Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer
Abstract
:1. Introduction
2. Influence of Aging on Drug Pharmacokinetics
Parameter | Direction | Effect on Exposure | |
---|---|---|---|
Absorption [11,13] | Gastrointestinal pH | ↑ | ↓↑ |
Gastric emptying time | ↑ | ↓ | |
Motility | ↓ | ↓ | |
Splanchnic blood flow | ↓ | ↓ | |
Absorptive surface | ↓ | ↓ | |
Distribution [11,13] | Body composition | ||
Body fat | ↑ | ↑ * | |
Plasma volume | ↓ | ↑ § | |
Total body water | ↓ | ↑ § | |
Intra-/extracellular body fluid | ↓ | ↑ § | |
Plasma proteins | |||
Serum albumin | ↓ | ↑ FF | |
Bilirubin | ↓ | ↑ FF | |
Erythrocytes | ↓ | ↑ FF | |
Serum α1-acid glycoprotein | ↑ | ↓ FF | |
Metabolism [12] | Hepatic blood flow | ↓ | ↑ |
Hepatic mass | ↓ | ↑ | |
CYP P450 enzymes | 0/↓ | (↑) | |
Elimination [11,13] | Renal blood flow/glomerular filtration | ↓ | ↑ |
Tubular secretion | ↓ | ↑ |
3. Methodology
4. Results
4.1. Taxanes
4.1.1. Docetaxel
Author | Year | Treatment | Dose | Indication | N | Age (Mean, Range) | Patient Groups | Outcome (Elderly vs. Non-Elderly) | Comments |
---|---|---|---|---|---|---|---|---|---|
Yamamoto | 2000 | Docetaxel | 60 mg/m2 | NSCLC | 29 | 58 (32–76) | NA | SIG | |
Bruno | 2001 | Docetaxel | 75–100 mg/m2 | Solid tumors | 601 | 56 (38–71) § | NA | SIG | Estimated decrease in CL at age 71 years was 7%; reported to be not clinically relevant |
Minami | 2004 | Docetaxel w/cisplatin | Docetaxel: | NSCLC | 50 | 76 (75–86) | Docetaxel: | Docetaxel: | Elderly received a lower doxorubicin dose per protocol, resulting in a significantly lower AUC, with no difference in CL. |
≥75 y; n = 25 | CL: −0.7% | ||||||||
≥75 y: 20 mg/m2 | Vd: −22% | ||||||||
<75 y: 35 mg/m2 | AUC: −44% * | ||||||||
Cisplatin: 25 mg/m2 | <75 y; n = 25 | ||||||||
56 (39–73) | Cisplatin: | Cisplatin: | |||||||
≥75 y; n = 24 | CL: −6% | ||||||||
Vd: +7% | |||||||||
AUC: +3% | |||||||||
<75 y; n = 27 | |||||||||
Slaviero | 2004 | Docetaxel | 40 mg/m2 | Solid tumors | 54 | 63 (40–83) | NS | ||
Ten Tije | 2005 | Docetaxel | 75 mg/m2 | Solid tumors | 40 | 71 (65–80) | ≥65 y; n = 20 | Cmax: −15% | |
AUC: +6% | |||||||||
53 (26–64) | <65 y; n = 20 | Vdss: +15% | |||||||
T½: +13% | |||||||||
Hurria | 2006 | Docetaxel | 35 mg/m2 | Solid tumors | 19 | 75 (66–84) | >65 y; n = 19 | NS | No control group |
Michael | 2012 | Docetaxel | 35–75 mg/m2 | MC, NSCLC | 20 | 62 (41–77) | NA | SIG | |
Borkowski | 1994 | Paclitaxel | 90–265 mg/m2 | Solid tumors | 16 | 53 (38–72) | NA | NS | |
Huizing | 1997 | Paclitaxel–carboplatin | Paclitaxel: 100–250 mg/m2 | NSCLC | 55 | 56 (38–74) | NA | Paclitaxel and carboplatin: SIG | Exclusion of patients aged ≥75 y |
Carboplatin: 300–400 mg/m2 | |||||||||
Nakamura | 2000 | Paclitaxel | 210 mg/m2 | NSCLC | 14 | NA | ≥70 y; n = 3 | Cmax: −8% | |
AUC: −0.5% | |||||||||
MRT: +8% | |||||||||
<70 y; n = 11 | T ½: +14% | ||||||||
CL: +4% | |||||||||
D > 0.1 μM: +0.9% | |||||||||
