Circulating Biomarkers in Advanced Colorectal Cancer Patients Randomly Assigned to Three Bevacizumab-Based Regimens
Abstract
:1. Introduction
2. Experimental
2.1. Patients
2.2. Statistical Methods
2.3. Plasma Sample Collection and Analysis
3. Results
3.1. Patients
Baseline Characteristics | Number of Patients (%) |
---|---|
Gender: | |
Male | 29 (58) |
Female | 21 (42) |
Age: | |
Median (interquartile range) | 60 (51–68) |
Arm: | |
A | 13 (26) |
B | 22 (44) |
C | 15 (30) |
Perfomance Status: | |
0 | 48 (96) |
1 | 2 (4) |
Disease Extension: * | |
>10 cm | 25 (51) |
≤10 cm | 24 (49) |
Primary lesion: | |
Colon | 33 (66) |
Rectum | 17 (34) |
Number of metastatic sites: | |
1 | 37 (74) |
>1 | 13 (26) |
3.2. Biomarkers Baseline Level
Biomarker | OPN | PDGF-AB/BB | PDGF-AA | SDF-1 | CEA |
---|---|---|---|---|---|
VEGF (pg/mL) | 0.18 (0.210) | 0.08 (0.569) | −0.02 (0.888) | 0.74 (<0.001) | 0.21 (0.197) |
OPN (pg/mL) | - | −0.02 (0.871) | −0.29 (0.045) | 0.16 (0.273) | −0.01 (0.949) |
PDGF-AB-BB (pg/mL) | 0.08 (0.569) | - | 0.75 (<0.001) | 0.15 (0.319) | 0.25 (0.127) |
PDGF-AA (pg/mL) | −0.29 (0.045) | 0.75 (<0.001) | - | −0.01 (0.943) | 0.28 (0.084) |
SDF-1 (pg/mL) | 0.16 (0.273) | 0.15 (0.319) | −0.01 (0.943) | - | 0.13 (0.442) |
CEA (ng/mL) | −0.01 (0.949) | 0.25 (0.127) | 0.28 (0.084) | 0.13 (0.442) | - |
Biomarker | ≤10 cm | >10 cm | P | ||
---|---|---|---|---|---|
VEGF (pg/mL) | 132.90 | (38.89–218.70) | 203.20 | (93.28–277.50) | 0.183 |
OPN (pg/mL) | 6.17 | (2.86–10.87) | 7.51 | (6.41–8.31) | 0.217 |
PDGF-AB/BB (pg/mL) | 27470 | (15,480–41,810) | 33,460 | (18,450–46,600) | 0.480 |
PDGF-AA (pg/mL) | 23620 | (17,860–33,420) | 26,880 | (18,660–51,000) | 0.258 |
SDF-1 (pg/mL) | 75.23 | (34.35–94.53) | 98.85 | (74.22–140.00) | 0.030 |
CEA (ng/mL) | 5.60 | (2.77–13.88) | 32.76 | (5.76–2080.00) | 0.012 |
Biomarker | ||||||
---|---|---|---|---|---|---|
HR | CI | P | HR | CI | P | |
VEGF | 0.147 | |||||
Upper class versus Intermediate class | 1.73 | (0.82,3.62) | 1.98 | (0.85,4.57) | ||
OPN | 0.349 | |||||
Upper class versus Intermediate class | 1.01 | (0.49,2.07) | 1.76 | (0.81,3.82) | ||
PDGF-AB/BB | 0.602 | |||||
Upper class versus Intermediate class | 0.74 | (0.35,1.56) | 0.80 | (0.35,1.83) | ||
PDGF-AA | 0.408 | |||||
Upper class versus Intermediate class | 1.80 | (0.77,4.22) | 1.81 | (0.75,4.33) | ||
SDF-1 | 0.060 | |||||
Upper class versus Intermediate class | 1.17 | (0.56,2.45) | 1.31 | (0.57,2.99) | ||
CEA | 0.323 | |||||
Upper class versus Intermediate class | 1.15 | (0.50,2.64) | 1.05 | (0.44,2.50) |
3.3. Biomarkers Modulation during Treatment
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, K.J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H.S.; Ferrara, N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993, 362, 841–844. [Google Scholar] [CrossRef]
- Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370. [Google Scholar] [CrossRef]
