Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease
Simple Summary
Abstract
1. Introduction
2. Methionine Restriction Therapy for Osteosarcoma
3. Synergistic Efficacy of Conventional Chemotherapy and Methionine Restriction for Osteosarcoma
Chemotherapy | Methionine Restriction | Study Model | Result | Reference |
---|---|---|---|---|
Methotrexate | o-rMETase | Osteosarcoma of pelvis, PDOX mouse model | Significant efficacy of the combination of o-rMETase and MTX; no significant efficacy of MTX alone | Aoki Y et al. [40] |
Cisplatinum | ip-rMETase | Recurrent CDDP-resistant metastatic osteosarcoma of femur, PDOX mouse model | Significant efficacy of the combination of o-rMETase and CDDP; no significant efficacy of CDDP alone | Igarashi K et al. [42] |
Cisplatinum | o-rMETase | Osteosarcoma of pelvis, PDOX mouse model | Significant efficacy of the combination of o-rMETase and CDDP; no significant efficacy of CDDP alone | Higuchi T et al. [43] |
Cisplatinum | o-rMETase | Osteosarcoma of mammary gland, PDOX mouse model | Significant efficacy of the combination of o-rMETase and CDDP at 3.0 mg/kg; comparable to CDDP alone at 6.0 mg/kg | Masaki N et al. [44] |
Docetaxel | o-rMETase | Osteosarcoma, PDOX mouse model | Significant efficacy of the combination of o-rMETase and DOC; no significant efficacy of DOC alone | Aoki Y et al. [48] |
Docetaxel | rMETase | DOX-resistant 143B osteosarcoma cells in vitro | Synergestic efficacy of the combination of o-rMETase and DOX; no significant efficacy of DOX alone | Morinaga S et al. [49] |
Azacytidine | o-rMETase | Osteosarcoma of pelvis, PDOX mouse model | Significant efficacy of the combination of o-rMETase and AZA; no significant efficacy of AZA or DOX alone | Higuchi T et al. [51] |
Rapamycin | o-rMETase | Osteosarcoma of mammary gland, PDOX mouse model | Significant efficacy of the combination of o-rMETase and rapamycin; | Masaki N et al. [56] |
Ethionine | rMETase | 143B osteosarcoma cells and Hs27 fibroblast cells in vitro | Synergestic efficacy of the combination of o-rMETase and ethionine and down regulation of c-MYC in osteosarcoma cells; no significant efficacy in fibroblast cells | Aoki Y et al. [57] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyers, P.A.; Schwartz, C.L.; Krailo, M.; Kleinerman, E.S.; Betcher, D.; Bernstein, M.L.; Conrad, E.; Ferguson, W.; Gebhardt, M.; Goorin, A.M.; et al. Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol. 2005, 23, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Smeland, S.; Mercuri, M.; Bertoni, F.; Longhi, A.; Ruggieri, P.; Alvegard, T.A.; Picci, P.; Capanna, R.; Bernini, G.; et al. Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: A joint study by the Italian and Scandinavian Sarcoma Groups. J. Clin. Oncol. 2005, 23, 8845–8852. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer 2009, 115, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Ruggieri, P.; Cefalo, G.; Tamburini, A.; Capanna, R.; Fagioli, F.; Comandone, A.; Bertulli, R.; Bisogno, G.; Palmerini, E.; et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: An Italian sarcoma group trial ISG/OS-1. J. Clin. Oncol. 2012, 30, 2112–2118. [Google Scholar] [CrossRef]
- Berner, K.; Johannesen, T.B.; Berner, A.; Haugland, H.K.; Bjerkehagen, B.; Bøhler, P.J.; Bruland, Ø.S. Time-trends on incidence and survival in a nationwide and unselected cohort of patients with skeletal osteosarcoma. Acta Oncol. 2015, 54, 25–33. [Google Scholar] [CrossRef]
- Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J. Clin. Oncol. 2015, 33, 3029–3035. [Google Scholar] [CrossRef]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef]
- Hawkins, D.S.; Arndt, C.A. Pattern of disease recurrence and prognostic factors in patients with osteosarcoma treated with contemporary chemotherapy. Cancer 2003, 98, 2447–2456. [Google Scholar] [CrossRef]
- Chou, A.J.; Merola, P.R.; Wexler, L.H.; Gorlick, R.G.; Vyas, Y.M.; Healey, J.H.; LaQuaglia, M.P.; Huvos, A.G.; Meyers, P.A. Treatment of osteosarcoma at first recurrence after contemporary therapy: The Memorial Sloan-Kettering Cancer Center experience. Cancer 2005, 104, 2214–2221. [Google Scholar] [CrossRef]
- Bernthal, N.M.; Federman, N.; Eilber, F.R.; Nelson, S.D.; Eckardt, J.J.; Eilber, F.C.; Tap, W.D. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer 2012, 118, 5888–5893. [Google Scholar] [CrossRef]
- Susa, M.; Iyer, A.K.; Ryu, K.; Hornicek, F.J.; Mankin, H.; Amiji, M.M.; Duan, Z. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma. BMC Cancer 2009, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Martins-Neves, S.R.; Paiva-Oliveira, D.I.; Wijers-Koster, P.M.; Abrunhosa, A.J.; Fontes-Ribeiro, C.; Bovée, J.V.; Cleton-Jansen, A.M.; Gomes, C.M. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/β-catenin signaling. Cancer Lett. 2016, 370, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, G.; Zheng, Y.; Hua, Y.; Cai, Z. Drug resistance-related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies. J. Cell Mol. Med. 2019, 23, 2280–2292. [Google Scholar] [CrossRef]
- Sugimura, T.; Birnbaum, S.M.; Winitz, M.; Greenstein, J.P. Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch. Biochem. Biophys. 1959, 81, 448–455. [Google Scholar] [CrossRef]
- Chello, P.L.; Bertino, J.R. Dependence of 5-methyltetrahydrofolate utilization by L5178Y murine leukemia cells in vitro on the presence of hydroxycobalamin and transcobalamin II. Cancer Res. 1973, 33, 1898–1904. [Google Scholar]
- Halpern, B.C.; Clark, B.R.; Hardy, D.N.; Halpern, R.M.; Smith, R.A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc. Natl. Acad. Sci. USA 1974, 71, 1133–1136. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Erbe, R.W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc. Natl. Acad. Sci. USA 1976, 73, 1523–1527. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Coalson, D.W.; Jacobsen, S.J.; Erbe, R.W. Folate polyglutamate and monoglutamate accumulation in normal and SV40-transformed human fibroblasts. J. Cell Physiol. 1981, 109, 497–505. [Google Scholar] [CrossRef]
- Coalson, D.W.; Mecham, J.O.; Stern, P.H.; Hoffman, R.M. Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc. Natl. Acad. Sci. USA 1982, 79, 4248–4251. [Google Scholar] [CrossRef]
- Stern, P.H.; Mecham, J.O.; Wallace, C.D.; Hoffman, R.M. Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J. Cell Physiol. 1983, 117, 9–14. [Google Scholar] [CrossRef]
- Stern, P.H.; Wallace, C.D.; Hoffman, R.M. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J. Cell Physiol. 1984, 119, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.H.; Hoffman, R.M. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In vitro 1984, 20, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P. Methionine Dependence of Cancer. Biomolecules 2020, 10, 568. [Google Scholar] [CrossRef]
