A Comparison of the Efficacy and Safety of US-, CT-, and MR-Guided Radiofrequency and Microwave Ablation for HCC: A Systematic Review and Network Meta-Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.2.1. Studies
2.2.2. Participants
2.2.3. Interventions
2.2.4. Outcomes
2.2.5. Excluded Criteria
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction
- Overall survival (OS) at 3 years and at 5 years;
- Local tumor recurrence (LTR): LTR was defined as the appearance of any new tumor foci at the edge of an ablation zone, detected after at least one dynamic follow-up study confirming adequate ablation;
- Primary technique effectiveness (PTE): PTE was defined as the complete ablation of the target tumor on the first follow-up image;
- Major complications: A major complication was defined as an event that causes significant morbidity and disability, necessitates an increased level of care, leads to hospital admission, or significantly prolongs the hospital stay (Society of Interventional Radiology (SIR), classifications C–E).
- If the report includes both unadjusted and adjusted statistics, we opted to extract the adjusted data. In the case of multi-arm trials, we conducted the analysis by computing the standard error (SE) of the control group using the formula outlined by Woods et al. [17].
- If the HR was not directly provided but a survival curve with an at-risk table was available in the article, we calculated the HR and its 95% confidence interval (CI) using the electronic computing table developed by Tierney et al. [18].
2.6. Assessment of Risk of Bias
2.7. Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Included Study Characteristics
3.3. Risk of Bias
3.4. Network Geometry
3.5. Network Meta-Analysis
3.5.1. OS
3.5.2. LTR
3.5.3. PTE
3.6. Major Complication
3.7. Assessment of Inconsistency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCC | hepatocellular carcinoma |
MR | magnetic resonance |
CT | computed tomography |
US | ultrasound |
HR | hazard ratio |
RR | relative risk |
CI | confidence interval |
OS | overall survival |
LTR | local tumor recurrence |
PTE | primary technique effectiveness |
RFA | radiofrequency ablation |
MWA | microwave ablation |
References
- Singal, A.G.; Kanwal, F.; Llovet, J.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 864–884. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Reig, M.; Sherman, M. Evidence-Based Diagnosis, Staging, and Treatment of Patients with Hepatocellular Carcinoma. Gastroenterology 2016, 150, 835–853. [Google Scholar] [CrossRef] [PubMed]
- Men, B.; Cui, H.; Han, Z.; Jin, X.; Xu, Q.; Jin, Y.; Piao, Z.; Zhang, S. Evaluation of the efficacy of transarterial chemoembolization combined with microwave ablation followed by adjuvant therapy in patients with hepatocellular carcinoma. Front. Immunol. 2024, 15, 1337396. [Google Scholar] [CrossRef] [PubMed]
- Muglia, R.; Marra, P.; Pinelli, D.; Dulcetta, L.; Carbone, F.S.; Barbaro, A.; Celestino, A.; Colledan, M.; Sironi, S. Technical and Clinical Outcomes of Laparoscopic-Laparotomic Hepatocellular Carcinoma Thermal Ablation with Microwave Technology: Case Series and Review of Literature. Cancers 2023, 16, 92. [Google Scholar] [CrossRef]
- Vogl, T.J.; Martin, S.S.; Gruber-Rouh, T.; Booz, C.; Koch, V.; Nour-Eldin, N.A.; Hussainy Said, M.N. Comparison of Microwave and Radiofrequency Ablation for the Treatment of Small- and Medium-Sized Hepatocellular Carcinomas in a Prospective Randomized Trial. Rofo 2024, 196, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Hinshaw, J.L.; Lubner, M.G.; Ziemlewicz, T.J.; Brace, C.L.; Lee, F.T., Jr. Liver Ablation: Best Practice. Radiol. Clin. N. Am. 2015, 53, 933–971. [Google Scholar] [CrossRef] [PubMed]
