Met in Urological Cancers
Abstract
:1. Introduction
Type of Malignancy | Urological Cancers (Phase) | |
---|---|---|
Anti-Met mAbs | ||
LY-2875358 | Lymphoma | |
Onartuzumab | Breast, Colon, Lung, Stomach | |
Small anti-MET TKIs | ||
Cabozantinib (XL 184) | Brain, Breast, Lung, Pancreas, Thyroid * | Prostate (II/III), Renal (II/III) |
Crizotinib | Lung *, Lymphoma | |
Foretinib (XL 880) | Breast, Head and neck, Lung, Stomach | Papillary renal (II) |
Golvatinib (E7050) | Brain, Head and neck, Liver, Stomach | |
MGCD 265 | Lung | |
Tivantinib (ARQ 197) | Breast, Colon, Liver, Lung, Myeloma | Prostate (II), Renal (I/II) |
2. Prostate Cancer
2.1. The Function of Met Expression in Prostate Cancer Cell Lines
2.2. Expression/Activation of MET in Prostate Cancer and Correlation with Clinicopathological Characteristics
Year | No. pts | Clinicopathological Features | Ref. | |||
---|---|---|---|---|---|---|
High GS | High T Stage | Presence of LN Metastasis | Presence of Distant Metastasis | |||
1995 | 73 | p < 0.01 | – | – | – | [29] |
1995 | 128 | NS | – | – | p < 0.05 | [30] |
1999 | 36 | p < 0.05 | – | – | – | [31] |
2002 | 86 | NS | – | – | – | [32] |
2004 | 66 | p < 0.05 | – | – | – | [33] |
2013 | 3378 | p < 0.01 | NS | NS | – | [34] |
2.3. MET-Targeting Therapies for Patients with Prostate Cancer
2.3.1. Cabozantinib
2.3.2. Tivantinib
2.3.3. Sorafenib
2.3.4. Sunitinib
2.3.5. Cause of Failure in MET-Targeting Therapies
3. Renal Cell Carcinoma
3.1. The Function of Met Expression in Papillary RCC
3.2. The Function of Met Expression in Clear Cell RCC and Other RCCs
3.3. Expression/Activation of MET in Renal Cell Carcinomas and Correlation with Clinicopathological Features
Year | No. pts | Pathological Features | Survival | Ref. | |||
---|---|---|---|---|---|---|---|
High Grade | pT Stage | Lymph Node Metastasis | Distant Metastasis | ||||
2006 | 114 | NS | NS | NS | NS | NS | [52] |
2006 | 96 | p < 0.01 | NS | NS | NS | - | [48] |
2007 | 66 | - | P < 0.01 | - | p < 0.05 | p < 0.01 | [47] |
2013 | 317 | p < 0.01 | - | - | - | p < 0.05 | [51] |
3.4. Met-Targeted Therapies for Patients with Renal Cell Carcinoma
3.4.1. Foretinib (XL880)
3.4.2. Tivantinib (ARQ197)
3.4.3. Cabozantinib (XL184)
4. Urothelial Cancer
4.1. Function of Met Expression in UC
4.2. Expression/Activation of Met in UC and Correlation with Clinicopathological Characteristics
Year | No. pts | Clinicopathological Features | Outcome | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Grade | T Stage | N Stage | M Stage | PD | Survival | |||
1998 | 49 | NS | NS | NS | - | NS | [79] | |
2002 | 142 | p < 0.01 | p < 0.01 | p < 0.01 | - | p < 0.01 | p < 0.05 | [59] |
2005 | 183 | p < 0.01 | p < 0.01 | – | - | NS | p < 0.05 | [69] |
2006 | 173 | p < 0.01 | p < 0.01 | p < 0.01 | - | p < 0.05 | [78] | |
2009 | 133 | p < 0.01 | p < 0.01 | p = 0.01 | NS | NS | [52] | |
2011 | 75 | NS | NS | NS | NS | p < 0.01 | [68] |
4.3. Met-Targeted Therapy for Patients with Urothelial Carcinoma
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Cooper, C.S.; Park, M.; Blair, D.G.; Tainsky, M.A.; Huebner, K.; Croce, C.M.; Vande Woude, G.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984, 311, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Wounde, G.F. Met, metastasis, mortality and more. Nat. Rev. Mol. Cell Biol. 2003, 4, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Trusolino, L.; Bertotti, A.; Comoglio, P.M. MET signaling: Principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Bussolino, F.; di Renzo, M.F.; Ziche, M.; Bocchietto, E.; Olivero, M.; Naldini, L.; Gaudino, G.; Tamagnone, L.; Coffer, A.; Comoglio, P.M. