Google Scholar] [CrossRef]
- Morgan, I.M.; DiNardo, L.J.; Windle, B. Integration of Human Papillomavirus Genomes in Head and Neck Cancer: Is It Time to Consider a Paradigm Shift? Viruses 2017, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Lee, A.; Kim, T.-J.; Jin, H.-T.; Seo, Y.-B.; Park, J.-S.; Lee, S.-J. E2/E6 Ratio and L1 Immunoreactivity as Biomarkers to Determine HPV16-Positive High-Grade Squamous Intraepithelial Lesions (CIN2 and 3) and Cervical Squamous Cell Carcinoma. J. Gynecol. Oncol. 2018, 29, e38. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dong, B.; Gao, H.; Xue, H.; Pan, D.; Sun, P. HPV-16 E2/E6 and POU5F1B as Biomarkers to Determine Cervical High-Grade Squamous Lesions and More. J. Inflamm. Res. 2020, 13, 813–821. [Google Scholar] [CrossRef]
- Lim, M.Y.; Dahlstrom, K.R.; Sturgis, E.M.; Li, G. Human Papillomavirus Integration Pattern and Demographic, Clinical, and Survival Characteristics of Patients with Oropharyngeal Squamous Cell Carcinoma. Head Neck 2016, 38, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Anayannis, N.V.; Schlecht, N.F.; Ben-Dayan, M.; Smith, R.V.; Belbin, T.J.; Ow, T.J.; Blakaj, D.M.; Burk, R.D.; Leonard, S.M.; Woodman, C.B.; et al. Association of an Intact E2 Gene with Higher HPV Viral Load, Higher Viral Oncogene Expression, and Improved Clinical Outcome in HPV16 Positive Head and Neck Squamous Cell Carcinoma. PLoS ONE 2018, 13, e0191581. [Google Scholar] [CrossRef] [PubMed]
- Taby, R.; Issa, J.-P.J. Cancer Epigenetics. CA Cancer J. Clin. 2010, 60, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.F.; Assenov, Y.; Martin-Subero, J.I.; Balint, B.; Siebert, R.; Taniguchi, H.; Yamamoto, H.; Hidalgo, M.; Tan, A.-C.; Galm, O.; et al. A DNA Methylation Fingerprint of 1628 Human Samples. Genome Res. 2012, 22, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Peña, B.; Folawiyo, O.; Turaga, N.; Rodríguez-Benítez, R.J.; Felici, M.E.; Aponte-Ortiz, J.A.; Pirini, F.; Rodríguez-Torres, S.; Vázquez, R.; López, R.; et al. Promoter DNA Methylation Patterns in Oral, Laryngeal and Oropharyngeal Anatomical Regions Are Associated with Tumor Differentiation, Nodal Involvement and Survival. Oncol. Lett. 2024, 27, 89. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, R.; Wang, J. Characterization of a Prognostic Four-gene Methylation Signature Associated with Radiotherapy for Head and Neck Squamous Cell Carcinoma. Mol. Med. Rep. 2019, 20, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, M.; Guo, Y.; Wu, W.; Ji, X.; Dou, X.; Tang, H.; Zong, Z.; Zhang, X.; Xiong, D. An Aberrant DNA Methylation Signature for Predicting the Prognosis of Head and Neck Squamous Cell Carcinoma. Cancer Med. 2021, 10, 5936–5947. [Google Scholar] [CrossRef]
- Volik, S.; Alcaide, M.; Morin, R.D.; Collins, C. Cell-Free DNA (cfDNA): Clinical Significance and Utility in Cancer Shaped by Emerging Technologies. Mol. Cancer Res. MCR 2016, 14, 898–908. [Google Scholar] [CrossRef]
- Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.; Druid, H.; Arner, P.; et al. Comprehensive Human Cell-Type Methylation Atlas Reveals Origins of Circulating Cell-Free DNA in Health and Disease. Nat. Commun. 2018, 9, 5068. [Google Scholar] [CrossRef]
