The Relationship Between Response Rate and Survival Benefits in Randomized Immunotherapy Studies
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. ORR Correlation with Survival Outcomes
3.3. ORR Correlation with Survival Outcomes Based on Treatment-Line
3.4. Summary Statistics
3.5. Optimal Threshold for Maximum Survival Benefit
4. Discussion
4.1. Analysis of ORR Correlation with Survival Outcomes
4.2. Analysis of ORR Correlation with Survival Outcomes Based on Treatment-Line
4.3. Analysis of Treatment-Specific Correlation
4.4. Defining the Optimal Threshold for Maximum Survival Benefit
4.5. Limitation of Surrogate Endpoints in Predicting Long-Term Clinical Benefit
4.6. Study Limitations
4.7. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribas, A.; Wolchok, J.D. Cancer Immunotherapy Using Checkpoint Blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Aykan, N.F.; Özatlı, T. Objective Response Rate Assessment in Oncology: Current Situation and Future Expectations. World J. Clin. Oncol. 2020, 11, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. IRECIST: Guidelines for Response Criteria for Use in Trials Testing Immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, G.M.; Karuri, S.W.; Zhang, H.; Zhang, L.; Khozin, S.; Kazandjian, D.; Tang, S.; Sridhara, R.; Keegan, P.; Pazdur, R. Overall Response Rate, Progression-Free Survival, and Overall Survival with Targeted and Standard Therapies in Advanced Non–Small-Cell Lung Cancer: US Food and Drug Administration Trial-Level and Patient-Level Analyses. J. Clin. Oncol. 2015, 33, 1008–1014. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Mezquita, L.; Texier, M.; Lahmar, J.; Audigier-Valette, C.; Tessonnier, L.; Mazieres, J.; Zalcman, G.; Brosseau, S.; Le Moulec, S.; et al. Hyperprogressive Disease in Patients with Advanced Non-Small Cell Lung Cancer Treated with PD-1/PD-L1 Inhibitors or with Single-Agent Chemotherapy. JAMA Oncol. 2018, 4, 1543–1552. [Google Scholar] [CrossRef]
- Pazdur, R. Endpoints for Assessing Drug Activity in Clinical Trials. Oncologist 2008, 13, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Ning, Y.-M.; Farrell, A.; Justice, R.; Keegan, P.; Pazdur, R. Accelerated Approval of Oncology Products: The Food and Drug Administration Experience. JNCI J. Natl. Cancer Inst. 2011, 103, 636–644. [Google Scholar] [CrossRef]
- Mushti, S.L.; Mulkey, F.; Sridhara, R. Evaluation of Overall Response Rate and Progression-Free Survival as Potential Surrogate Endpoints for Overall Survival in Immunotherapy Trials. Clin. Cancer Res. 2018, 24, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, W.; Liang, H.; Wang, X.; He, J. Endpoint Surrogacy in Oncological Randomized Controlled Trials with Immunotherapies: A Systematic Review of Trial-Level and Arm-Level Meta-Analyses. Ann. Transl. Med. 2019, 7, 244. [Google Scholar] [CrossRef]
- Oxnard, G.R.; Wilcox, K.H.; Gonen, M.; Polotsky, M.; Hirsch, B.R.; Schwartz, L.H. Response Rate as a Regulatory End Point in Single-Arm Studies of Advanced Solid Tumors. JAMA Oncol. 2016, 2, 772–779. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes with Nivolumab plus Ipilimumab or Nivolumab Alone versus Ipilimumab in Patients with Advanced Melanoma. J. Clin. Oncol. 2021, 40, 127–137. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-Line Nivolumab plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.-W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; et al. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Puzanov, I.; Dummer, R.; Schadendorf, D.; Hamid, O.; Robert, C.; Hodi, F.S.; Schachter, J.; Pavlick, A.C.; Lewis, K.D.; et al. Pembrolizumab versus Investigator-Choice Chemotherapy for Ipilimumab-Refractory Melanoma (KEYNOTE-002): A Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2015, 16, 908–918. [Google Scholar] [CrossRef]