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 1992, 119, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Kagoshima, M.; Kinoshita, T.; Matsumoto, K.; Nakamura, T. Developmental changes in hepatocyte growth factor mRNA and its receptor in rat liver, kidney and lung. Eur. J. Biochem. 1992, 210, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Nakagawa, T. The current state of molecularly targeted drugs tragting HGF/Met. Jpn. J. Clin. Oncol. 2014, 44, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Novello, S.; von Pawel, J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat. Rev. 2013, 39, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, H.; Rost, S.; Yauch, R. Developing biomarkers to predict benefit from HGF/MET pathway inhibitors. J. Pathol. 2014, 232, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Lubensky, I.A.; Schmidt, L.; Zhuang, Z.; Weirich, G.; Pack, S.; Zambrano, N.; Walther, M.M.; Choyke, P.; Linehan, W.M.; Zbar, B. Hereditary and sporadic papillary renal cell carcinoma with c-met mutations share a distinct morphological phenotype. Am. J. Pathol. 1999, 155, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Park, W.S.; Dong, S.M.; Kim, S.Y.; Na, E.Y.; Shin, M.S.; Pi, J.H.; Kim, B.J.; Bae, J.H.; Hong, Y.K.; Lee, K.S.; et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 1999, 59, 307–310. [Google Scholar]
- Toschi, L.; Cappuzzo, F. Clinical implications of MET gene copy number in lung cancer. Future Oncol. 2010, 6, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.S.; Kleinman, H.K.; Goldberg, I.D.; Bhargava, M.M.; Nickoloff, B.J.; Kinsella, J.L.; Polverini, P.; Rosen, E.M. Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci. USA 1993, 90, 1937–1941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Su, Y.; Volpert, O.V.; Vande Wounde, G.F. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc. Natl. Acad. Sci. USA 2003, 100, 12718–12723. [Google Scholar] [CrossRef] [PubMed]
- Delitto, D.; Vertes-George, E.; Hughes, S.J.; Behrns, K.E.; Trevino, J.G. c-Met signaling in the development of tumorgenesis and chemoresitance: Potential applications in pancreatic cancer. World J. Gastroentrol. 2014, 20, 8458–8470. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, J.J.; Liu, Y.M.; Wu, X.L. MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci. Rep. 2014, 34, 247–256. [Google Scholar] [CrossRef]
- Ueki, R.; Sando, S. A DNA adaptor to c-Met inhibits cancer cell migration. Chem. Commun. 2014, 50, 13131–13134. [Google Scholar] [CrossRef]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.; Wang, Y.; Ma, P.; Li, Y.Y.; Chen, H.; Wang, P.; Ren, C.S. Effects of transferred NK4 gene on proliferation, migration, invasion and apoptosis of human prostate cancer DU145 cells. Asian J. Androl. 2010, 12, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Sankpal, U.T.; Abdelrahim, M.; Connelly, S.F.; Lee, C.M.; Madero-Visbal, R.; Colon, J.; Smith, J.; Safe, S.; Maliakal, P.; Basha, R. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 2012, 72, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Hirohashi, Y.; Torigoe, T.; Inoue, R.; Kitamura, H.; Tanaka, T.; Takahashi, A.; Asanuma, H.; Masumori, N.; Tsukamoto, T.; et al. Prostate cancer stem-like cells/cancer-initiating cells have an autocrine system of hepatocyte growth factor. Cancer Sci. 2013, 104, 431–436. [Google Scholar]
- Hagman, Z.; Haflidadottir, B.S.; Ansari, M.; Persson, M.; Bjartell, A.; Edsjö, A.; Ceder, Y. The tumour suppressor miR-34c targets MET in prostate cancer cells. Br. J. Cancer 2013, 109, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Altuwaijri, S.; Lai, K.P.; Wu, C.T.; Ricke, W.A.; Messing, E.M.; Yao, J.; Yeh, S.; Chang, C. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 12182–12187. [Google Scholar] [CrossRef] [PubMed]
- Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007, 67, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Mendes, D.E.; Berkman, C.E. From AR to c-Met: Androgen deprivation leads to a signaling pathway switch in prostate cancer cells. Int. J. Oncol. 2013, 43, 1125–1130. [Google Scholar] [PubMed]
- Knudsen, B.S.; Edlund, M. Prostate cancer and the met hepatocyte growth factor receptor. Adv. Cancer Res. 2004, 91, 31–67. [Google Scholar] [PubMed]
- Tu, W.H.; Zhu, C.; Clark, C.; Christensen, J.G.; Sun, Z. Efficacy of c-Met inhibitor for advanced prostate cancer. BMC Cancer 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Ramírez, N.; Völler, M.; Wetterwald, A.; Germann, M.; Cross, N.A.; Rentsch, C.A.; Schalken, J.; Thalmann, G.N.; Cecchini, M.G. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue. Prostate 2009, 69, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Van Leenders, G.J.L.H.; Sookhlall, R.; Teubel, W.J.; de Ridder, C.M.A.; Reneman, S.; Sacchetti, A.; Vissers, K.J.; van Weerden, W.; Jenster, G. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One 2011, 6, e26753. [Google Scholar] [CrossRef] [PubMed]
- Pisters, L.L.; Troncoso, P.; Zhau, H.E.; Li, W.; von Eschenbach, A.C.; Chung, L.W. c-Met proto-oncogene expression in benign and malignant human prostate tissues. J. Urol. 1995, 154, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 1995, 147, 386–396. [Google Scholar] [PubMed]
- Watanabe, M.; Fukutome, K.; Kato, H.; Murata, M.; Kawamura, J.; Shiraishi, T.; Yatani, R. Progression-linked overexpression of c-Met in prostatic intraepithelial neoplasia and latent as well as clinical prostate cancers. Cancer Lett. 1999, 141, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, WL.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology 2002, 60, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Strohmeyer, D.; Strauss, F.; Rössing, C.; Roberts, C.; Kaufmann, O.; Bartsch, G.; Effert, P. Expression of bFGF, VEGF and c-met and their correlation with microvessel density and progression in prostate carcinoma. Anticancer Res. 2004, 24, 1797–1804. [Google Scholar] [PubMed]
- Jacobsen, F.; Ashtiani, S.N.; Tennstedt, P.; Heinzer, H.; Simon, R.; Sauter, G.; Sirma, H.; Tsourlakis, M.C.; Minner, S.; Schlomm, T.; et al. High c-MET expression is frequent but not associated with early PSA recurrence in prostate cancer. Exp. Ther. Med. 2013, 5, 102–106. [Google Scholar] [PubMed]
- Pfeiffer, M.J.; Smit, F.P.; Sedelaar, J.P.; Schalken, J.A. Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol. Med. 2011, 17, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Schimmoller, F.; Zayzafoon, M.; Chung, L.W.K.; Zhau, H.E.; Fagerlund, K.M.; Aftab, D.T. Cabozantinib (XL184), a dual MET-VEGFR2 inhibitor, blocks osteoblastic and osteolytic progression of human prostate cancer xenografts in mouse bone. Mol. Cancer Ther. 2011, 10, A233. [Google Scholar] [CrossRef]
- Smith, D.C.; Smith, M.R.; Sweeney, C.; Elfiky, A.A.; Logothetis, C.; Corn, P.G.; Vogelzang, N.J.; Small, E.J.; Harzstark, A.L.; Gordon, M.S.; et al. Cabozantinib in patients with advanced prostate cancer: Results of a phase II randomized discontinuation trial. J. Clin. Oncol. 2013, 31, 412–419. [Google Scholar]
- Yap, T.A.; Olmos, D.; Brunetto, A.T.; Tunariu, N.; Barriuso, J.; Riisnaes, R.; Pope, L.; Clark, J.; Futreal, A.; Germuska, M.; et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J. Clin. Oncol. 2011, 29, 1271–1279. [Google Scholar]
- Dahut, W.L.; Scripture, C.; Posadas, E.; Jain, L.; Gulley, J.L.; Arlen, P.M.; Wright, J.J.; Yu, Y.; Cao, L.; Steinberg, S.M.; et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin. Cancer Res. 2008, 14, 209–214. [Google Scholar]
