Validation of the Barcelona Magnetic Resonance Imaging Predictive Model for Significant Prostate Cancer Detection in Men Undergoing Mapping per 0.5 Mm-Core Targeted Biopsies of Suspicious Lesions and Perilesional Areas
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design, Participants, and Setting
2.2. Diagnostic Approach for sPCa Detection in Prostate Biopsies
2.3. Assessment of Individual sPCa Likelihood
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Validation Cohort
3.2. Calibration of the BCN-MRI PM in the Validation Cohort
3.3. Discrimination Ability, Net Benefit, and Clinical Utility of the BCN-MRI PM for sPCa Detection
3.4. Potential Clinical Utility of the BCN-MRI PM According to the PI-RADS v 2.1 Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Schroder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Screening and prostate-cancer mortality in a randomized European study. New Engl. J. Med. 2009, 360, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Frånlund, M.; Månsson, M.; Godtman, R.A.; Aus, G.; Holmberg, E.; Kollberg, K.S.; Lodding, P.; Pihl, C.G.; Stranne, J.; Lilja, H.; et al. Results from 22 years of Followup in the Göteborg Randomized Population-Based Prostate Cancer Screening Trial. J. Urol. 2022, 208, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Barentsz, J.O.; Richenberg, J.; Clements, R.; Choyke, P.; Verma, S.; Villeirs, G.; Rouviere, O.; Logager, V.; Futterer, J.J. ESUR prostate MR guidelines 2012. Eur. Radiol. 2012, 22, 746–757. [Google Scholar] [CrossRef]
- Alberts, A.R.; Roobol, M.J.; Verbeek, J.F.M.; Schoots, I.G.; Chiu, P.K.; Osses, D.F.; Tijsterman, J.D.; Beerlage, H.P.; Mannaerts, C.K.; Schimmöller, L.; et al. Prediction of High-grade Prostate Cancer Following Multiparametric Magnetic Resonance Imaging: Improving the Rotterdam European Randomized Study of Screening for Prostate Cancer Risk Calculators. Eur. Urol. 2019, 75, 310–318. [Google Scholar] [CrossRef]
- Van Poppel, H.; Hogenhout, R.; Albers, P.; van den Bergh, R.C.N.; Barentsz, J.O.; Roobol, M.J. A European Model for an Organised Risk-stratified Early Detection Programme for Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 731–739. [Google Scholar] [CrossRef]
- Jacobsen, S.J.; Girman, C.J.; Lieber, M.M. Natural history of benign prostatic hyperplasia. Urology 2001, 58, 5–16. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Mottet, N.; Confort, P.; van den Bergh, R.C.N.; Briers, E.D.; Eberli, D.; De Meerleer, G.; De Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. 2019. Available online: https://d56bochluxqnz.cloudfront.net/documents/EAU-Pocket-Prostate-Cancer-2019.pdf (accessed on 12 September 2024).
- Morote, J.; Borque-Fernando, A.; Triquell, M.; Celma, A.; Regis, L.; Escobar, M.; Mast, R.; de Torres, I.M.; Semidey, M.E.; Abascal, J.M.; et al. The Barcelona Predictive Model of Clinically Significant Prostate Cancer. Cancers 2022, 14, 1589. [Google Scholar] [CrossRef]
- Triquell, M.; Campistol, M.; Celma, A.; Regis, L.; Cuadras, M.; Planas, J.; Trilla, E.; Morote, J. Magnetic Resonance Imaging-Based Predictive Models for Clinically Significant Prostate Cancer: A Systematic Review. Cancers 2022, 14, 4747. [Google Scholar] [CrossRef]