- Willett, C.G.; Boucher, Y.; di Tomaso, E.; Duda, D.G.; Munn, L.L.; Tong, R.T.; Chung, D.C.; Sahani, D.V.; Kalva, S.P.; Kozin, S.V.; et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 2004, 10, 145–147. [Google Scholar] [CrossRef]
- Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 58–62. [Google Scholar] [CrossRef]
- Presta, L.G.; Chen, H.; O’Connor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997, 57, 4593–4599. [Google Scholar]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef]
- Kabbinavar, F.F.; Schulz, J.; McCleod, M.; Patel, T.; Hamm, J.T.; Hecht, J.R.; Mass, R.; Perrou, B.; Nelson, B.; Novotny, W.F. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: Results of a randomized phase II trial. J. Clin. Oncol. 2005, 23, 3697–3705. [Google Scholar] [CrossRef]
- Giantonio, B.J.; Catalano, P.J. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: Results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 2007, 25, 1539–1544. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; van Cutsem, E.; Michael, M.; Berry, S.; Rivera, F.; Kretzschmar, A.; Mazier, M.; Lutiger, B.; Cunningham, D. Feasibility of metastasectomy in patients treated with first-line bevacizumab for MCRC: Preliminary results from the first BEAT-study (first BEAT investigators). Ann. Oncol. 2006, 17. Abstract No. 373P. [Google Scholar]
- Ribero, D.; Wang, H.; Donadon, M.; Zorzi, D.; Thomas, M.B.; Eng, C.; Chang, D.Z.; Curley, S.A.; Abdalla, E.K.; Ellis, L.M.; et al. Bevacizumab improves pathologic response and protects against hepatic injury in patients treated with oxaliplatin-based chemotherapy for colorectal liver metastases. Cancer 2007, 110, 2761–2767. [Google Scholar] [CrossRef]
- Jubb, A.M.; Harris, A.L. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 2010, 11, 1172–1183. [Google Scholar] [CrossRef]
- Di Bartolomeo, M.; Bajetta, E.; Buzzoni, R.; Dotti, K.F; Mariani, L.; Filippelli, G.; Aitini, E.; Ciarlo, A.; Barone, C.; Cirillo, M.; et al. Efficacy of three different bevacizumab-containing first-line regimens for metastatic colorectal cancer (MCRC): A randomized phase II study by Italian Trials in Medical Oncology (ITMO) Group. Tumori 2010, 10. Abstract No A1. [Google Scholar]
- Machida, N.; Yoshino, T.; Boku, N.; Hironaka, S.; Onozawa, Y.; Fukutomi, A.; Yamazaki, K.; Yasui, H.; Taku, K.; Asaka, M. Impact of baseline sum of longest diameter in target lesion by RECIST on survival of patients with metastatic colorectal cancer. Jpn. J. Clin. Oncol. 2008, 38, 689–694. [Google Scholar] [CrossRef]
- Durrleman, S.; Simon, R. Flexible regression models with cubic splines. Stat. Med. 1989, 8, 551–561. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the Maximum Likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, 2–8 September 1971; Petrov, B.N., Csaki, F., Eds.; Akadèmiai Kiado: Budapest, Ungary, 1973; pp. 267–281. [Google Scholar]
- The R Software for Statistical Computing. Available online: http://www.R-project.org (accessed on 19 August 2014).).
