Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Selection of Target PKs
2.3. Molecular Analyses
2.4. Statistical Analysis
3. Results
3.1. Molecular Alterations in Genes
3.2. Identification of Potential Candidates for Regorafenib Treatment
3.2.1. Alterations in Patient Samples
3.2.2. Analysis of Potential Targets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2020, 18, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Pineda, E.; Domenech, M.; Hernandez, A.; Comas, S.; Balana, C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther. 2023, 16, 71–86. [Google Scholar] [CrossRef]
- Weller, M.; Le Rhun, E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat. Rev. 2020, 87, 102029. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef]
- Gambella, A.; Senetta, R.; Collemi, G.; Vallero, S.G.; Monticelli, M.; Cofano, F.; Zeppa, P.; Garbossa, D.; Pellerino, A.; Ruda, R.; et al. NTRK Fusions in Central Nervous System Tumors: A Rare, but Worthy Target. Int. J. Mol. Sci. 2020, 21, 753. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Drappatz, J.; de Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Ping, J.; et al. Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients with prior antiangiogenic therapy. Neuro Oncol. 2018, 20, 259–267. [Google Scholar] [CrossRef]
- Wen, P.Y.; Drappatz, J.; de Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Holland, J.; et al. Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients naive to antiangiogenic therapy. Neuro Oncol. 2018, 20, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Hutterer, M.; Nowosielski, M.; Haybaeck, J.; Embacher, S.; Stockhammer, F.; Gotwald, T.; Holzner, B.; Capper, D.; Preusser, M.; Marosi, C.; et al. A single-arm phase II Austrian/German multicenter trial on continuous daily sunitinib in primary glioblastoma at first recurrence (SURGE 01-07). Neuro Oncol. 2014, 16, 92–102. [Google Scholar] [CrossRef]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Ruda, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef]
- Lowinger, T.B.; Riedl, B.; Dumas, J.; Smith, R.A. Design and discovery of small molecules targeting raf-1 kinase. Curr. Pharm. Des. 2002, 8, 2269–2278. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouche, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Zopf, D.; Fichtner, I.; Bhargava, A.; Steinke, W.; Thierauch, K.H.; Diefenbach, K.; Wilhelm, S.; Hafner, F.T.; Gerisch, M. Pharmacologic activity and pharmacokinetics of metabolites of regorafenib in preclinical models. Cancer Med. 2016, 5, 3176–3185. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schutz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Prager, G.; Yoshino, T. The Mechanism of Action of Regorafenib in Colorectal Cancer: A Guide for the Community Physician. Clin. Adv. Hematol. Oncol. 2019, 17 (Suppl. S12), 1–19. [Google Scholar]
- Cyran, C.C.; Kazmierczak, P.M.; Hirner, H.; Moser, M.; Ingrisch, M.; Havla, L.; Michels, A.; Eschbach, R.; Schwarz, B.; Reiser, M.F.; et al. Regorafenib effects on human colon carcinoma xenografts monitored by dynamic contrast-enhanced computed tomography with immunohistochemical validation. PLoS ONE 2013, 8, e76009. [Google Scholar] [CrossRef]
- Hamed, H.A.; Tavallai, S.; Grant, S.; Poklepovic, A.; Dent, P. Sorafenib/regorafenib and lapatinib interact to kill CNS tumor cells. J. Cell. Physiol. 2015, 230, 131–139. [Google Scholar] [CrossRef]