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Garon, E.B.; Kim, D.-W.; Cho, B.C.; Gervais, R.; Perez-Gracia, J.L.; Han, J.-Y.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Five Year Survival Update from KEYNOTE-010: Pembrolizumab versus Docetaxel for Previously Treated, Programmed Death-Ligand 1–Positive Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1718–1732. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab versus Placebo as Second-Line Therapy in Patients from Asia with Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2022, 41, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomised, Open-Label, Controlled, Phase 3 Trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.T.; Lee, V.H.F.; Hong, R.-L.; Ahn, M.-J.; Chong, W.Q.; Kim, S.-B.; Fuang, H.G.; Caguioa, P.B.; Ngamphaiboon, N.; Ho, C.; et al. 858O Results of KEYNOTE-122: A Phase III Study of Pembrolizumab (Pembro) Monotherapy vs Chemotherapy (Chemo) for Platinum-Pretreated, Recurrent or Metastatic (R/M) Nasopharyngeal Carcinoma (NPC). Ann. Oncol. 2021, 32, S786. [Google Scholar] [CrossRef]
- Merle, P.; Kudo, M.; Edeline, J.; Bouattour, M.; Cheng, A.-L.; Lam Chan, S.; Yau, T.; Garrido, M.; Knox, J.; Daniele, B.; et al. Pembrolizumab as Second-Line Therapy for Advanced Hepatocellular Carcinoma: Longer-Term Follow-up from the Phase 3 KEYNOTE-240 Trial. Liver Cancer 2023, 12, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.-S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Morales Barrera, R.; et al. Pembrolizumab Alone or Combined with Chemotherapy versus Chemotherapy as First-Line Therapy for Advanced Urothelial Carcinoma (KEYNOTE-361): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Chung, H.C.; Kang, Y.-K.; Chen, Z.; Bai, Y.; Zamaniah, W.; Shim, B.Y.; Park, Y.; Koo, D.-H.; Jin Wei, L.U.; Xu, J. Pembrolizumab vs Paclitaxel as Second-Line Treatment for Asian Patients with PD-L1–Positive Advanced Gastric or Gastroesophageal Cancer (GC) in the Phase III KEYNOTE-063 Trial. J. Clin. Oncol. 2020; 38, (Suppl. 15), e16586. [Google Scholar] [CrossRef]
- Grande, E.; Galsky, M.; Arija, J.A.A.; De Santis, M.; Davis, I.D.; De Giorgi, U.F.F.; Mencinger, M.; Kikuchi, E.; del Muro, X.G.; Gumus, M.; et al. IMvigor130: Efficacy and Safety from a Phase III Study of Atezolizumab (Atezo) as Monotherapy or Combined with Platinum-Based Chemotherapy (PBC) vs Placebo + PBC in Previously Untreated Locally Advanced or Metastatic Urothelial Carcinoma (MUC). Ann. Oncol. 2019, 30, v888–v889. [Google Scholar] [CrossRef]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klümpen, H.-J.; Chan, S.L.; Ozaka, M.; et al. Pembrolizumab in Combination with Gemcitabine and Cisplatin Compared with Gemcitabine and Cisplatin Alone for Patients with Advanced Biliary Tract Cancer (KEYNOTE-966): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef]