Fidias | 2001 | Paclitaxel | 90 mg/m2 | NSCLC | 13 | 76 (70–85) | ≥70 y; n = 13 | NS | No control group |
Smorenburg | 2003 | Paclitaxel | ≥70 y: 80 mg/m2 | MC | 23 | NA (22–84) | ≥70 y; n = 8 | Unbound paclitaxel: | |
Cmax: +40% | |||||||||
<70 y: 100 mg/m2 | AUC: +49% | ||||||||
<70 y; n = 15 | CL: −50% * | ||||||||
Vss: −57% * | |||||||||
T ½: −17% | |||||||||
Total paclitaxel: | |||||||||
Cmax: −5% | |||||||||
AUC: +16% | |||||||||
CL: −20% * | |||||||||
Lichtman | 2006 | Paclitaxel | 175 mg/m2 | Non-hematological malignancies | 122 | NA (55–86) | 55–64 y; n = 46 | ≥65 y: | |
65–74 y; n = 44 | AUC: +29% | ||||||||
CL: −21% | |||||||||
75–86 y; n = 32 | |||||||||
≥75 y: | |||||||||
AUC: +30% | |||||||||
CL: −19% | |||||||||
Joerger | 2006 | Paclitaxel | 100–250 mg/m2 | Solid tumors | 168 | 56 (33–86) | NA | VMel: −5% per 10-y increase in age * | |
Joerger | 2012 | Paclitaxel | 76–311 mg/m2 | Solid tumors | 273 | 56 (33–75) | ≥70 y; n = 19 | VMel: −13% per 10-y increase in age * | |
<70 y; n = 254 | |||||||||
Robert | 1983 | Doxorubicin | 12.5–50 mg/m2 | MC, lymphoma, others | 37 | 51 (17–74) | NA | ≥70 y: | Also reported that doxorubicin CL of the distribution phase was significantly influenced by aging in 26 patients studied by Piazza et al. |
CL of distribution phase: −30% * | |||||||||
Total CL: −23% | |||||||||
Dobbs | 1995 | Doxorubicin | <25 m–100 mg/m2 | MC, lymphoma, others | 27 | 54 (27–75) | NA | NS | |
Dees | 2000 | Doxorubicin–cyclophosphamide | Doxorubicin: 60 mg/m2 | MC | 14 | NA (35–79) | ≥65 y; n = 7 | NS | Increasing age (continuous) was weakly correlated with Vdss, but not with CL; no significance was reached with age as a categorical variable |
Cyclophosphamide: 600 mg/m2 | |||||||||
<65 y; n = 7 | |||||||||
Li | 2003 | Doxorubicin | 30–75 mg/m2 | MC, lymphoma, sarcoma, others | 56 | 50 (12–74) | NA | SIG | |
Joerger | 2007 | Doxorubicin–cyclophosphamide | Doxorubicin: 60 mg/m2 | MC | 65 | 56 (29–81) | NA | Doxorubicin: CL: −9% per 10-y increase of age * | |
Cyclophosphamide: NS | |||||||||
Cyclophosphamide: 600 mg/m2 | |||||||||
Jakobsen | 1991 | Epirubicin | 40–135 mg/m2 | MC | 78 | NA (31–74) | NA | NS | |
Wade | 1992 | Epirubicin | 25–100 mg/m2 | MC, lymphoma, sarcoma | 36 | NA (20–73) | ≥70 y; n = 1 | SIG | Significant in women only, no elderly men were included. |
<70 y; n = 35 | |||||||||
Predicted CL: −34% (70 vs. 25 y) | |||||||||
Eksborg | 1992 | Epirubicin | 60 mg/m2 | MC | 66 | 61 (36–78) | NA | SIG | |
Sorio | 1997 | Vinorelbine (iv) | 30 mg/m2 | MC | 10 | 72 (66–81) | ≥66 y; n = 10 | NS | No control group |
Gauvin | 2000 | Vinorelbine (iv) | 20–30 mg/m2 | Solid tumors | 12 | 74 (66–79) | ≥66 y; n = 12 | SIG | No control group |
Gauvin | 2002 | Vinorelbine (iv) | 20–30 mg/m2 | Solid tumors | 27 | NA (66–79) | ≥66 y; n = 27 | SIG | No control group |
ECOG 0–3 | |||||||||
Variol | 2002 | Vinorelbine (iv/po) | Vinorelbine (iv): 20–45 mg/m2 | Solid tumors | iv: 64 | iv: 55 (27–72) | NA | NS | iv same as Nguyen: 3 phase I studies |