- Daudigeos-Dubus, E.; Le Dret, L.; Lanvers-Kaminsky, C.; Bawa, O.; Opolon, P.; Vievard, A.; Villa, I.; Pages, M.; Bosq, J.; Vassal, G.; et al. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models. PLoS ONE 2015, 10, e0142612. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Alexander, B.; Berry, D.; Buxton, M.; Cavenee, W.; Colman, H.; de Groot, J.; Ellingson, B.; Gordon, G.; Hyddmark, E.; et al. CTNI-85. Gbm agile platform trial for newly diagnosed and recurrent gbm: Results of first experimental arm, regorafenib. Neuro-Oncol. 2023, 25, v97–v98. [Google Scholar] [CrossRef]
- Arai, H.; Battaglin, F.; Wang, J.; Lo, J.H.; Soni, S.; Zhang, W.; Lenz, H.J. Molecular insight of regorafenib treatment for colorectal cancer. Cancer Treat. Rev. 2019, 81, 101912. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.; Mangraviti, A.; Martini, M.; Cenci, T.; Mazzarella, C.; Gaudino, S.; Bracci, S.; Martino, A.; Della Pepa, G.M.; Offi, M.; et al. Clinical and NGS predictors of response to regorafenib in recurrent glioblastoma. Sci. Rep. 2022, 12, 16265. [Google Scholar] [CrossRef]
- Santangelo, A.; Rossato, M.; Lombardi, G.; Benfatto, S.; Lavezzari, D.; De Salvo, G.L.; Indraccolo, S.; Dechecchi, M.C.; Prandini, P.; Gambari, R.; et al. A molecular signature associated with prolonged survival in glioblastoma patients treated with regorafenib. Neuro Oncol. 2021, 23, 264–276. [Google Scholar] [CrossRef]
- Chang, L.; Ruiz, P.; Ito, T.; Sellers, W.R. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021, 39, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Hulme, E.C.; Trevethick, M.A. Ligand binding assays at equilibrium: Validation and interpretation. Br. J. Pharmacol. 2010, 161, 1219–1237. [Google Scholar] [CrossRef]
- Barbet, J.; Huclier-Markai, S. Equilibrium, affinity, dissociation constants, IC5O: Facts and fantasies. Pharm. Stat. 2019, 18, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Carrato, C.; Alameda, F.; Esteve-Codina, A.; Pineda, E.; Arpi, O.; Martinez-Garcia, M.; Mallo, M.; Gut, M.; Lopez-Martos, R.; Barco, S.D.; et al. Glioblastoma TCGA Mesenchymal and IGS 23 Tumors are Identifiable by IHC and have an Immune-phenotype Indicating a Potential Benefit from Immunotherapy. Clin. Cancer Res. 2020, 26, 6600–6609. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Codina, A.; Alameda, F.; Carrato, C.; Pineda, E.; Arpi, O.; Martinez Garcia, M.; Mallo, M.; Gut, M.; Dabad, M.; Tortosa, A.; et al. RNA-Sequencing and immunohistochemistry reveal ZFN7 as a stronger marker of survival than molecular subtypes in G-CIMP-negative glioblastoma. Clin. Cancer Res. 2020, 27, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Hernandez, A.; Munoz-Marmol, A.M.; Esteve-Codina, A.; Alameda, F.; Carrato, C.; Pineda, E.; Arpi-Llucia, O.; Martinez-Garcia, M.; Mallo, M.; Gut, M.; et al. In silico validation of RNA-Seq results can identify gene fusions with oncogenic potential in glioblastoma. Sci. Rep. 2022, 12, 14439. [Google Scholar] [CrossRef]
- Gorria, T.; Crous, C.; Pineda, E.; Hernandez, A.; Domenech, M.; Sanz, C.; Jares, P.; Munoz-Marmol, A.M.; Arpi-Llucia, O.; Melendez, B.; et al. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers 2024, 16, 735. [Google Scholar] [CrossRef] [PubMed]