- Lauinger, L.; Kaiser, P. Sensing and Signaling of Methionine Metabolism. Metabolites 2021, 11, 83. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Yamamoto, J.; Han, Q.; Inubushi, S.; Sugisawa, N.; Hamada, K.; Nishino, H.; Miyake, K.; Kumamoto, T.; Matsuyama, R.; Bouvet, M.; et al. Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem. Biophys. Res. Commun. 2020, 533, 1034–1038. [Google Scholar] [CrossRef]
- Mecham, J.O.; Rowitch, D.; Wallace, C.D.; Stern, P.H.; Hoffman, R.M. The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem. Biophys. Res. Commun. 1983, 117, 429–434. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, M.; Hoffman, R.M. Broad selective efficacy of rMETase and PEG-rMETase on cancer cells in vitro. Anticancer. Res. 2010, 30, 793–798. [Google Scholar]
- Wang, Z.; Yip, L.Y.; Lee, J.H.J.; Wu, Z.; Chew, H.Y.; Chong, P.K.W.; Teo, C.C.; Ang, H.Y.; Peh, K.L.E.; Yuan, J.; et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat. Med. 2019, 25, 825–837. [Google Scholar] [CrossRef]
- Aoki, Y.; Tome, Y.; Han, Q.; Yamamoto, J.; Hamada, K.; Masaki, N.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Histone H3 lysine-trimethylation markers are decreased by recombinant methioninase and increased by methotrexate at concentrations which inhibit methionine-addicted osteosarcoma cell proliferation. Biochem. Biophys. Rep. 2021, 28, 101177. [Google Scholar] [CrossRef]
- Aoki, Y.; Tome, Y.; Han, Q.; Yamamoto, J.; Hamada, K.; Masaki, N.; Kubota, Y.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Deletion of MTAP Highly Sensitizes Osteosarcoma Cells to Methionine Restriction With Recombinant Methioninase. Cancer Genom. Proteom. 2022, 19, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Han, Q.; Tome, Y.; Yamamoto, J.; Kubota, Y.; Masaki, N.; Obara, K.; Hamada, K.; Wang, J.D.; Inubushi, S.; et al. Reversion of methionine addiction of osteosarcoma cells to methionine independence results in loss of malignancy, modulation of the epithelial-mesenchymal phenotype and alteration of histone-H3 lysine-methylation. Front. Oncol. 2022, 12, 1009548. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Han, Q.; Kubota, Y.; Masaki, N.; Obara, K.; Tome, Y.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Oncogenes and Methionine Addiction of Cancer: Role of c-MYC. Cancer Genom. Proteom. 2023, 20, 165–170. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Jacobsen, S.J. Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc. Natl. Acad. Sci. USA 1980, 77, 7306–7310. [Google Scholar] [CrossRef]
- Yano, S.; Li, S.; Han, Q.; Tan, Y.; Bouvet, M.; Fujiwara, T.; Hoffman, R.M. Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 2014, 5, 8729–8736. [Google Scholar] [CrossRef]
- Igarashi, K.; Kawaguchi, K.; Kiyuna, T.; Miyake, K.; Murakami, T.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Tsuchiya, H.; et al. Effective Metabolic Targeting of Human Osteosarcoma Cells In Vitro and in Orthotopic Nude-mouse Models with Recombinant Methioninase. Anticancer. Res. 2017, 37, 4807–4812. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Wang, X.; Zhang, S.; Feng, W.; Xu, L.; Nie, J.; Li, H.; Liu, J.; Xiao, G.; et al. Deprivation of methionine inhibits osteosarcoma growth and metastasis via C1orf112-mediated regulation of mitochondrial functions. Cell Death Dis. 2024, 15, 349. [Google Scholar] [CrossRef]