Vinorelbine (po): 60–100 mg/m2 | po: 175 | po: 57 (21–77) | |||||||
Nguyen | 2002 | Vinorelbine (iv) | 20–45 mg/m2 | Solid tumors | 64 | 55 (27–73) | NA | NS | 3 phase I studies |
Lush | 2005 | Vinorelbine (iv) | 30 mg/m2 | Solid tumors | 20 | 57 (40–74) | ≥65 y; n = 14 | Cmax: +26% | Age mean (range) for total group of 27 pts, of which 20 received iv vinorelbine |
T ½: +6% | |||||||||
<65 y; n = 6 | |||||||||
AUC: +30% | |||||||||
CL: −17% | |||||||||
Wong | 2006 | Vinorelbine (iv) | Flat dose: 60 mg | Solid tumors | 34 | 63 (43–81) | NA | NS | Age mean (range) for total group of 43 pts, of which 34 pts were included for PK analysis |
Puozzo | 2004 | Vinorelbine (po) | 60 mg/m2 | Solid tumors | 48 | 74 (70–82) | ≥70 y; n = 48 | AUC: +11% | Phase II including elderly compared w/phase I reference population; same population as Gridelli et al. |
Phase I <70 y population: 56 (31–82); n = 52 | Cmax: +10% | ||||||||
CL: −2% | |||||||||
T ½: +7% | |||||||||
Gridelli | 2006 | Vinorelbine (po) | 60 mg/m2, after 3 cycles: 80 mg/m2 | NSCLC | 48 | 74 (70–82) * | ≥70 y; n = 48 | NS | No control group; age mean (range) for total group of 56 patients, of which 48 pts were included for PK analysis (not mentioned in Puozzo et al.) |
Port | 1991 | 5-FU | 320–960 mg/m2 | Solid tumors | 26 | 53 (43–75) | NA | CL: −16% (70 y vs. 50 y) | |
Milano | 1992 | 5-FU | 365–1224 mg/m2 | Squamous cell carcinoma of head and neck | 360 | 62 (25–91) | >70 y: n = 58 | NS | Only 5 elderly women included |
51–70 y: n = 245 | |||||||||
≤50 y: n = 57 | |||||||||
Denham | 1999 | 5-FU–cisplatin | 5-FU: 800 mg/m2 | Esophageal cancer | 44 | 72 (42–91) | NA | 5FU: SIG | |
Cisplatin: 80 mg/m2 | |||||||||
Duffour | 2010 | 5-FU | NA | CRC | 103 | ≥65 y: 70 (65–80) | ≥65 y: n = 48 | Cycle 1: | |
CL: −3% | |||||||||
<65 y: 59 (33–64) | <65 y: n = 55 | Vd: −8% | |||||||
T ½: −4% | |||||||||
AUC: 0.5% | |||||||||
Cycle 2: | |||||||||
AUC: 10% | |||||||||
Mueller | 2013 | 5-FU | 400 mg/m2 bolus, followed by 2400 mg/m2 ** | Solid tumors | 31 | 63 (31–81) | ≥65 y: n = 14 | NS | |
<65 y: n = 17 | |||||||||
Cassidy | 1999 | Capecitabine | Flat dose: 2000 mg | Solid tumors | 25 | 63 (41–80) | NA | NS | Bioequivalence study of two tablet formulations |
Louie | 2013 | Capecitabine | 1000 mg/m2 | CRC | 29 | ≥70 y: 77 ± 5 | ≥70 y: n = 24 | Capecitabine: | |
Cmax: +200% * | |||||||||
T ½: +5% | |||||||||
AUC: +150% * | |||||||||
CL: −71% * | |||||||||
<60 y: 55 ± 3 | <60 y: n = 5 | Vd: −74% * | |||||||
5-FU: | |||||||||
Cmax: −23% | |||||||||
T ½: −10% | |||||||||
AUC: −26% | |||||||||
Daher Abdi | 2014 | Capecitabine | 1250–2300 mg/m2 | MC, CRC | 20 + 40 | ≥75 y: 81 (75–92) | ≥70 y: n = 20 | NS | PK data of 40 patients <75 y from 2 previous phase I trials |
<75 y: 55 (30–73) | <75 y: n = 40 | ||||||||
Merino-Sanjuan | 2011 | Carboplatin–gemcitabine | Carboplatin: | NSCLC | 24 | ≥70 y: 77 (71–81) | NA | Carboplatin: CL: −31% * | Age mean (range) for total group of 33 pts, of which 24 pts were included for PK analysis |