- Horak, P.; Griffith, M.; Danos, A.M.; Pitel, B.A.; Madhavan, S.; Liu, X.; Chow, C.; Williams, H.; Carmody, L.; Barrow-Laing, L.; et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): Joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet Med. 2022, 24, 1991. [Google Scholar] [CrossRef] [PubMed]
- French, P.J.; Eoli, M.; Sepulveda, J.M.; de Heer, I.; Kros, J.M.; Walenkamp, A.; Frenel, J.S.; Franceschi, E.; Clement, P.M.; Weller, M.; et al. Defining EGFR amplification status for clinical trial inclusion. Neuro Oncol. 2019, 21, 1263–1272. [Google Scholar] [CrossRef]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023, 51, W207–W212. [Google Scholar] [CrossRef] [PubMed]
- Soverini, S.; Rosti, G.; Iacobucci, I.; Baccarani, M.; Martinelli, G. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring Bcr-Abl kinase domain mutations: How reliable is the IC₅₀? Oncologist 2011, 16, 868–876. [Google Scholar] [CrossRef]
- Laneuville, P.; Dilea, C.; Yin, O.Q.; Woodman, R.C.; Mestan, J.; Manley, P.W. Comparative In vitro cellular data alone are insufficient to predict clinical responses and guide the choice of BCR-ABL inhibitor for treating imatinib-resistant chronic myeloid leukemia. J. Clin. Oncol. 2010, 28, e169–e171. author reply e172. [Google Scholar] [CrossRef]
- Kort, A.; Durmus, S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm. Res. 2015, 32, 2205–2216. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, Y.; Cai, X.; Xu, R. Predict drug permeability to blood-brain-barrier from clinical phenotypes: Drug side effects and drug indications. Bioinformatics 2017, 33, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Zeiner, P.S.; Kinzig, M.; Dive, I.; Maurer, G.D.; Filipski, K.; Harter, P.N.; Senft, C.; Bahr, O.; Hattingen, E.; Steinbach, J.P.; et al. Regorafenib CSF Penetration, Efficacy, and MRI Patterns in Recurrent Malignant Glioma Patients. J. Clin. Med. 2019, 8, 2031. [Google Scholar] [CrossRef]
- Guntner, A.S.; Peyrl, A.; Mayr, L.; Englinger, B.; Berger, W.; Slavc, I.; Buchberger, W.; Gojo, J. Cerebrospinal fluid penetration of targeted therapeutics in pediatric brain tumor patients. Acta Neuropathol. Commun. 2020, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, D.; Colangelo, C.; Williams, K.; Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4, 117. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, I.B.; Joe, A.K. Mechanisms of disease: Oncogene addiction--a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol. 2006, 3, 448–457. [Google Scholar] [CrossRef]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 2003, 21, 4342–4349. [Google Scholar] [CrossRef]
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Mita, A.C.; Wei, Z.; Cheng, H.H.; Mitchell, E.P.; Wright, J.J.; Ivy, S.P.; Wang, V.; Gray, R.C.; McShane, L.M.; et al. Phase II Study of Erdafitinib in Patients With Tumors With FGFR Amplifications: Results From the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol K1. JCO Precis. Oncol. 2024, 8, e2300406. [Google Scholar] [CrossRef] [PubMed]
- Mongiardi, M.P.; Pallini, R.; D’Alessandris, Q.G.; Levi, A.; Falchetti, M.L. Regorafenib and glioblastoma: A literature review of preclinical studies, molecular mechanisms and clinical effectiveness. Expert Rev. Mol. Med. 2024, 26, e5. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Li, J.; Huang, T.; Wang, Y.; Chang, L.; Zheng, W.; Ma, Y.; Chen, F.; Gong, X.; et al. Genomic analysis of primary and recurrent gliomas reveals clinical outcome related molecular features. Sci. Rep. 2019, 9, 16058. [Google Scholar] [CrossRef]