- Eskander, R.N.; Sill, M.W.; Beffa, L.; Moore, R.G.; Hope, J.M.; Musa, F.B.; Mannel, R.; Shahin, M.S.; Cantuaria, G.H.; Girda, E.; et al. Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Schjesvold, F.; Oriol, A.; Karlin, L.; Cavo, M.; Rifkin, R.M.; Yimer, H.A.; LeBlanc, R.; Takezako, N.; McCroskey, R.D.; et al. Pembrolizumab plus Lenalidomide and Dexamethasone for Patients with Treatment-Naive Multiple Myeloma (KEYNOTE-185): A Randomised, Open-Label, Phase 3 Trial. Lancet Haematol. 2019, 6, e448–e458. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Blacklock, H.; Schjesvold, F.; Rocafiguera, A.O.; Simpson, D.; George, A.; Goldschmidt, H.; Larocca, A.; Sherbenou, D.W.; Avivi, I.; et al. A Phase 3 Randomized Study of Pembrolizumab (Pembro) plus Pomalidomide (Pom) and Dexamethasone (Dex) for Relapsed/Refractory Multiple Myeloma (RRMM): KEYNOTE-183. J. Clin. Oncol. 2018, 36 (Suppl. 15), 8021. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus Chemotherapy versus Chemotherapy Alone for First-Line Treatment of Advanced Oesophageal Cancer (KEYNOTE-590): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.F.; McDermott, D.F.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Combined Nivolumab and Ipilimumab versus Ipilimumab Alone in Patients with Advanced Melanoma: 2-Year Overall Survival Outcomes in a Multicentre, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2016, 17, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Şendur, M.A.N.; Rodríguez-Abreu, D.; Park, K.; Lee, D.H.; Çiçin, I.; Yumuk, P.F.; Orlandi, F.J.; Leal, T.A.; Molinier, O.; et al. Pembrolizumab plus Ipilimumab or Placebo for Metastatic Non–Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score ≥ 50%: Randomized, Double-Blind Phase III KEYNOTE-598 Study. J. Clin. Oncol. 2021, 39, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Makker, V.; Colombo, N.; Casado Herráez, A.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Waddell, T.; Gafanov, R.; Pouliot, F.; Nosov, D.; Melichar, B.; Soulieres, D.; Borchiellini, D.; et al. Pembrolizumab (Pembro) plus Axitinib (Axi) versus Sunitinib as First-Line Therapy for Advanced Clear Cell Renal Cell Carcinoma (CcRCC): Results from 42-Month Follow-up of KEYNOTE-426. J. Clin. Oncol. 2021, 39 (Suppl. 15), 4500. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.; Ren, Z.; et al. Lenvatinib plus Pembrolizumab versus Lenvatinib plus Placebo for Advanced Hepatocellular Carcinoma (LEAP-002): A Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1399–1410. [Google Scholar] [CrossRef]
- Anon. Safety and Efficacy Study of Pembrolizumab (MK-3475) Combined with Lenvatinib (MK-7902/E7080) as First-Line Intervention in Adults With Advance Melanoma (MK-7902-003/E7080-G000-312/LEAP-003). Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT03820986 (accessed on 12 August 2024).
- Loriot, Y.; Grivas, P.; De Wit, R.; Balar, A.V.; Siefker-Radtke, A.O.; Zolnierek, J.; Csoszi, T.; Shin, S.J.; Park, S.H.; Atduev, V.; et al. First-Line Pembrolizumab (Pembro) with or without Lenvatinib (Lenva) in Patients with Advanced Urothelial Carcinoma (LEAP-011): A Phase 3, Randomized, Double-Blind Study. J. Clin. Oncol. 2022, 40 (Suppl. 6), 432. [Google Scholar] [CrossRef]
- Leighl, N.; Paz-Ares, L.; Abreu, D.R.; Hui, R.; Baka, S.; Bigot, F.; Nishio, M.; Smolin, A.; Ahmed, S.; Schoenfeld, A.; et al. 65O Phase III LEAP-008 Study of Lenvatinib plus Pembrolizumab versus Docetaxel for Metastatic Non-Small Cell Lung Cancer (NSCLC) That Progressed on a PD-(L)1 Inhibitor and Platinum-Containing Chemotherapy. Immuno-Oncol. Technol. 2023, 20, 100537. [Google Scholar] [CrossRef]