≥70 y: AUC 4 vs. | |||||||||
<70 y: 58 (44–66) § | |||||||||
<70 y: AUC 5 | |||||||||
Yamamoto | 1995 | Cisplatin | 80 mg/m2 | NSCLC | 23 | 61 (41–81) | >70 y: n = 8 | SIG | |
≤70 y: n = 15 | |||||||||
Gupta | 2012 | Trastuzumab emtansine | 1.2–4.8 mg/kg | MC | 273 | 54 (SD 10 y) | NA | NS | 87% of pts received 3.6 mg/kg |
Lu | 2014 | Trastuzumab emtansine | 1.2–4.8 mg/kg | MC | 671 | 53 (27–84) | >75 y: n = 16 | NS | 95% of pts received 3.6 mg/kg |
65–75 y; n = 78 | |||||||||
<65 y; n = 577 | |||||||||
Motzer | 2008 | Everolimus | Flat dose: 10 mg/day | RCC | 272 | 61 (27–85) | NA | NS | As reported in the FDA’s drug approval review |
4.1.2. Paclitaxel
4.2. Anthracyclines
4.2.1. Doxorubicin
4.2.2. Epirubicin
4.3. Alkylating Agents
4.3.1. Cyclophosphamide
4.4. Vinca-Alkaloids
4.4.1. Vinorelbine (Intravenous)
4.4.2. Vinorelbine (Oral)
4.5. Anti-Metabolites
4.5.1. 5-Fluorouracil
4.5.2. Capecitabine
4.6. Platinum Agents
4.6.1. Carboplatin
4.6.2. Cisplatin
4.7. Monoclonal Antibodies
4.7.1. Trastuzumab
4.7.2. Trastuzumab Emtansine (Antibody-Drug Conjugate)
4.8. Tubulin Inhibitors
4.8.1. Eribulin Mesylate
4.9. Oral Targeted Anti-Cancer Agents
4.9.1. Everolimus
4.9.2. Lapatinib
5. Discussion
6. Conclusions
References
- Smith, B.D.; Smith, G.L.; Hurria, A.; Hortobagyi, G.N.; Buchholz, T.A. Future of cancer incidence in the United States: Burdens upon an aging, changing nation. J. Clin. Oncol. 2009, 27, 2758–2765. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonisation. Studies in Support of Special Populations : Geriatrics—E7; European Medicines Agency: London, UK, 1993. [Google Scholar]
- Rothwell, P.M. External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet 2005, 365, 82–93. [Google Scholar] [CrossRef]
- Zulman, D.M.; Sussman, J.B.; Chen, X.; Cigolle, C.T.; Blaum, C.S.; Hayward, R.A. Examining the evidence: A systematic review of the inclusion and analysis of older adults in randomized controlled trials. J. Gen. Intern. Med. 2011, 26, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex, and aged-based disparities. Prim. Care 2004, 291, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.H.; Kilgore, M.L.; Goldman, D.P.; Trimble, E.L.; Kaplan, R.; Montello, M.J.; Housman, M.G.; Escarce, J.J. Participation of patients 65 years of age or older in cancer clinical trials. J. Clin. Oncol. 2003, 21, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Villella, J.; Chalas, E. Optimising treatment of elderly patients with ovarian cancer: Improving their enrollment in clinical trials. Drugs Aging 2005, 22, 95–100. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonisation. Dose-Response Information to Support Drug Registration—E4; European Medicines Agency: London, UK, 1994. [Google Scholar]
- Food and Drug Administration. Guidance for Industry: Exposure-Response Relationships—Study Design, Data Analysis and Regulatory Applications; FDA: Rockville, MD, USA, 2003.