HUGO Term | PK Name | Previous PK Term | UniProt PK Term | PK Inhibited at Clinically Achievable Concentrations (N = 18) a | Gene Involved in Angiogenesis Pathways (N = 19) b |
---|---|---|---|---|---|
ABL1 | Tyrosine-protein kinase ABL1 | ABL1 | ABL1 | Yes | Yes |
BRAF | Serine/threonine-protein kinase B-raf | BRAF | BRAF | Yes | Yes |
CDK19 | Cyclin-dependent kinase 19 | CDK11 | CDK19 | ||
CDK8 | Cyclin-dependent kinase 8 | CDK8 | CDK8 | ||
CDKL2 | Cyclin-dependent kinase-like 2 | CDKL2 | CDKL2 | ||
CSF1R | Macrophage colony-stimulating factor 1 receptor | CSF1R | CSF1R | ||
DDR1 | Epithelial discoidin domain-containing receptor 1 | DDR1 | DDR1 | ||
DDR2 | Discoidin domain-containing receptor 2 | DDR2 | DDR2 | Yes | |
EPHA2 | Ephrin type-A receptor 2 | EPHA2 | ECK | Yes | Yes |
EPHA6 | Ephrin type-A receptor 6 | EPHA6 | EPHA6 | ||
EPHA8 | Ephrin type-A receptor 8 | EPHA8 | EPHA8 | ||
FGFR1 | Fibroblast growth factor receptor 1 | FGFR1 | FGFR1 | Yes | Yes |
FGFR2 | Fibroblast growth factor receptor 2 | FGFR1 | FGFR2 | Yes | Yes |
FGFR3 | Fibroblast growth factor receptor 3 | FGFR3 | FGFR3 | ||
FGFR4 | Fibroblast growth factor receptor 4 | FGFR4 | FGFR4 | ||
FLT1 | Vascular endothelial growth factor receptor 1 | VEGFR1 | VEGFR1 | Yes | Yes |
FLT3 | Receptor-type tyrosine-protein kinase FLT3 | FLT3 | FLT3 | Yes | |
FLT4 | Vascular endothelial growth factor receptor 3 | VEGFR3 | VEGFR3 | Yes | Yes |
FRK | Tyrosine-protein kinase FRK | FRK/PTK5 | FRK | Yes | |
HIPK4 | Homeodomain-interacting protein kinase 4 | HIPK4 | HIPK4 | ||
KDR | Vascular endothelial growth factor receptor 2 | VEGFR2 | VEGFR2 | Yes | Yes |
KIT | Mast/stem cell growth factor receptor Kit | KIT | KIT | Yes | Yes |
MAP2K5 | Dual-specificity mitogen-activated protein kinase kinase 5 | MEK5 | MAP2K5 | Yes | |
MAP3K19 | Mitogen-activated protein kinase kinase kinase 19 | YSK4 | M3K19 | ||
MAP3K20 | Mitogen-activated protein kinase kinase kinase 20 | ZAK | ZAK | ||
MAP3K7 | Mitogen-activated protein kinase kinase kinase 7 | TAK1 | TAK1 | ||
MAP4K4 | Mitogen-activated protein kinase kinase kinase kinase 4 | MAP4K4 | M4K4 | ||
MAPK11 | Mitogen-activated protein kinase 11 | p38-beta/SAPK2 | MAPK11 | Yes | Yes |
MAPK14 | Mitogen-activated protein kinase 14 | p38-alpha | MK14 | Yes | |
MAPK15 | Mitogen-activated protein kinase 15 | ERK8 | MK15 | ||
MAPK9 | Mitogen-activated protein kinase 9 | JNK2 | JNK2 | Yes | |
MKNK2 | MAP kinase-interacting serine/threonine-protein kinase 2 | MKNK2 | MKNK2 | ||
MUSK | Muscle, skeletal receptor tyrosine-protein kinase | MUSK | MUSK | ||
NTRK1 | High-affinity nerve growth factor receptor | TRKA | NTRK1 | Yes | |
NTRK3 | NT-3 growth factor receptor | TRKC | TRKC | ||
PDGFRA | Platelet-derived growth factor receptor alpha | PGFRA | PGFRA | Yes | Yes |
PDGFRB | Platelet-derived growth factor receptor beta | PGFRB | PGFRB | Yes | Yes |
RAF1 | RAF proto-oncogene serine/threonine-protein kinase | RAF1 | RAF1 | Yes | Yes |
RET | Proto-oncogene tyrosine-protein kinase receptor Ret | RET | RET | Yes | |
SLK | STE20-like serine/threonine-protein kinase | SLK | SLK | ||