- Michaelson, M.D.; Oudard, S.; Ou, Y.C.; Sengeløv, L.; Saad, F.; Houede, N.; Ostler, P.; Stenzl, A.; Daugaard, G; Jones, R.; et al. Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J. Clin. Oncol. 2013, 32, 76–82. [Google Scholar]
- Beck, S.D.; Patel, M.I.; Snyder, M.E.; Kattan, M.W.; Motzer, R.J.; Reuter, V.E.; Russo, P. Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann. Surg. Oncol. 2004, 11, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Giubellino, A.; Linehan, W.M.; Bottaro, D.P. Targeting the Met signaling pathway in renal cancer. Expert Rev. Anticancer Ther. 2009, 9, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Duh, F.M.; Chen, F.; Kishida, T.; Glenn, G.; Choyke, P.; Scherer, S.W.; Zhuang, Z.; Lubensky, I.; Dean, M.; et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 1997, 16, 68–73. [Google Scholar]
- Schmidt, L.; Junker, K.; Weirich, G.; Glenn, G.; Choyke, P.; Lubensky, I.; Zhuang, Z.; Jeffers, M.; Vande, W.G.; Neumann, H.; et al. Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET protooncogene. Cancer Res. 1998, 58, 1719–1722. [Google Scholar]
- Zbar, B.; Tory, K.; Merino, M.; Schmidt, L.; Glenn, G.; Choyke, P.; Walther, M.M.; Lerman, M.; Linehan, W.M. Hereditary papillary renal cell carcinoma. J. Urol. 1994, 151, 561–566. [Google Scholar] [PubMed]
- Schmidt, L.; Junker, K.; Nakaigawa, N.; Kinjerski, T.; Weirich, G.; Miller, M.; Lubensky, I.; Neumann, H.P.; Brauch, H.; Decker, J.; et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 1999, 18, 2343–2350. [Google Scholar]
- Betsunoh, H.; Mukai, S.; Akiyama, Y.; Fukushima, T.; Minamiguchi, N.; Hasui, Y.; Osada, Y.; Kataoka, H. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma. Cancer Sci. 2007, 98, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, M.K.; Seo, J.W.; Choi, Y.L.; Kim, D.H.; Chun, Y.K.; Ko, Y.H. MET expression in sporadic renal cell carcinomas. J. Korea Med. Sci. 2006, 21, 672–677. [Google Scholar] [CrossRef]
- Oh, R.R.; Park, J.Y.; Lee, J.H.; Shin, M.S.; Kim, H.S.; Lee, S.K.; Kim, Y.S.; Lee, S.H.; Lee, S.N.; Yang, Y.M.; et al. Expression of HGF/SF and Met protein is associated with genetic alterations of VHL gene in primary renal cell carcinomas. APMIS 2002, 110, 229–238. [Google Scholar]
- Peruzzi, B.; Athauda, G.; Bottaro, D.P. The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc. Natl. Acad. Sci. USA 2006, 103, 14531–14536. [Google Scholar] [CrossRef] [PubMed]
- Gilney, G.T.; Aziz, S.A.; Camp, R.L.; Conrad, P.; Schwartz, B.E.; Chen, C.R.; Kelly, W.K.; Kluger, H.M. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann. Oncol. 2013, 24, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Sagara, Y.; Kanda, S.; Hayashi, T.; Kanetake, H. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: Correlation with matrix metalloproteinase-2 and -7 and E-cadherin. Hum. Pathol. 2009, 40, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Eder, J.P.; Shapiro, G.I.; Appleman, L.J.; Zhu, A.X.; Miles, D.; Keer, H.; Cancilla, B.; Chu, F.; Hitchcock-Bryan, S.; Sherman, L.; et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin. Cancer Res. 2010, 16, 3507–3516. [Google Scholar]
- Choueiri, T.K.; Vaishampayan, U.; Rosenberg, J.E.; Logan, T.F.; Harzstark, A.L.; Bukowski, R.M.; Rini, B.I.; Srinivas, S.; Stein, M.N.; Adams, L.M.; et al. A phase II and biomarker study of the dual MET/VEGFR-2 inhibitor foretinib in patients with papillary renal cell cancer. J. Clin. Oncol. 2013, 31, 181–186. [Google Scholar]
- Garcia, A.; Rosen, L.; Cunningham, C.C.; Nemunaitis, J.; Li, C.; Rulewski, N.; Dovholuk, A.; Savage, R.; Chan, T.; Bukowksi, R.; et al. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. J. Clin. Oncol. 2007, 25. Abstract No 3525. [Google Scholar]