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Lee, J.C.; Chow, N.H.; Wang, S.T.; Huang, S.M. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur. J. Cancer 2000, 36, 748–753. [Google Scholar] [CrossRef]
- Hyodo, I.; Doi, T.; Endo, H.; Hosokawa, Y.; Nishikawa, Y.; Tanimizu, M.; Jinno, K.; Kotani, Y. Clinical significance of plasma vascular endothelial growth factor in gastrointestinal cancer. Eur. J. Cancer 1998, 34, 2041–2045. [Google Scholar] [CrossRef]
- Jubb, A.M.; Hurwitz, H.I.; Bai, W.; Holmgren, E.B.; Tobin, P.; Guerrero, A.S.; Kabbinavar, F.; Holden, S.N.; Novotny, W.F.; Frantz, G.D.; et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J. Clin. Oncol. 2006, 24, 217–227. [Google Scholar]
- Kopetz, S.; Hoff, P.M.; Morris, J.S.; Wolff, R.A.; Eng, C.; Glover, K.Y.; Adinin, R.; Overman, M.J.; Valero, V.; Wen, S.; et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 2010, 28, 453–459. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Charnsangavej, C.; Hortobagyi, G.N. Angiogenesis modulation in cancer research: Novel clinical approaches. Nat. Rev. Drug Discov. 2002, 1, 415–426. [Google Scholar] [CrossRef]
- Gordon, M.S.; Margolin, K.; Talpaz, M.; Sledge, G.W., Jr.; Holmgren, E.; Benjamin, R.; Stalter, S.; Shak, S.; Adelman, D. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 2001, 19, 843–850. [Google Scholar]
- Lee, K.Y.; Peters, M.C.; Anderson, K.W.; Mooney, D.J. Controlled growth factor release from synthetic extracellular matrices. Nature 2000, 408, 998–1000. [Google Scholar] [CrossRef]
- Willett, C.G.; Duda, D.G.; di Tomaso, E.; Boucher, Y.; Ancukiewicz, M.; Sahani, D.V.; Lahdenranta, J.; Chung, D.C.; Fischman, A.J.; Lauwers, G.Y.; et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: A multidisciplinary phase II study. J. Clin. Oncol. 2009, 27, 3020–3026. [Google Scholar] [CrossRef]
- Loupakis, F.; Falcone, A.; Masi, G.; Fioravanti, A.; Kerbel, R.S.; del Tacca, M.; Bocci, G. Vascular endothelial growth factor levels in immunodepleted plasma of cancer patients as a possible pharmacodynamic marker for bevacizumab activity. J. Clin. Oncol. 2007, 25, 1816–1818. [Google Scholar] [CrossRef]
- Loupakis, F.; Cremolini, C.; Fioravanti, A.; Orlandi, P.; Salvatore, L.; Masi, G.; di Desidero, T.; Canu, B.; Schirripa, M.; Frumento, P.; et al. Pharmacodynamic and pharmacogenetic angiogenesis-related markers of first-line FOLFOXIRI plus bevacizumab schedule in metastatic colorectal cancer. Br. J. Cancer 2011, 104, 1262–1269. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E., McClanahan; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef]
- Zhu, A.X.; Sahani, D.V.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Catalano, O.A.; Sindhwani, V.; Blaszkowsky, L.S.; Yoon, S.S.; Lahdenranta, J.; et al. Efficacy, safety and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: A phase II study. J. Clin. Oncol. 2009, 27, 3027–3035. [Google Scholar] [CrossRef]
- Siegel, A.B.; Cohen, E.I.; Ocean, A.; Lehrer, D.; Goldenberg, A.; Knox, J.J.; Chen, H.; Clark-Garvey, S.; Weinberg, A.; Mandeli, J.; et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J. Clin. Oncol. 2008, 26, 2992–2998. [Google Scholar] [CrossRef]
- Freyer, G.; Rougier, P.; Bugat, R.; Droz, J.P.; Marty, M.; Bleiberg, H.; Mignard, D.; Awad, L.; Herait, P.; Culine, S.; et al. Prognostic factors for tumour response, progression-free survival and toxicity in metastatic colorectal cancer patients given irinotecan (CPT-11) as second-line chemotherapy after 5FU failure. Br. J. Cancer 2000, 83, 431–437. [Google Scholar] [CrossRef]