STK10 | Serine/threonine-protein kinase 10 | LOK | STK10 | ||
TAOK3 | Serine/threonine-protein kinase TAO3 | TAOK3 | TAOK3 | ||
TEK | Angiopoietin-1 receptor | TIE2 | TIE2 | Yes | Yes |
TIE1 | Tyrosine-protein kinase receptor Tie-1 | TIE1 | TIE1 | Yes | |
TNIK | TRAF2 and NCK interacting kinase | TNIK | TNIK | ||
TNNI3K | Serine/threonine-protein kinase TNNI3K | TNNI3K | TNI3K |
Alterations Detected in Each Patient Sample a (46-Gene Set) | N alterations in Each Patient Sample (46-Gene Set) | Putative Oncogenic Alterations Detected in Each Patient Sample (46-Gene Set) | Putative Regorafenib Target? (46-Gene Set) | Putative Regorafenib Target? (18-Gene Set) | Putative Regorafenib Target? (23-Gene Set) |
---|---|---|---|---|---|
EPHA2 amp and MAPK11 amp and PDGFRB amp and MAPK15 amp and FLT3 amp and HIPK4 amp | 6 | EPHA2 amp and MAPK11 amp and PDGFRB amp and MAPK15 amp and FLT3 amp and HIPK4 amp | yes | yes | yes |
KDR amp and KIT amp and PDGFRA amp and FRK over and HIPK4 over | 5 | KDR amp and KIT amp and PDGFRA amp and FRK over and HIPK4 over | yes | yes | yes |
KDR mut and FLT4 mut and KDR amp and PDGFRA amp and KIT amp | 5 | KDR amp and PDGFRA amp and KIT amp | yes | yes | yes |
KDR mut and DDR2 mut and HIPK4 mut and SLK mut and MKNK2 mut | 5 | - | no | no | no |
BRAF amp and KIT amp and PDGFRA amp and STK10 mut | 4 | BRAF amp and KIT amp and PDGFRA amp | yes | yes | yes |
PDGFRA amp and MAP3K19 mut (VUS-NMD) and TEK mut and PDGFRA over | 4 | PDGFRA amp and PDGFRA over | yes | yes | yes |
MKNK2 mut and EPHA2 mut and DDR1 mut and BRAF mut | 4 | - | no | no | no |
KDR amp and KIT amp and PDGFRA amp | 3 | KDR amp and KIT amp and PDGFRA amp | yes | yes | yes |
FRK mut and PDGFRA amp and KIT amp | 3 | PDGFRA amp and KIT amp | yes | yes | yes |
PDGFRA amp and MAP4K4 mut and MUSK over | 3 | PDGFRA amp and MUSK over | yes | yes | yes |
FLT3 mut and EPHA2 over and MKNK2 over | 3 | EPHA2 over and MKNK2 over | yes | yes | yes |
NTRK1 mut and FGFR4 mut and RAF1 over | 3 | RAF1 over | yes | yes | yes |
RET mut and MAP2K5 mut and PDGFRA over | 3 | PDGFRA over | yes | yes | yes |
NTRK1 mut and BRAF mut and MAP2K5 mut (VUS-NMD) | 3 | BRAF mut | yes | yes | yes |
FLT4 mut and SLK over and MAP2K5 over | 3 | SLK over and MAP2K5 over | yes | no | yes |
FGFR1 mut, MAPK9 mut and MAPK9 amp | 3 | MAPK9 amp | yes | no | yes |
NTRK1 mut and FLT4 mut and KDR mut | 3 | - | no | no | no |
FLT4 mut and BRAF mut and MAP3K19 mut (VUS-NMD) | 3 | - | no | no | no |
PDGFRA amp and PDGFRA over | 2 | PDGFRA amp and PDGFRA over | yes | yes | yes |
PDGFRA amp and ABL1::SZRD1 fusion | 2 | PDGFRA amp and ABL1::SZRD1 fusion | yes | yes | yes |
MAPK9 amp and DDR2 mut | 2 | MAPK9 amp and DDR2 mut | yes | yes | yes |
FGFR1 amp and FGFR4 amp | 2 | FGFR1 amp and FGFR4 amp | yes | yes | yes |
NTRK1 mut and PDGFRA mut | 2 | PDGFRA mut | yes | yes | yes |
EPHA2 mut and FGFR2 mut | 2 | FGFR2 mut | yes | yes | yes |
CSFR1 mut and EPHA2 over | 2 | EPHA2 over | yes | yes | yes |
KDR mut and FRK over | 2 | FRK over | yes | yes | yes |
FRK mut and FRK over | 2 | FRK over | yes | yes | yes |
HIPK4 over and MUSK over | 2 | HIPK4 over and MUSK over | yes | no | no |
DDR1 mut and SLK over | 2 | SLK over | yes | no | no |
FGFR2 mut and PDGFRB mut | 2 | - | no | no | no |
FLT1 mut and FLT4 mut | 2 | - | no | no | no |