- Clasen, S.; Rempp, H.; Hoffmann, R.; Graf, H.; Pereira, P.L.; Claussen, C.D. Image-guided radiofrequency ablation of hepatocellular carcinoma (HCC): Is MR guidance more effective than CT guidance? Eur. J. Radiol. 2014, 83, 111–116. [Google Scholar] [CrossRef]
- Sato, M.; Watanabe, Y.; Tokui, K.; Kawachi, K.; Sugata, S.; Ikezoe, J. CT-guided treatment of ultrasonically invisible hepatocellular carcinoma. Am. J. Gastroenterol. 2000, 95, 2102–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, G.; Li, T.; Guo, C.; Han, Y.; Zhou, X. Long-term survival analysis of ultrasound-guided percutaneous microwave ablation for hepatocellular carcinoma conforming to the Milan criteria: Primary versus recurrent HCC. Int. J. Hyperth. 2024, 41, 2318829. [Google Scholar] [CrossRef] [PubMed]
- Makovich, Z.; Logemann, J.; Chen, L.; Mhaskar, R.; Choi, J.; Parikh, N.; El-Haddad, G.; Kis, B. Liver tumor ablation in difficult locations: Microwave ablation of perivascular and subdiaphragmatic hepatocellular carcinoma. Clin. Imaging 2021, 71, 170–177. [Google Scholar] [CrossRef]
- Yin, T.; Li, W.; Zhao, P.; Wang, Y.; Zheng, J. Treatment efficacy of CT-guided percutaneous microwave ablation for primary hepatocellular carcinoma. Clin. Radiol. 2017, 72, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kato, M.; Kagaya, Y.; Zuguchi, M.; Saito, H.; Ishibashi, T.; Takahashi, S.; Yamada, S.; Takai, Y. Radiation dose and radiation protection for patients and physicians during interventional procedure. J. Radiat. Res. 2010, 51, 97–105. [Google Scholar] [CrossRef]
- Bodelle, B.; Naguib, N.N.; Schulz, B.; Eichler, K.; Müller, C.; Hansmann, M.L.; Hammerstingl, R.; Hübner, F.; Vogl, T.J.; Zangos, S. 1.5-T magnetic resonance-guided transgluteal biopsies of the prostate in patients with clinically suspected prostate cancer: Technique and feasibility. Investig. Radiol. 2013, 48, 458–463. [Google Scholar] [CrossRef]
- Lin, X.C.; Yan, Y.; Lin, L.; Lin, Q.F.; Chen, J.; Lin, Z.Y.; Chen, J. Magnetic resonance-guided thermal ablation for small liver malignant tumor located on segment II or IVa abutting the heart: A retrospective cohort study. Int. J. Hyperth. 2021, 38, 1359–1365. [Google Scholar] [CrossRef]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Woods, B.S.; Hawkins, N.; Scott, D.A. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. BMC Med. Res. Methodol. 2010, 10, 54. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2019. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 February 2019).
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, P.; Xie, Y.G.; Gong, N.M.; Sun, L.L.; Sun, C.F. Comparison of the effectiveness and safety of ultrasound- and CT-guided percutaneous radiofrequency ablation of non-operation hepatocellular carcinoma. Pathol. Oncol. Res. 2015, 21, 637–642. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Li, G.L.; Chen, J.; Chen, Z.W.; Chen, Y.P.; Lin, S.Z. Effect of heat sink on the recurrence of small malignant hepatic tumors after radiofrequency ablation. J. Can. Res. Ther. 2016, 12, 153–158. [Google Scholar] [CrossRef]
- Lee, L.H.; Hwang, J.I.; Cheng, Y.C.; Wu, C.Y.; Lee, S.W.; Yang, S.S.; Yeh, H.Z.; Chang, C.S.; Lee, T.Y. Comparable Outcomes of Ultrasound versus Computed Tomography in the Guidance of Radiofrequency Ablation for Hepatocellular Carcinoma. PLoS ONE 2017, 12, e0169655. [Google Scholar] [CrossRef]