- Tournigand, C.; Andre, T.; Achille, E.; Ledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J. Clin. Oncol. 2004, 22, 229–237. [Google Scholar]
- Locker, G.Y.; Hamilton, S.; Harris, J.; Jessup, J.M.; Kemeny, N.; Macdonald, J.S.; Somerfield, M.R.; Hayes, D.F.; Bast, R.C., Jr.; ASCO. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 2006, 24, 5313–5327. [Google Scholar] [CrossRef]
- Petrioli, R.; Licchetta, A.; Roviello, G.; Pascucci, A.; Francini, E.; Bargagli, G.; Conca, R.; Miano, S.T.; Marzocca, G.; Francini, G.; et al. CEA and CA19.9 as early predictors of progression in advanced/metastatic colorectal cancer patients receiving oxaliplatin-based chemotherapy and bevacizumab. Cancer Invest. 2012, 30, 65–71. [Google Scholar] [CrossRef]
- Strimpakos, A.S.; Cunningham, D.; Mikropoulos, C.; Petkar, I.; Barbachano, Y.; Chau, I. The impact of carcinoembryonic antigen flare in patients with advanced colorectal cancer receiving first-line chemotherapy. Ann. Oncol. 2010, 21, 1013–1019. [Google Scholar] [CrossRef]
- Sorbye, H.; Dahl, O. Carcinoembryonic antigen surge in metastatic colorectal cancer patients responding to oxaliplatin combination chemotherapy: Implications for tumor marker monitoring and guidelines. J. Clin. Oncol. 2003, 21, 4466–4467. [Google Scholar] [CrossRef]
- De Andrade, D.P.; Lima, J.P.; Lima, A.D.; Sasse, A.D.; dos Santos, L.V. Bevacizumab in metastatic colorectal cancer and carcino-embryonic antigen kinetics: Case report and review of literature. Anticancer Drugs 2011, 22, S15–S17. [Google Scholar]
- Prager, G.W.L.; Braemswig, K.H.; Martel, A.; Unseld, M.; Heinze, G.; Brodowicz, T.; Scheithauer, W.; Kornek, G.; Zielinski, C.C. Baseline CEA serum levels predict bevacizumab-based treatment response in metastatic colorectal cancer. Cancer Sci. 2014. [Google Scholar] [CrossRef]
- Jürgensmeier, J.M.; Schmoll, H.J.; Robertson, J.D.; Brooks, L.; Taboada, M.; Morgan, S.R.; Wilson, D.; Hoff, P.M. Prognostic and predictive value of VEGF, sVEGFR-2 and CEA in mCRC studies comparing cediranib, bevacizumab and chemotherapy. Br. J. Cancer 2013, 108, 1316–1323. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martinetti, A.; Miceli, R.; Sottotetti, E.; Di Bartolomeo, M.; De Braud, F.; Gevorgyan, A.; Dotti, K.F.; Bajetta, E.; Campiglio, M.; Bianchi, F.; et al. Circulating Biomarkers in Advanced Colorectal Cancer Patients Randomly Assigned to Three Bevacizumab-Based Regimens. Cancers 2014, 6, 1753-1768. https://doi.org/10.3390/cancers6031753
Martinetti A, Miceli R, Sottotetti E, Di Bartolomeo M, De Braud F, Gevorgyan A, Dotti KF, Bajetta E, Campiglio M, Bianchi F, et al. Circulating Biomarkers in Advanced Colorectal Cancer Patients Randomly Assigned to Three Bevacizumab-Based Regimens. Cancers. 2014; 6(3):1753-1768. https://doi.org/10.3390/cancers6031753
Chicago/Turabian StyleMartinetti, Antonia, Rosalba Miceli, Elisa Sottotetti, Maria Di Bartolomeo, Filippo De Braud, Arpine Gevorgyan, Katia Fiorella Dotti, Emilio Bajetta, Manuela Campiglio, Francesca Bianchi, and et al. 2014. "Circulating Biomarkers in Advanced Colorectal Cancer Patients Randomly Assigned to Three Bevacizumab-Based Regimens" Cancers 6, no. 3: 1753-1768. https://doi.org/10.3390/cancers6031753
APA StyleMartinetti, A., Miceli, R., Sottotetti, E., Di Bartolomeo, M., De Braud, F., Gevorgyan, A., Dotti, K. F., Bajetta, E., Campiglio, M., Bianchi, F., Bregni, G., & Pietrantonio, F. (2014). Circulating Biomarkers in Advanced Colorectal Cancer Patients Randomly Assigned to Three Bevacizumab-Based Regimens. Cancers, 6(3), 1753-1768. https://doi.org/10.3390/cancers6031753