- Morote, J.; Borque-Fernando, Á.; Triquell, M.; Campistol, M.; Servian, P.; Abascal, J.M.; Planas, J.; Méndez, O.; Esteban, L.M.; Trilla, E. Comparison of Rotterdam and Barcelona Magnetic Resonance Imaging Risk Calculators for Predicting Clinically Significant Prostate Cancer. Eur. Urol. Open. Sci. 2023, 53, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Diniz, M.A. Statistical methods for validation of predictive models. J. Nuc.l Cardiol. 2022, 29, 3248–3255. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Roethke, M.C.; Kuru, T.H.; Schultze, S.; Tichy, D.; Kopp-Schneider, A.; Fenchel, M.; Schlemmer, H.P.; Hadaschik, B.A. Evaluation of the ESUR PI-RADS scoring system for multiparametric MRI of the prostate with targeted MR/TRUS fusion-guided biopsy at 3.0 Tesla. Eur. Radiol. 2014, 24, 344–352. [Google Scholar] [CrossRef]
- Giganti, F.; Allen, C. Imaging quality and prostate MR: It is time to improve. Br. J. Radiol. 2021, 94, 20200934. [Google Scholar] [CrossRef]
- Giganti, F.; Kirkham, A.; Kasivisvanathan, V.; Papoutsaki, M.-V.; Punwani, S.; Emberton, M.; Moore, C.M.; Allen, C. Understanding PI-QUAL for prostate MRI quality: A practical primer for radiologists. Insights. Imag. 2021, 12, 59. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Br. J. Surg. 2015, 102, 148–158. [Google Scholar] [CrossRef]
- Morote, J.; Paesano, N.; Picola, N.; Miró, B.; Abascal, J.M.; Servian, P.; Trilla, E.; Méndez, O. Comparing Two Targeted Biopsy Schemes for Detecting Clinically Significant Prostate Cancer in Magnetic Resonance Index Lesions: Two- to Four-Core versus Saturated Transperineal Targeted Biopsy. Cancers 2024, 16, 2306. [Google Scholar] [CrossRef] [PubMed]
- Sanguedolce, F.; Lauwers, C.N.G.; Tedde, A.; Basile, G.; Chernysheva, D.; Uleri, A.; Baboudjian, M.; Giannarini, G.; Panebianco, V.; Madonia, M.; et al. Regional Versus Systematic Biopsy in Addition to Targeted Biopsy: Results from a Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2024, 10, 1016. [Google Scholar] [CrossRef] [PubMed]
- Brisbane, W.G.; Priester, A.M.; Ballon, J.; Kwan, L.; Delfin, M.K.; Felker, E.R.; Sisk, A.E.; Hu, J.C.; Marks, L.S. Targeted Prostate Biopsy: Umbra, Penumbra, and Value of Perilesional Sampling. Eur. Urol. 2022, 82, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Oerther, B.; Engel, H.; Bamberg, F.; Sigle, A.; Gratzke, C.; Benndorf, M. Cancer detection rates of the PI-RADSv2.1 assessment categories: Systematic review and meta-analysis on lesion level and patient level. Prostate Cancer Prostatic Dis. 2022, 25, 256–263. [Google Scholar] [CrossRef]
- Comford, P.; Tilki, D.; Bergh, R.C.N.V.D.; Briers, E.; Ebetli, D.; Meerleer, G.D.; Santis, M.D.; Gillessen, A.; Leeders, A.M.H.V.; Oldenburg, J.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. 2024. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 15 September 2024).
- Marberger, M.; Freedland, S.J.; Andriole, G.L.; Emberton, M.; Pettaway, C.; Montorsi, F.; Teloken, C.; Rittmaster, R.S.; Somerville, M.C.; Castro, R. Usefulness of prostate-specific antigen (PSA) rise as a marker of prostate cancer in men treated with dutasteride: Lessons from the REDUCE study. BJU. Int. 2012, 109, 1162–1169. [Google Scholar] [CrossRef]
- Morote, J.; Borque-Fernando, Á.; Esteban, L.M.; Picola, N.; Muñoz-Rodriguez, J.; Paesano, N.; Ruiz-Plazas, X.; Muñoz-Rivero, M.V.; Celma, A.; Manuel, G.G.; et al. External validation of the Barcelona magnetic resonance imaging predictive model for detecting significant prostate cancer including men receiving 5-alpha reductase inhibitors. World J. Urol. 2024, 42, 393. [Google Scholar] [CrossRef]
- Morote, J.; Paesano, N.; Picola, N.; Muñoz-Rodriguez, J.; Ruiz-Plazas, X.; Muñoz-Rivero, M.V.; Celma, A.; García-de Manuel, G.; Miró, B.; Servian, P.; et al. Validation of the Barcelona-MRI predictive model when PI-RADS v2.1 is used with trans-perineal prostate biopsies. Int. Braz. J. Urol. 2024, 50, 595–604. [Google Scholar] [CrossRef]