- Licitra, L.; Tahara, M.; Harrington, K.; Olivera, M.; Guo, Y.; Aksoy, S.; Fang, M.; Żurawski, B.; Csőszi, T.; Klochikhin, M.; et al. Pembrolizumab with or without Lenvatinib as First-Line Therapy for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma (R/M HNSCC): Phase 3 LEAP-010 Study. Int. J. Radiat. Oncol. *Biol. *Phys. 2024, 118, e2–e3. [Google Scholar] [CrossRef]
- Kawazoe, A.; Xu, R.; Passhak, M.; Teng, H.; Shergill, A.; Gumus, M.; Qvortrup, C.; Stintzing, S.; Towns, K.; Kim, T.; et al. LBA-5 Lenvatinib plus Pembrolizumab versus Standard of Care for Previously Treated Metastatic Colorectal Cancer (MCRC): The Phase 3 LEAP-017 Study. Ann. Oncol. 2023, 34, S179. [Google Scholar] [CrossRef]
(A) | |
OR (Log Values) | PFS Hazard Ratio |
1.80 | 0.420 |
1.30 | 0.570 |
1.29 | 0.820 |
0.710 | 0.820 |
0.790 | 1.02 |
−0.140 | 1.00 |
(B) | |
OR (Log Values) | PFS Hazard Ratio |
1.35 | 0.570 |
1.42 | 0.580 |
0.040 | 0.570 |
0.920 | 1.07 |
−0.900 | 0.840 |
0.720 | 1.15 |
1.33 | 0.980 |
2.54 | 0.660 |
0.150 | 0.740 |
−1.28 | 1.27 |
0.460 | 0.590 |
−0.13 | 1.28 |
1.58 | 0.780 |
−0.690 | 1.82 |
−0.480 | 2.10 |
1.36 | 0.420 |
(C) | |
OR (Log Values) | PFS Hazard Ratio |
0.140 | 0.820 |
0.410 | 0.780 |
0.00 | 0.860 |
0.00 | 0.920 |
0.080 | 1.22 |
−0.240 | 1.53 |
1.36 | 0.520 |
1.23 | 0.560 |
0.480 | 0.650 |
0.670 | 0.650 |
1.83 | 0.300 |
1.74 | 0.540 |
0.470 | 1.66 |
(D) | |
OR (Log Values) | PFS Hazard Ratio |
−0.542 | 1.81 |
2.51 | 0.400 |
1.77 | 0.420 |
0.00 | 1.06 |
0.267 | 0.82 |
0.128 | 1.00 |
0.626 | 0.700 |
1.77 | 0.252 |
(E) | |
OR (Log Values) | PFS Hazard Ratio |
0.890 | 0.580 |
0.870 | 0.680 |
1.45 | 0.390 |
0.630 | 0.860 |
0.270 | 0.830 |
0.590 | 0.780 |
0.260 | 0.880 |
0.200 | 0.900 |
0.560 | 0.890 |
0.920 | 0.640 |
1.90 | 0.690 |
(A) | |
OR (Log Values) | OS Hazard Ratio |
1.80 | 0.550 |
1.30 | 0.630 |
1.29 | 0.790 |
0.710 | 0.630 |
0.790 | 0.640 |
−0.140 | 0.740 |
(B) | |
OR (Log Values) | OS Hazard Ratio |
1.90 | 0.870 |
1.35 | 0.860 |
1.42 | 0.690 |
0.040 | 0.630 |
0.920 | 0.810 |
−0.900 | 0.700 |
0.720 | 0.780 |
1.33 | 0.740 |
2.54 | 0.640 |
0.150 | 0.790 |
−1.28 | 0.820 |
0.460 | 0.740 |
−0.13 | 0.900 |
1.58 | 0.780 |
−0.690 | 0.920 |
−0.480 | 0.637 |
1.36 | 0.540 |
(C) | |
OR (Log Values) | OS Hazard Ratio |
0.140 | 0.850 |
0.410 | 0.860 |
0.00 | 0.830 |
0.00 | 0.770 |
0.080 | 2.06 |
−0.240 | 1.61 |
1.36 | 0.490 |
1.23 | 0.640 |
0.480 | 0.730 |
0.670 | 0.730 |
1.83 | 0.550 |
1.74 | 0.790 |
0.470 | 0.850 |
(D) | |
OR (Log Values) | OS Hazard Ratio |
−0.542 | 0.850 |
2.51 | 0.600 |
1.77 | 0.520 |
0.00 | 1.08 |
0.267 | 0.790 |
0.128 | 0.740 |
0.626 | 0.690 |
1.77 | 0.332 |
(E) | |
OR (Log Values) | OS Hazard Ratio |
0.890 | 0.680 |
0.870 | 0.730 |
1.45 | 0.660 |
0.630 | 0.840 |
0.270 | 1.20 |
0.590 | 1.10 |
0.260 | 1.05 |
0.200 | 1.14 |
0.560 | 0.880 |
0.920 | 1.15 |
1.90 | 0.830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, A.; Stebbing, J. The Relationship Between Response Rate and Survival Benefits in Randomized Immunotherapy Studies. Cancers 2025, 17, 495. https://doi.org/10.3390/cancers17030495
Jain A, Stebbing J. The Relationship Between Response Rate and Survival Benefits in Randomized Immunotherapy Studies. Cancers. 2025; 17(3):495. https://doi.org/10.3390/cancers17030495
Chicago/Turabian StyleJain, Aditi, and Justin Stebbing. 2025. "The Relationship Between Response Rate and Survival Benefits in Randomized Immunotherapy Studies" Cancers 17, no. 3: 495. https://doi.org/10.3390/cancers17030495
APA StyleJain, A., & Stebbing, J. (2025). The Relationship Between Response Rate and Survival Benefits in Randomized Immunotherapy Studies. Cancers, 17(3), 495. https://doi.org/10.3390/cancers17030495