- Wheeler, H.E.; Maitland, M.L.; Dolan, M.E.; Cox, N.J.; Ratain, M.J. Cancer Pharmacogenomics: Strategies and Challenges. Nat. Rev. Genet. 2013, 14, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Seeger, N.; Gutknecht, S.; Zschokke, I.; Fleischmann, I.; Roth, N.; Metzger, J.; Weber, M.; Breitenstein, S.; Grochola, L.F. A Predictive Noninvasive Single-Nucleotide Variation–Based Biomarker Signature for Resectable Pancreatic Cancer: Protocol for a Prospective Validation Study. JMIR Res. Protoc. 2024, 13, e54042. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, C.; Vrugt, B.; Flury, R.; Schraml, P.; Knippschild, U.; Wild, P.; Hoerstrup, S.; Henne-Bruns, D.; Wuerl, P.; Graf, R.; et al. Identification and Validation of a Biomarker Signature in Patients with Resectable Pancreatic Cancer via Genome-Wide Screening for Functional Genetic Variants. JAMA Surg. 2019, 154, e190484. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Bell, R.B.; Bifulco, C.B.; Burtness, B.; Gillison, M.L.; Harrington, K.J.; Le, Q.-T.; Lee, N.Y.; Leidner, R.; Lewis, R.L.; et al. The Society for Immunotherapy of Cancer Consensus Statement on Immunotherapy for the Treatment of Squamous Cell Carcinoma of the Head and Neck (HNSCC). J. Immunother. Cancer 2019, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Polesel, J.; Menegaldo, A.; Tirelli, G.; Giacomarra, V.; Guerrieri, R.; Baboci, L.; Casarotto, M.; Lupato, V.; Fanetti, G.; Boscolo-Rizzo, P.; et al. Prognostic Significance of PD-L1 Expression in Patients with Primary Oropharyngeal Squamous Cell Carcinoma: A Meta-Analysis. Front Oncol. 2021, 11, 787864. [Google Scholar] [CrossRef] [PubMed]
- Symer, D.E.; Akagi, K.; Geiger, H.M.; Song, Y.; Li, G.; Emde, A.-K.; Xiao, W.; Jiang, B.; Corvelo, A.; Toussaint, N.C.; et al. Diverse Tumorigenic Consequences of Human Papillomavirus Integration in Primary Oropharyngeal Cancers. Genome Res. 2022, 32, 55–70. [Google Scholar] [CrossRef]
- Keck, M.K.; Zuo, Z.; Khattri, A.; Stricker, T.P.; Brown, C.D.; Imanguli, M.; Rieke, D.; Endhardt, K.; Fang, P.; Brägelmann, J.; et al. Integrative Analysis of Head and Neck Cancer Identifies Two Biologically Distinct HPV and Three Non-HPV Subtypes. Clin. Cancer Res. 2015, 21, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Pyeon, D.; Pearce, S.M.; Lank, S.M.; Ahlquist, P.; Lambert, P.F. Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression. PLOS Pathog. 2009, 5, e1000318. [Google Scholar] [CrossRef]
- Walter, V. Molecular Subtypes in Head and Neck Cancer Exhibit Distinct Patterns of Chromosomal Gain and Loss of Canonical Cancer Genes. PLoS ONE 2013, 8, e56823. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015, 517, 576. [Google Scholar] [CrossRef]
- Zhang, Y.; Koneva, L.A.; Virani, S.; Arthur, A.E.; Virani, A.; Hall, P.B.; Warden, C.D.; Carey, T.E.; Chepeha, D.B.; Prince, M.E.; et al. Subtypes of HPV-Positive Head and Neck Cancers Are Associated with HPV Characteristics, Copy Number Alterations, PIK3CA Mutation, and Pathway Signatures. Clin. Cancer Res. 2016, 22, 4735–4745. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garb, B.F.; Mohebbi, E.; Lawas, M.; Xia, S.; Maag, G.; Ahn, P.H.; D’Silva, N.J.; Rozek, L.S.; Sartor, M.A. Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions. Cancers 2025, 17, 357. https://doi.org/10.3390/cancers17030357
Garb BF, Mohebbi E, Lawas M, Xia S, Maag G, Ahn PH, D’Silva NJ, Rozek LS, Sartor MA. Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions. Cancers. 2025; 17(3):357. https://doi.org/10.3390/cancers17030357
Chicago/Turabian StyleGarb, Bailey Fabiny, Elham Mohebbi, Maria Lawas, Shaomiao Xia, Garett Maag, Peter H. Ahn, Nisha J. D’Silva, Laura S. Rozek, and Maureen A. Sartor. 2025. "Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions" Cancers 17, no. 3: 357. https://doi.org/10.3390/cancers17030357
APA StyleGarb, B. F., Mohebbi, E., Lawas, M., Xia, S., Maag, G., Ahn, P. H., D’Silva, N. J., Rozek, L. S., & Sartor, M. A. (2025). Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions. Cancers, 17(3), 357. https://doi.org/10.3390/cancers17030357