- Paesano, N.; Catalá, V.; Tcholakian, L.; Alomar, X.; Barranco, M.; Trilla, E.; Morote, J. The effectiveness of mapping-targeted biopsies on the index lesion in transperineal prostate biopsies. Int. Braz. J. Urol. 2024, 50, 119–131. [Google Scholar] [CrossRef]
- Morote, J.; Borque-Fernando, Á.; Triquell, M.; Esteban, L.M.; Trilla, E. The True Utility of Predictive Models Based on Magnetic Resonance Imaging in Selecting Candidates for Prostate Biopsy. Eur. Urol. Open. Sci. 2022, 42, 40–41. [Google Scholar] [CrossRef]
- Morote, J.; Borque-Fernando, Á.; Esteban, L.M.; Celma, A.; Campistol, M.; Miró, B.; Méndez, O.; Trilla, E. Investigating Efficient Risk-Stratified Pathways for the Early Detection of Clinically Significant Prostate Cancer. J. Pers. Med. 2024, 14, 130. [Google Scholar] [CrossRef]
- Nandi, A.; Xhafa, F. A federated learning method for real-time emotion state classification from multi-modal streaming. Methods 2022, 204, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Strobl, A.N.; Vickers, A.J.; Van Calster, B.; Steyerberg, E.; Leach, R.J.; Thompson, I.M.; Ankerst, D.P. Improving patient prostate cancer risk assessment: Moving from static, globally-applied to dynamic, practice-specific risk calculators. J. Biomed. Inform. 2015, 56, 87–93. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Zhang, J.; Wang, J.; Xiang, D.; Luo, S.; Liu, X. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better pharmacokinetic profile. Drug Deliv. 2018, 25, 827–837. [Google Scholar] [CrossRef]
- Gao, X.; Tang, J.; Liu, H.; Liu, L.; Liu, Y. Structure–activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 2019, 80, 438–445. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, Y.; Liu, H.; Yan, J.; Cui, P.; Zhang, Q.; Liu, Y. Nitrogen-containing flavonoid and their analogs with diverse B-ring in acetylcholinesterase and butyrylcholinesterase inhibition. Drug Dev. Res. 2020, 81, 1037–1047. [Google Scholar] [CrossRef]
- Sun, T.; Lv, J.; Zhao, X.; Li, W.; Zhang, Z.; Nie, L. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging. Photoacoustics 2023, 34, 100569. [Google Scholar] [CrossRef]
- Du, Y.; Chen, L.; Yan, M.; Wang, Y.; Zhong, X.; Xv, C.; Cheng, Y. Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501). Mol. Psychiatry 2023, 28, 3092–3103. [Google Scholar] [CrossRef]
- He, Y.; Bao, M.; Chen, Y.; Ye, H.; Fan, J.; Shi, G. Accuracy characterization of Shack–Hartmann sensor with residual error removal in spherical wavefront calibration. Light Adv. Manuf. 2024, 4, 393–403. [Google Scholar] [CrossRef]
- Xu, X.; Luo, Q.; Wang, J.; Song, Y.; Ye, H.; Zhang, X.; Shi, G. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution. Opto-Electron. Adv. 2024, 7, 230212. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, S.; Kong, Y.; Feng, C.; Wang, R.; Lei, L.; Chen, L. Precision matters: The value of PET/CT and PET/MRI in the clinical management of cervical cancer. Strahlenther. Onkol. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Huang, Z.; Wang, Y.; Cong, S.; Wan, L.; Hu, Z. Fusion of shallow and deep features from 18F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer. Quant. Imaging Med. Surg. 2024, 14, 5460–5472. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Jialing, W.; Jianhao, L.; Jiangpeng, A.; Feizhou, D.; Rui, J. Bi-Parametric Magnetic Resonance Imaging Analysis of Biochemical Recurrence of Prostate Cancer after Radical Surgery and Its Predictive Value: A Retrospective Study. Arch. Esp. Urol. 2024, 77, 598–604. [Google Scholar]