- Huennekens, F.M. The methotrexate story: A paradigm for development of cancer chemotherapeutic agents. Adv. Enzym. Regul. 1994, 34, 397–419. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chiang, E.P. Low-dose methotrexate inhibits methionine S-adenosyltransferase in vitro and in vivo. Mol. Med. 2012, 18, 423–432. [Google Scholar] [CrossRef]
- Aoki, Y.; Tome, Y.; Han, Q.; Yamamoto, J.; Hamada, K.; Masaki, N.; Kubota, Y.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Oral-recombinant Methioninase Converts an Osteosarcoma from Methotrexate-resistant to -sensitive in a Patient-derived Orthotopic-xenograft (PDOX) Mouse Model. Anticancer. Res. 2022, 42, 731–737. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Kawaguchi, K.; Kiyuna, T.; Miyake, K.; Miyake, M.; Li, S.; Han, Q.; Tan, Y.; Zhao, M.; Li, Y.; et al. Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: Decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 2018, 17, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T.; Oshiro, H.; Miyake, K.; Sugisawa, N.; Han, Q.; Tan, Y.; Park, J.; Zhang, Z.; Razmjooei, S.; Yamamoto, N.; et al. Oral Recombinant Methioninase, Combined With Oral Caffeine and Injected Cisplatinum, Overcome Cisplatinum-Resistance and Regresses Patient-derived Orthotopic Xenograft Model of Osteosarcoma. Anticancer. Res. 2019, 39, 4653–4657. [Google Scholar] [CrossRef]
- Masaki, N.; Han, Q.; Wu, N.F.; Samonte, C.; Wu, J.; Hozumi, C.; Obara, K.; Kubota, Y.; Aoki, Y.; Miyazaki, J.; et al. Oral-recombinant Methioninase Lowers the Effective Dose and Eliminates Toxicity of Cisplatinum for Primary Osteosarcoma of the Mammary Gland in a Patient-derived Orthotopic Xenograft Mouse Model. Vivo 2022, 36, 2598–2603. [Google Scholar] [CrossRef]
- Chevallier, B.; Fumoleau, P.; Kerbrat, P.; Dieras, V.; Roche, H.; Krakowski, I.; Azli, N.; Bayssas, M.; Lentz, M.A.; Van Glabbeke, M. Docetaxel is a major cytotoxic drug for the treatment of advanced breast cancer: A phase II trial of the Clinical Screening Cooperative Group of the European Organization for Research and Treatment of Cancer. J. Clin. Oncol. 1995, 13, 314–322. [Google Scholar] [CrossRef]
- Stern, P.H.; Hoffman, R.M. Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect. J. Natl. Cancer Inst. 1986, 76, 629–639. [Google Scholar] [CrossRef]
- Kalev, P.; Hyer, M.L.; Gross, S.; Konteatis, Z.; Chen, C.C.; Fletcher, M.; Lein, M.; Aguado-Fraile, E.; Frank, V.; Barnett, A.; et al. MAT2A Inhibition Blocks the Growth of MTAP-Deleted Cancer Cells by Reducing PRMT5-Dependent mRNA Splicing and Inducing DNA Damage. Cancer Cell 2021, 39, 209–224.e211. [Google Scholar] [CrossRef]
- Aoki, Y.; Tome, Y.; Wu, N.F.; Yamamoto, J.; Hamada, K.; Han, Q.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Oral-recombinant Methioninase Converts an Osteosarcoma from Docetaxel-resistant to -Sensitive in a Clinically-relevant Patient-derived Orthotopic-xenograft (PDOX) Mouse Model. Anticancer. Res. 2021, 41, 1745–1751. [Google Scholar] [CrossRef]
- Morinaga, S.; Han, Q.; Mizuta, K.; Kang, B.M.; Bouvet, M.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; et al. Recombinant Methioninase Synergistically Reverses High-docetaxel Resistance Developed in Osteosarcoma Cells. Anticancer. Res. 2024, 44, 4773–4778. [Google Scholar] [CrossRef]
- Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005, 10, 176–182. [Google Scholar] [CrossRef]