- Hermida, M.; Cassinotto, C.; Piron, L.; Assenat, E.; Pageaux, G.P.; Escal, L.; Pierredon-Foulongne, M.A.; Verzilli, D.; Jaber, S.; Guiu, B. Percutaneous thermal ablation of hepatocellular carcinomas located in the hepatic dome using artificial carbon dioxide pneumothorax: Retrospective evaluation of safety and efficacy. Int. J. Hyperth. 2018, 35, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Aloia, T.A.; Xu, Y.; Chung, T.H.; Sheu, T.; Tina Shih, Y.C. Comparative Effectiveness of Computed Tomography- Versus Ultrasound-Guided Percutaneous Radiofrequency Ablation Among Medicare Patients 65 Years of Age or Older With Hepatocellular Carcinoma. Value Health 2019, 22, 284–292. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Xing, L.; Pan, Y.; Huang, S. The Application Comparison of Contrast-Enhanced Ultrasound and Contrast-Enhanced Computed Tomography in Radiofrequency Ablation Treatment for Hepatocellular Carcinoma. Cancer Biother. Radiopharm. 2019, 34, 621–625. [Google Scholar] [CrossRef]
- Yuan, C.; Yuan, Z.; Cui, X.; Gao, W.; Zhao, P.; He, N.; Cui, S.; Wang, Y.; Zhang, Y.; Li, W.; et al. Efficacy of ultrasound-, computed tomography-, and magnetic resonance imaging-guided radiofrequency ablation for hepatocellular carcinoma. J. Can. Res. Ther. 2019, 15, 784–792. [Google Scholar] [CrossRef]
- Si, Z.; Zhu, H.; Gao, H.; Song, X.; Niu, Z.; Ni, Q.; Yang, F.; Lu, J.; Zhou, X. Comparison of ultrasound guided versus computed tomography guided radiofrequency ablation in treatment of early hepatocellular carcinoma. Chin. J. Hepatobiliary Surg. 2020, 26, 417–421. [Google Scholar]
- Li, Z.; Wang, C.; Si, G.; Zhou, X.; Li, Y.; Li, J.; Jiao, D.; Han, X. Image-guided microwave ablation of hepatocellular carcinoma (≤5.0 cm): Is MR guidance more effective than CT guidance? BMC Cancer 2021, 21, 366. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Liang, P.C.; Su, T.H.; Lin, M.C.; Chang, Y.H.; Shih, T.T.; Kao, J.H. Iodized oil computed tomography versus ultrasound-guided radiofrequency ablation for early hepatocellular carcinoma. Hepatol. Int. 2021, 15, 1247–1257. [Google Scholar] [CrossRef]
- Yu, Z.; Li, G.; Yuan, N.; Ding, W. Comparison of ultrasound guided versus CT guided radiofrequency ablation on liver function, serum PIVKA-II, AFP levels and recurrence in patients with primary hepatocellular carcinoma. Am. J. Transl. Res. 2021, 13, 6881–6888. [Google Scholar] [PubMed]
- Mitani, H.; Naito, A.; Chosa, K.; Kodama, H.; Sumida, M.; Moriya, T.; Awai, K. Safety margin for CT- and US-guided radiofrequency ablation after TACE of HCC in the hepatic dome. Minim. Invasive Ther. Allied Technol. 2022, 31, 894–901. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, J.; Li, H.; Cai, L.; Duan, Y.; Hou, X.; Du, H.; Shao, X.; Diao, Z.; Li, C. Safety and efficacy of percutaneous microwave ablation using combined computed tomography and ultrasound-guided imaging in patients with hepatocellular carcinoma: A retrospective study. J. Cancer Res. Ther. 2022, 18, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Solbiati, L.; Brace, C.L.; Breen, D.J.; Callstrom, M.R.; Charboneau, J.W.; Chen, M.H.; Choi, B.I.; de Baère, T.; Dodd, G.D., 3rd; et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria—A 10-year update. Radiology 2014, 273, 241–260. [Google Scholar] [CrossRef]
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. Oncologist 2019, 24, e990–e1005. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, L.; Scalise, P.; Bozzi, E.; Candita, G.; Cioni, R. Thermal ablation of hepatocellular carcinoma. J. Med. Imaging Radiat. Oncol. 2023, 67, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Fornari, F.; Buscarini, L. Percutaneous ultrasound-guided radiofrequency electrocautery for the treatment of small hepatocellular carcinoma. J. Interv. Radiol. 1993, 8, 97–103. [Google Scholar]
- Seki, T.; Wakabayashi, M.; Nakagawa, T.; Itho, T.; Shiro, T.; Kunieda, K.; Sato, M.; Uchiyama, S.; Inoue, K. Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma. Cancer 1994, 74, 817–825. [Google Scholar] [CrossRef]