FLT4 mut and DDR2 mut | 2 | - | no | no | no |
KDR mut and KIT mut | 2 | - | no | no | no |
FLT4 mut and TNIK mut | 2 | - | no | no | no |
MKNK2 mut and MAP3K7 mut | 2 | - | no | no | no |
MAP4K4 mut | 1 | - | no | no | no |
PDGFRA over | 1 | PDGFRA over | yes | yes | yes |
RAF1 amp | 1 | RAF1 amp | yes | yes | yes |
PDGFRB amp | 1 | PDGFRB amp | yes | yes | yes |
BRAF mut | 1 | BRAF mut | yes | yes | yes |
MAPK9 over | 1 | MAPK9 over | yes | no | yes |
MAPK9 amp | 1 | MAPK9 amp | yes | no | yes |
FRK over | 1 | FRK over | yes | yes | yes |
HIPK4 over | 1 | HIPK4 over | yes | no | no |
CDK8 amp | 1 | CDK8 amp | yes | no | no |
EPHA2 mut | 1 | - | no | no | no |
DDR2 mut | 1 | - | no | no | no |
FGFR1 mut | 1 | - | no | no | no |
FGFR3 mut | 1 | no | no | no | |
FLT1 mut | 1 | - | no | no | no |
KIT mut | 1 | - | no | no | no |
PDGFRA mut | 1 | - | no | no | no |
TEK mut | 1 | - | no | no | no |
TEK mut | 1 | - | no | no | no |
TEK mut | 1 | - | no | no | no |
RET mut | 1 | - | no | no | no |
TEK mut | 1 | - | no | no | no |
TIE1 mut | 1 | - | no | no | no |
CSFR1 mut | 1 | - | no | no | no |
EPHA6 mut | 1 | - | no | no | no |
MKNK2 mut | 1 | - | no | no | no |
CSFR1 mut | 1 | - | no | no | no |
DDR1 mut | 1 | - | no | no | no |
EPHA8 mut | 1 | - | no | no | no |
MAP3K19 mut | 1 | - | no | no | no |
MAP3K19 mut | 1 | - | no | no | no |
MAP3K19 mut | 1 | - | no | no | no |
MAPK14 mut | 1 | - | no | no | no |
MAPK15 mut | 1 | - | no | no | no |
MAPK15 mut | 1 | - | no | no | no |
MAPK9 mut | 1 | - | no | no | no |
TNIK mut | 1 | - | no | no | no |
TNIK mut | 1 | - | no | no | no |
Patients Included in Analysis | N Patients | N Genes Included in Analysis | ||
---|---|---|---|---|
46 Genes a | 18 Genes b | 23 Genes c | ||
Patients with Potential Regorafenib Targets | ||||
Patients with ≥1 alteration of any kind, excluding benign or likely benign mutations | 73 | 73 (70.8%) | 48 (46.6%) | 49 (47.5%) |
Patients with ≥1 putative oncogenic alteration | 34 | 34 (33%) | 26 (25.2%) | 30 (29.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Mármol, A.M.; Meléndez, B.; Hernandez, A.; Sanz, C.; Domenech, M.; Arpí-Llucia, O.; Gut, M.; Esteve, A.; Esteve-Codina, A.; Parra, G.; et al. Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib. Cancers 2025, 17, 375. https://doi.org/10.3390/cancers17030375
Muñoz-Mármol AM, Meléndez B, Hernandez A, Sanz C, Domenech M, Arpí-Llucia O, Gut M, Esteve A, Esteve-Codina A, Parra G, et al. Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib. Cancers. 2025; 17(3):375. https://doi.org/10.3390/cancers17030375
Chicago/Turabian StyleMuñoz-Mármol, Ana Maria, Bárbara Meléndez, Ainhoa Hernandez, Carolina Sanz, Marta Domenech, Oriol Arpí-Llucia, Marta Gut, Anna Esteve, Anna Esteve-Codina, Genis Parra, and et al. 2025. "Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib" Cancers 17, no. 3: 375. https://doi.org/10.3390/cancers17030375
APA StyleMuñoz-Mármol, A. M., Meléndez, B., Hernandez, A., Sanz, C., Domenech, M., Arpí-Llucia, O., Gut, M., Esteve, A., Esteve-Codina, A., Parra, G., Carrato, C., Aldecoa, I., Mallo, M., Pineda, E., Alameda, F., de la Iglesia, N., Martinez-Balibrea, E., Martinez-Cardús, A., Estival-Gonzalez, A., & Balana, C. (2025). Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib. Cancers, 17(3), 375. https://doi.org/10.3390/cancers17030375