- Higuchi, T.; Sugisawa, N.; Yamamoto, J.; Oshiro, H.; Han, Q.; Yamamoto, N.; Hayashi, K.; Kimura, H.; Miwa, S.; Igarashi, K.; et al. The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother. Pharmacol. 2020, 85, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Sekulić, A.; Hudson, C.C.; Homme, J.L.; Yin, P.; Otterness, D.M.; Karnitz, L.M.; Abraham, R.T. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 2000, 60, 3504–3513. [Google Scholar]
- Guba, M.; von Breitenbuch, P.; Steinbauer, M.; Koehl, G.; Flegel, S.; Hornung, M.; Bruns, C.J.; Zuelke, C.; Farkas, S.; Anthuber, M.; et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat. Med. 2002, 8, 128–135. [Google Scholar] [CrossRef]
- Law, B.K. Rapamycin: An anti-cancer immunosuppressant? Crit. Rev. Oncol. Hematol. 2005, 56, 47–60. [Google Scholar] [CrossRef]
- Li, J.; Kim, S.G.; Blenis, J. Rapamycin: One drug, many effects. Cell Metab. 2014, 19, 373–379. [Google Scholar] [CrossRef]
- Masaki, N.; Han, Q.; Samonte, C.; Wu, N.F.; Hozumi, C.; Wu, J.; Obara, K.; Kubota, Y.; Aoki, Y.; Bouvet, M.; et al. Oral-recombinant Methioninase in Combination With Rapamycin Eradicates Osteosarcoma of the Breast in a Patient-derived Orthotopic Xenograft Mouse Model. Anticancer. Res. 2022, 42, 5217–5222. [Google Scholar] [CrossRef]
- Aoki, Y.; Kubota, Y.; Han, Q.; Masaki, N.; Obara, K.; Bouvet, M.; Chawla, S.P.; Tome, Y.; Nishida, K.; Hoffman, R.M. The Combination of Methioninase and Ethionine Exploits Methionine Addiction to Selectively Eradicate Osteosarcoma Cells and Not Normal Cells and Synergistically Down-regulates the Expression of C-MYC. Cancer Genom. Proteom. 2023, 20, 679–685. [Google Scholar] [CrossRef]
- Khupse, R.; Sarkar, A.B. Ethionine. Ref. Modul. Biomed. Sci. 2023, 4, 431–434. [Google Scholar] [CrossRef]
- Han, Q.; Tan, Y.; Hoffman, R.M. Oral dosing of Recombinant Methioninase Is Associated With a 70% Drop in PSA in a Patient With Bone-metastatic Prostate Cancer and 50% Reduction in Circulating Methionine in a High-stage Ovarian Cancer Patient. Anticancer. Res. 2020, 40, 2813–2819. [Google Scholar] [CrossRef]
- Han, Q.; Hoffman, R.M. Chronic Treatment of an Advanced Prostate-cancer Patient With Oral Methioninase Resulted in Long-term Stabilization of Rapidly Rising PSA Levels. Vivo 2021, 35, 2171–2176. [Google Scholar] [CrossRef]
- Han, Q.; Hoffman, R.M. Lowering and Stabilizing PSA Levels in Advanced-prostate Cancer Patients With Oral Methioninase. Anticancer. Res. 2021, 41, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Han, Q.; Hamada, K.; Aoki, Y.; Masaki, N.; Obara, K.; Tsunoda, T.; Hoffman, R.M. Long-term Stable Disease in a Rectal-cancer Patient Treated by Methionine Restriction With Oral Recombinant Methioninase and a Low-methionine Diet. Anticancer. Res. 2022, 42, 3857–3861. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Han, Q.; Hozumi, C.; Masaki, N.; Yamamoto, J.; Aoki, Y.; Tsunoda, T.; Hoffman, R.M. Stage IV Pancreatic Cancer Patient Treated With FOLFIRINOX Combined With Oral Methioninase: A Highly-Rare Case With Long-term Stable Disease. Anticancer. Res. 2022, 42, 2567–2572. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Han, Q.; Masaki, N.; Hozumi, C.; Hamada, K.; Aoki, Y.; Obara, K.; Tsunoda, T.; Hoffman, R.M. Elimination of Axillary-Lymph-Node Metastases in a Patient With Invasive Lobular Breast Cancer Treated by First-line Neo-adjuvant Chemotherapy Combined With Methionine Restriction. Anticancer. Res. 2022, 42, 5819–5823. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, V.S.; Qoura, L.A.; Demidova, E.A.; Han, Q.; Hoffman, R.M. Targeting Methionine Addiction of Cancer Cells with Methioninase. Biochemistry 2023, 88, 944–952. [Google Scholar] [CrossRef]