- Park, B.J.; Byun, J.H.; Jin, Y.H.; Won, H.J.; Shin, Y.M.; Kim, K.W.; Park, S.J.; Kim, P.N. CT-guided radiofrequency ablation for hepatocellular carcinomas that were undetectable at US: Therapeutic effectiveness and safety. J. Vasc. Interv. Radiol. 2009, 20, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Rempp, H.; Waibel, L.; Hoffmann, R.; Claussen, C.D.; Pereira, P.L.; Clasen, S. MR-guided radiofrequency ablation using a wide-bore 1.5-T MR system: Clinical results of 213 treated liver lesions. Eur. Radiol. 2012, 22, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liang, W.; Zhang, M.; Liang, P.; Gu, Y.; Kuang, M.; Cao, F.; Yu, X.; Liu, F.; Yu, J. Multiple antenna placement in microwave ablation assisted by a three-dimensional fusion image navigation system for hepatocellular carcinoma. Int. J. Hyperth. 2019, 35, 122–132. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Long, Y.; Yan, R.; Luo, L.; Zhang, M.; Li, L.; Zeng, Q.; Li, K.; Zheng, R.; Xu, E. Improving Ablation Safety for Hepatocellular Carcinoma Proximal to the Hilar Bile Ducts by Ultrasound-MR Fusion Imaging: A Preliminary Comparative Study. Front. Oncol. 2021, 11, 570312. [Google Scholar] [CrossRef]
- Okada, S. Local ablation therapy for hepatocellular carcinoma. Semin. Liver Dis. 1999, 19, 323–328. [Google Scholar] [CrossRef]
- Weiss, J.; Winkelmann, M.T.; Gohla, G.; Kübler, J.; Clasen, S.; Nikolaou, K.; Hoffmann, R. MR-guided microwave ablation in hepatic malignancies: Clinical experiences from 50 procedures. Int. J. Hyperth. 2020, 37, 349–355. [Google Scholar] [CrossRef]
- Hoffmann, R.; Rempp, H.; Keßler, D.E.; Weiß, J.; Pereira, P.L.; Nikolaou, K.; Clasen, S. MR-guided microwave ablation in hepatic tumours: Initial results in clinical routine. Eur. Radiol. 2017, 27, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lim, H.K.; Kim, S.H.; Lee, W.J.; Jang, H.J.; Lee, J.Y.; Paik, S.W.; Koh, K.C.; Lee, J.H. Hepatocellular carcinoma treated with percutaneous radio-frequency ablation: Usefulness of power Doppler US with a microbubble contrast agent in evaluating therapeutic response-preliminary results. Radiology 2000, 217, 558–563. [Google Scholar] [CrossRef]
- Xie, L.; Cao, F.; Qi, H.; Song, Z.; Shen, L.; Chen, S.; Hu, Y.; Chen, C.; Fan, W. Efficacy and safety of CT-guided percutaneous thermal ablation for hepatocellular carcinoma adjacent to the second porta hepatis. Int. J. Hyperth. 2019, 36, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Del Prete, V.; Antonino, M.; Crucinio, N.; Neve, V.; Di Leo, A.; Carr, B.I.; Barone, M. Post-recurrence survival in hepatocellular carcinoma after percutaneous radiofrequency ablation. Dig. Liver Dis. 2014, 46, 1014–1019. [Google Scholar] [CrossRef]
First Author | Year | Region | Study Design | Recruitment PERIOD | Ablation | Guidance-Modality | Sample Size | Age (mean ± SD) | %Male | Tumor Size (mean, cm) | Number of Tumors | NOS Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clasen, S [8] | 2014 | Germany | R | N.A. | RFA | CT | 29 | 66.8 ± 9 | 86 | 3.49 | 29 | 7 |
MR | 24 | 64 ± 10.1 | 2.82 | 27 | ||||||||
Wu, J [24] | 2015 | China | R | 2007–2012 | RFA | CT | 20 | 59.4 ± 10.3 | 75 | N.A. | 27 | 8 |
US | 20 | 52.3 ± 8.1 | 85 | N.A. | 24 | |||||||
Lin, Z [25] | 2016 | China | R | 2009–2014 | RFA | CT | 31 | 56.7 | 85 | 1.66 | 43 | 7 |
MR | 301 | 468 | ||||||||||
US | 49 | 53 | ||||||||||
Lee, L [26] | 2017 | Taiwan | R | 2008–2013 | RFA | CT | 51 | 69 (median) | 74.5 | 2.5 (median) | 51 | 8 |
US | 101 | 71 (median) | 63.4 | 2.5 (median) | 101 | |||||||
Hermida, M [27] | 2018 | France | R | 2015–2017 | RFA/MWA | CT | 28 | 62.2 ± 9.2 | 89 | 1.5 | 28 | 8 |
US | 28 | 63.4 ± 11.2 | 79 | 1.7 | 28 | |||||||