- Choueiri, T.K.; Pal, S.K.; McDermott, D.F.; Morrissey, S.; Ferguson, K.C.; Holland, J.; Kaelin, W.G., Jr.; Dutcher, J.P. A phase I study of cabozantinib (XL184) in patients with RCC. Ann. Oncol. 2014, in press. [Google Scholar]
- Stein, J.P.; Grossfeld, G.D.; Ginberg, D.A.; Esrig, D.; Freeman, J.A.; Figueroa, A.J.; Skinner, D.; Cote, R. Prognostic markers in bladder cancer: A contemporary review of the literature. J. Urol. 1998, 160, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Allard, P.; Bernard, P.; Frader, Y.; Tetu, B. The early clinical course of primary Ta and T1 bladder cancer: A proposed prognostic index. Br. J. Urol. 1998, 81, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; Trink, B.; Tzai, T.S.; Liu, H.S.; Chan, S.H.; Ho, C.L.; Sidransky, D.; Chow, N.H. Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: A comparison with p53 nuclear accumulation. J. Clin. Oncol. 2002, 20, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Millán-Rodríguez, F.; Chéchile-Toniolo, G.; Salvador-Bayarri, J.; Palou, J.; Vicente-Rodríguez, J. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J. Urol. 2000, 163, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Holmang, S.; Hedelin, H.; Anderstrom, C.; Johansson, S.L. The relationship among multiple recurrences, progression and prognosis of patients with stages Ta and T1 transitional cell cancer of the bladder followed for at least 20 years. J. Urol. 1995, 153, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
- Crew, J.P.; O’Brien, T.; Bradburn, M.; Fuggle, S.; Bicknell, R.; Cranston, D.; Harris, A.L. Vascular endothelial growth factor is predictor of relapse and stage progression in superficial bladder cancer. Cancer Res. 1997, 57, 5281–5285. [Google Scholar] [PubMed]
- Chow, N.H.; Liu, H.S.; Chan, S.H. The role of nm23-H1 in the progression of transitional cell bladder cancer. Clin. Cancer Res. 2000, 6, 3595–3599. [Google Scholar] [PubMed]
- Chow, N.H.; Liu, H.S.; Chan, S.H.; Cheng, H.L.; Tzai, T.S. Expression of vascular endothelial growth factor in primary superficial bladder cancer. Anticancer Res. 1999, 19, 4593–4597. [Google Scholar] [PubMed]
- Bakkar, A.A.; Wallerand, H.; Radvanyi, F.; Lahaye, J.B.; Pissard, S.; Lecerf, L.; Kouyoumdjian, J.C.; Abbou, C.C.; Pairon, J.C.; Jaurand, M.C.; et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003, 63, 8108–8112. [Google Scholar]
- Neuzillet, Y.; Paoletti, X.; Ouerhani, S.; Mongiat-Artus, P.; Soliman, H.; de The, H.; Sibony, M.; Denoux, Y.; Molinie, V.; Herault, A.; et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One 2012, 7, e48993. [Google Scholar]
- Miyata, Y.; Sakai, H. Thrombospondin-1 in urological cancer: Pathological role, clinical significance, and therapeutic prospects. Int. J. Mol. Sci. 2013, 14, 12249–12272. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.Y.; Shin, S.M.; Yeh, H.H.; Wu, T.J.; Shin, J.W.; Chang, T.Y.; Raghavaraju, G.; Lee, C.T.; Chiang, J.H.; Tseng, V.S.; et al. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer 2011. [Google Scholar] [CrossRef]
- Wang, M.H.; Ronsin, C.; Gesnel, M.C.; Coupey, L.; Skeel, A.; Leonard, E.J.; Breathnach, R. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 1994, 266, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Compérat, E.; Roupret, M.; Chartier-Kastler, E.; Bitker, M.O.; Richard, F.; Camparo, P.; Capron, F.; Cussenot, O. Prognostic value of MET, RON and histoprognostic factors for urothelial carcinoma in the upper urinary tract. J. Urol. 2008, 179, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Seol, D.W.; Carr, B.; Zarnegar, R. Co-expression and regulation of Met and Ron proto-oncogenes in human hepatocellular carcinoma tissues and cell lines. Hepatology 1997, 26, 59–66. [Google Scholar] [PubMed]