- Lan, Z.; Tan, F.; He, J.; Liu, J.; Lu, M.; Hu, Z.; Huang, Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. Phytomedicine 2024, 129, 155635. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Song, J.; Liu, X.; Liu, S.; Yang, N.; Zhang, Y. Tumor Cell-Targeting and Tumor Microenvironment–Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int. J. Nanomed. 2024, 19, 5837–5858. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Z.; Yang, W.; Liu, R.; Fan, G.; Gu, Z.; Tang, Z. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from Uncaria for Alzheimer’s disease therapy based on near-infrared fluorescence probe. Sens. Actuators B Chem. 2025, 424, 136895. [Google Scholar] [CrossRef]
Characteristic | Measure |
---|---|
Number of men | 457 |
Median age, years (IQR) | 67 (56–72) |
Median serum PSA, ng/mL (IQR) | 6.0 (4.8–9.0) |
Suspicious DRE, n (%) | 61 (13.3) |
PCa family history, n (%) | 80 (17.5) |
Repeated prostate biopsies, n (%) | 107 (23.4) |
Median prostate volume, ml (IQR) | 47 (34–63) |
PI-RADS score 2, n (%) | 73 (16.0) |
PI-RADS score 3, n (%) | 106 (23.2) |
PI-RADS score 4, n (%) | 175 (38.3) |
PI-RADS score 5, n (%) | 103 (22.5) |
Significant PCa detection, n (%) | 267 (58.4) |
Threshold (%) | Undetected sPCa (%) | Saved Biopsies (%) |
---|---|---|
0 | 0.0 | 0.0 |
5 | 1.5 | 9.2 |
10 | 3.7 | 20.1 |
15 | 6.0 | 26.7 |
20 | 10.9 | 33.0 |
25 | 14.2 | 37.2 |
30 | 15.0 | 39.4 |
35 | 18.4 | 42.7 |
40 | 21.7 | 45.7 |
45 | 27.3 | 49.9 |
50 | 30.3 | 53.4 |
55 | 34.1 | 56.0 |
60 | 41.9 | 61.7 |
65 | 50.9 | 68.7 |
70 | 60.3 | 74.8 |
75 | 68.9 | 79.9 |
80 | 76.8 | 85.8 |
85 | 84.3 | 90.8 |
90 | 91.4 | 95.0 |
95 | 96.6 | 98.0 |
100 | 100.0 | 100.0 |
Sensitivity (%) | Threshold (%) | Specificity (%) (95% CI) | Youden Index | Saved Biopsies (%) |
---|---|---|---|---|
100 | 1.6 | 5.3 (3.8–6.1) | 5.3 | 1.6 |
97.5 | 7.8 | 34.3 (30.4–40.2 | 25.8 | 17.1 |
95 | 11.9 | 48.4 (42.3–51.6) | 43.6 | 24.9 |
92.5 | 16.5 | 59.5 (53.4–63.5) | 52.0 | 30.2 |
90 | 18.7 | 62.6 (59.7–65.7) | 52.9 | 32.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paesano, N.; Catalá, V.; Tcholakian, L.; Alomar, X.; Barranco, M.Á.; Hernández-Mancera, J.; Miró, B.; Trilla, E.; Morote, J. Validation of the Barcelona Magnetic Resonance Imaging Predictive Model for Significant Prostate Cancer Detection in Men Undergoing Mapping per 0.5 Mm-Core Targeted Biopsies of Suspicious Lesions and Perilesional Areas. Cancers 2025, 17, 473. https://doi.org/10.3390/cancers17030473
Paesano N, Catalá V, Tcholakian L, Alomar X, Barranco MÁ, Hernández-Mancera J, Miró B, Trilla E, Morote J. Validation of the Barcelona Magnetic Resonance Imaging Predictive Model for Significant Prostate Cancer Detection in Men Undergoing Mapping per 0.5 Mm-Core Targeted Biopsies of Suspicious Lesions and Perilesional Areas. Cancers. 2025; 17(3):473. https://doi.org/10.3390/cancers17030473
Chicago/Turabian StylePaesano, Nahuel, Violeta Catalá, Larisa Tcholakian, Xavier Alomar, Miguel Ángel Barranco, Jonathan Hernández-Mancera, Berta Miró, Enrique Trilla, and Juan Morote. 2025. "Validation of the Barcelona Magnetic Resonance Imaging Predictive Model for Significant Prostate Cancer Detection in Men Undergoing Mapping per 0.5 Mm-Core Targeted Biopsies of Suspicious Lesions and Perilesional Areas" Cancers 17, no. 3: 473. https://doi.org/10.3390/cancers17030473
APA StylePaesano, N., Catalá, V., Tcholakian, L., Alomar, X., Barranco, M. Á., Hernández-Mancera, J., Miró, B., Trilla, E., & Morote, J. (2025). Validation of the Barcelona Magnetic Resonance Imaging Predictive Model for Significant Prostate Cancer Detection in Men Undergoing Mapping per 0.5 Mm-Core Targeted Biopsies of Suspicious Lesions and Perilesional Areas. Cancers, 17(3), 473. https://doi.org/10.3390/cancers17030473