Huo, J [28] | 2019 | USA | R | 2002–2011 | RFA | CT | 292 | 66 (at least) | 61.4 | N.A. | N.A. | 6 |
US | 171 | 61.3 | ||||||||||
Liu, Z [29] | 2019 | China | RCT | 2013–2015 | RFA | CT | 56 | 54.5 ± 16.6 | 54 | 1.6 | 82 | N.A. |
US | 56 | 52.6 ± 13.7 | 57 | 1.5 | 88 | |||||||
Yuan, C [30] | 2019 | China | R | 2013–2016 | RFA | CT | 50 | 58.1 ± 10.4 | 86 | 1.6 (median) | N.A. | 8 |
MR | 62 | 57.4 ± 7.5 | 89 | 2.0 (median) | ||||||||
US | 29 | 57.4 ± 11.9 | 90 | 1.7 (median) | ||||||||
Si, Z [31] | 2020 | China | R | 2015–2017 | RFA | CT | 65 | 57 ± 10 | 70.8 | 2.2 | N.A. | 8 |
US | 68 | 58 ± 10 | 85.3 | 2.2 | ||||||||
Li, Z [32] | 2021 | China | R | N.A. | MWA | CT | 47 | 55.8 ± 8.9 | 66 | N.A. | N.A. | 7 |
MR | 54 | 53.2 ± 6.5 | 80 | |||||||||
Wu, C [33] | 2021 | Taiwan | R | 2016–2018 | RFA | CT | 184 | 66.3 ± 10.6 | 63.6 | 2.1 | N.A. | 8 |
US | 301 | 66.2 ± 10.6 | 64.5 | 2.2 | ||||||||
Yu, Z [34] | 2021 | China | R | N.A. | RFA | CT | 47 | 50.9 ± 7.4 | 72.34 | 4.12 | N.A. | 8 |
US | 51 | 51.6 ± 7.2 | 80.39 | 4.11 | ||||||||
Mitani, H [35] | 2022 | Japan | R | 2009–2016 | RFA | CT | 24 | 75 ± 7.6 | 79 | 1.23 | 30 | 7 |
US | 22 | 74 ± 7.3 | 68 | 1.11 | 26 | |||||||
Zhao, W [36] | 2022 | China | R | 2017–2019 | MWA | CT-US | 34 | 53 ± 10.8 | 71 | 3.4 | 88 | 8 |
CT | 30 | 50 ± 11.6 | 67 | 3.0 | ||||||||
US | 24 | 54 ± 11.4 | 67 | 3.2 |
Study | Clasen, S. 2014 (CT vs. MR) [8] | Wu, J. 2015 (CT vs. US) [24] | Lin, Z. 2016 (CT vs. MR vs. US) [25] | Lee, L. 2017 (CT vs. US) [26] | Hermida, M. 2018 (CT vs. US) [27] | Huo, J. 2019 (CT vs. US) [28] | Liu, Z. 2019 (CT vs. US) [29] | Yuan, C. 2019 (CT vs. MR vs. US) [30] | Si, Z. 2020 (CT vs. US) [31] | Li, Z. 2021 (CT vs. MR) [32] | Wu, C. 2021 (CT vs. US) [33] | Yu, Z. 2021 (CT vs. US) [34] | Mitani, H. 2022 (CT vs. US) [35] | Zhao, W. 2022 (CT-US vs. CT vs. US) [36] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Endpoint | |||||||||||||||
Overall survival | |||||||||||||||
Local tumor progression | |||||||||||||||
Local tumor recurrence rate | |||||||||||||||
Local recurrence-free survival | |||||||||||||||
Progression-free survival | |||||||||||||||
Technical success rate | |||||||||||||||
Primary technique effectiveness rate | |||||||||||||||
Secondary technique effectiveness rate | |||||||||||||||
Major complication rate (SIR classification C-E) | |||||||||||||||
Minor complication rate (SIR classification A-B) | |||||||||||||||
Complication rate | |||||||||||||||
Adverse reaction rate | |||||||||||||||
Procedure time | |||||||||||||||
Endpoint reporting | Endpoint non-reporting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Vogl, T.J.; Chen, K.-A.; Adwan, H. A Comparison of the Efficacy and Safety of US-, CT-, and MR-Guided Radiofrequency and Microwave Ablation for HCC: A Systematic Review and Network Meta-Analysis. Cancers 2025, 17, 409. https://doi.org/10.3390/cancers17030409
Li H, Vogl TJ, Chen K-A, Adwan H. A Comparison of the Efficacy and Safety of US-, CT-, and MR-Guided Radiofrequency and Microwave Ablation for HCC: A Systematic Review and Network Meta-Analysis. Cancers. 2025; 17(3):409. https://doi.org/10.3390/cancers17030409
Chicago/Turabian StyleLi, Hao, Thomas J. Vogl, Kuei-An Chen, and Hamzah Adwan. 2025. "A Comparison of the Efficacy and Safety of US-, CT-, and MR-Guided Radiofrequency and Microwave Ablation for HCC: A Systematic Review and Network Meta-Analysis" Cancers 17, no. 3: 409. https://doi.org/10.3390/cancers17030409
APA StyleLi, H., Vogl, T. J., Chen, K.-A., & Adwan, H. (2025). A Comparison of the Efficacy and Safety of US-, CT-, and MR-Guided Radiofrequency and Microwave Ablation for HCC: A Systematic Review and Network Meta-Analysis. Cancers, 17(3), 409. https://doi.org/10.3390/cancers17030409