- Maggiora, P.; Lorenzato, A.; Fracchioli, S.; Costa, B.; Castagnaro, M.; Arisio, R.; Katsaros, D.; Massobrio, M.; Comoglio, P.M.; Flavia di Renzo, M. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness. Exp. Cell. Res. 2003, 288, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Tamatani, T.; Hattori, K.; Iyer, A.; Tamatani, K.; Oyasu, R. Hepatocyte growth factor is an invasion/migration factor of rat urothelial carcinoma cells in vitro. Carcinogenesis 1999, 20, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nishitani, M.A.; Tanimoto, S.; Kishimoto, T.; Fukumori, T.; Takahashi, M.; Kanayama, H.O. Bladder cancer cell invasion is enhanced by cross-talk with fibroblasts through hepatocyte growth factor. Urology 2007, 69, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Natali, P.G.; Prat, M.; Nicotra, M.R.; Bigotti, A.; Olivero, M.; Comoglio, P.M.; di Renzo, M.F. Overexpression of the met/HGF receptor in renal cell carcinomas. Int. J. Cancer 1996, 69, 212–217. [Google Scholar] [PubMed]
- Joseph, A.; Weiss, G.H.; Jin, L.; Fuchs, A.; Chowdhury, S.; O’Shaugnessy, P.; Goldberg, I.D.; Rosen, E.M. Expression of scatter factor in human bladder carcinoma. J. Natl. Cancer Inst. 1995, 87, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.L.; Liu, H.S.; Lin, Y.J.; Chen, H.H.; Hsu, P.Y.; Chang, T.Y.; Ho, C.L.; Tzai, T.S.; Chow, N.H. Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. Br. J. Cancer 2005, 92, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Carbayo, M.; Socci, N.D.; Lozano, J.J.; Haab, B.B.; Cordon-Cardo, C. Profiling bladder cancer using targeted antibody arrays. Am. J. Pathol. 2006, 168, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Kanamaru, H.; Noriki, S.; Fukuda, M.; Okada, K. Differential expression of hepatocyte growth factor in papillary and nodular tumors of the bladder. Int. J. Urol. 1998, 5, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Millis, S.Z.; Bryant, D.; Basu, G.; Bender, R.; Vranic, S.; Gatalica, Z.; Vogelzang, N.J. Molecular profiling of infiltrating urothelial carcinoma of bladder and nonbladder origin. Clin. Genitourin. Cancer 2014. [Google Scholar] [CrossRef]
- Arena, S.; Pisacane, A.; Mazzone, M.; Comoglio, P.M.; Bardelli, A. Genetic targeting of the kinase activity of the Met receptor in cancer cells. Proc. Natl. Acad. Sci. USA 2007, 104, 11412–11417. [Google Scholar] [CrossRef] [PubMed]
- Parr, C.; Jiang, W.G. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int. J. Oncol. 2001, 19, 857–863. [Google Scholar] [PubMed]
- Koga, F.; Tsutsumi, S.; Neckers, L.M. Low dose geldanamycin inhibits hepatocyte growth factor and hypoxia-stimulated invasion of cancer cells. Cell. Cycle 2007, 6, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Olaussen, K.A.; Commo, F.; Tailler, M.; Lacroix, L.; Vitale, I.; Raza, S.Q.; Richon, C.; Dessen, P.; Lazar, V.; Soria, J.C.; Kroemer, G. Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines. Oncogene 2009, 28, 4249–4260. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyata, Y.; Asai, A.; Mitsunari, K.; Matsuo, T.; Ohba, K.; Mochizuki, Y.; Sakai, H. Met in Urological Cancers. Cancers 2014, 6, 2387-2403. https://doi.org/10.3390/cancers6042387
Miyata Y, Asai A, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Met in Urological Cancers. Cancers. 2014; 6(4):2387-2403. https://doi.org/10.3390/cancers6042387
Chicago/Turabian StyleMiyata, Yasuyoshi, Akihiro Asai, Kensuke Mitsunari, Tomohiro Matsuo, Kojiro Ohba, Yasushi Mochizuki, and Hideki Sakai. 2014. "Met in Urological Cancers" Cancers 6, no. 4: 2387-2403. https://doi.org/10.3390/cancers6042387
APA StyleMiyata, Y., Asai, A., Mitsunari, K., Matsuo, T., Ohba, K., Mochizuki, Y., & Sakai, H. (2014). Met in Urological Cancers. Cancers, 6(4), 2387-2403. https://doi.org/10.3390/cancers6042387