- Kubota, Y.; Han, Q.; Morinaga, S.; Tsunoda, T.; Hoffman, R.M. Rapid Reduction of CEA and Stable Metastasis in an NRAS-mutant Rectal-Cancer Patient Treated With FOLFIRI and Bevacizumab Combined With Oral Recombinant Methioninase and a Low-Methionine Diet Upon Metastatic Recurrence After FOLFIRI and Bevacizumab Treatment Alone. Vivo 2023, 37, 2134–2138. [Google Scholar] [CrossRef]
- Sato, M.; Han, Q.; Mizuta, K.; Mori, R.; Kang, B.M.; Morinaga, S.; Kobayashi, N.; Ichikawa, Y.; Nakajima, A.; Hoffman, R.M. Extensive Shrinkage and Long-term Stable Disease in a Teenage Female Patient With High-grade Glioma Treated With Temozolomide and Radiation in Combination With Oral Recombinant Methioninase and a Low-methionine Diet. Vivo 2024, 38, 1459–1464. [Google Scholar] [CrossRef]
- Sato, M.; Han, Q.; Mori, R.; Mizuta, K.; Kang, B.M.; Morinaga, S.; Kobayashi, N.; Ichikawa, Y.; Nakajima, A.; Hoffman, R.M. Reduction of Tumor Biomarkers from very High to Normal and Extensive Metastatic Lesions to Undetectability in a Patient With Stage IV HER2-positive Breast Cancer Treated With Low-dose Trastuzumab Deruxtecan in Combination With Oral Recombinant Methioninase and a Low-methionine Diet. Anticancer. Res. 2024, 44, 1499–1504. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, M.; Hoffman, R.M. Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells In Vitro. Anticancer. Res. 2010, 30, 1041–1046. [Google Scholar]
- Durando, X.; Thivat, E.; Farges, M.C.; Cellarier, E.; D’Incan, M.; Demidem, A.; Vasson, M.P.; Barthomeuf, C.; Chollet, P. Optimal methionine-free diet duration for nitrourea treatment: A Phase I clinical trial. Nutr. Cancer 2008, 60, 23–30. [Google Scholar] [CrossRef]
- Thivat, E.; Farges, M.C.; Bacin, F.; D’Incan, M.; Mouret-Reynier, M.A.; Cellarier, E.; Madelmont, J.C.; Vasson, M.P.; Chollet, P.; Durando, X. Phase II trial of the association of a methionine-free diet with cystemustine therapy in melanoma and glioma. Anticancer. Res. 2009, 29, 5235–5240. [Google Scholar] [PubMed]
- Mattes, M.D.; Koturbash, I.; Leung, C.N.; Wen, S.; Jacobson, G.M. A Phase I Trial of a Methionine Restricted Diet with Concurrent Radiation Therapy. Nutr. Cancer 2024, 76, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zavala, J., Sr.; Han, Q.; Xu, M.; Sun, X.; Tan, X.; Magana, R.; Geller, J.; Hoffman, R.M. Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients. Anticancer. Res. 1997, 17, 3857–3860. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, Y.; Kubota, Y.; Masaki, N.; Tome, Y.; Bouvet, M.; Nishida, K.; Hoffman, R.M. Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers 2025, 17, 506. https://doi.org/10.3390/cancers17030506
Aoki Y, Kubota Y, Masaki N, Tome Y, Bouvet M, Nishida K, Hoffman RM. Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers. 2025; 17(3):506. https://doi.org/10.3390/cancers17030506
Chicago/Turabian StyleAoki, Yusuke, Yutaro Kubota, Noriyuki Masaki, Yasunori Tome, Michael Bouvet, Kotaro Nishida, and Robert M. Hoffman. 2025. "Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease" Cancers 17, no. 3: 506. https://doi.org/10.3390/cancers17030506
APA StyleAoki, Y., Kubota, Y., Masaki, N., Tome, Y., Bouvet, M., Nishida, K., & Hoffman, R. M. (2025). Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers, 17(3), 506. https://doi.org/10.3390/cancers17030506