- Bastiaannet, E.; Liefers, G.J.; de Craen, A.J.M.; Kuppen, P.J.K.; van de Water, W.; Portielje, J.E.A.; van der Geest, L.G.M.; Janssen-Heijnen, M.L.G.; Dekkers, O.M.; van de Velde, C.J.H.; et al. Breast cancer in elderly compared to younger patients in the Netherlands: Stage at diagnosis, treatment and survival in 127,805 unselected patients. Breast Cancer Res. Treat. 2010, 124, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Wynne, H.A. Drug metabolism and ageing. J. Br. Menopause Soc. 2005, 11, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Cusack, B.J. Pharmacokinetics in older persons. Am. J. Geriatr. Pharmacother. 2004, 2, 274–302. [Google Scholar] [CrossRef] [PubMed]
- Turnheim, K. Drug therapy in the elderly. Exp. Gerontol. 2004, 39, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Kiderlen, M.; de Glas, N.A.; Bastiaannet, E.; van de Water, W.; de Craen, A.J.M.; Guicherit, O.R.; Merkus, J.W.S.; Extermann, M.; van de Velde, C.J.H.; Liefers, G.J. Impact of comorbidity on outcome of older breast cancer patients: A FOCUS cohort study. Breast Cancer Res. Treat. 2014, 145, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Popa, M.A.; Wallace, K.J.; Brunello, A.; Extermann, M.; Balducci, L. Potential drug interactions and chemotoxicity in older patients with cancer receiving chemotherapy. J. Geriatr. Oncol. 2015, 5, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Srokowski, T.P.; Fang, S.; Hortobagyi, G.N.; Giordano, S.H. Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer. J. Clin. Oncol. 2009, 27, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Satariano, W.A.; Ragland, D.R. The effect of comorbidity on 3-year survival of women with primary breast cancer. Ann. Intern. Med. 1994, 120, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Yancik, R.; Wesley, M.N.; Ries, L.A.; Havlik, R.J.; Edwards, B.K.; Yates, J.W. Effect of age and comorbidity in postmenopausal breast cancer patients aged 55 years and older. JAMA 2001, 285, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Taxotere (docetaxel), NDA 020449Adriamycin RDF (Doxorubin Hydrochloride), NDA 050467. 2011. [Google Scholar]
- DRUGDEX®. Docetaxel; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Clarke, S.J.; Rivory, L.P. Clinical pharmacokinetics of docetaxel. Clin. Pharmacokinet. 1999, 36, 99–114. [Google Scholar] [CrossRef] [PubMed]
- John, V.; Mashru, S.; Lichtman, S. Pharmacological factors influencing anticancer drug selection in the elderly. Drugs Aging 2003, 20, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Schmucker, D.L. Liver function and phase I drug metabolism in the elderly: A paradox. Drugs Aging 2001, 18, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Minami, H.; Ohe, Y.; Niho, S.; Goto, K.; Ohmatsu, H.; Kubota, K.; Kakinuma, R.; Nishiwaki, Y.; Nokihara, H.; Sekine, I.; et al. Comparison of pharmacokinetics and pharmacodynamics of docetaxel and cisplatin in elderly and non-elderly patients: Why is toxicity increased in elderly patients? J. Clin. Oncol. 2004, 22, 2901–2908. [Google Scholar] [CrossRef] [PubMed]
- Slaviero, K.A.; Clarke, S.J.; McLachlan, A.J.; Blair, E.Y.L.; Rivory, L.P. Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br. J. Clin. Pharmacol. 2004, 57, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Ten Tije, A.J.; Verweij, J.; Carducci, M.A.; Graveland, W.; Rogers, T.; Pronk, T.; Verbruggen, M.P.; Dawkins, F.; Baker, S.D. Prospective evaluation of the pharmacokinetics and toxicity profile of docetaxel in the elderly. J. Clin. Oncol. 2005, 23, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Hurria, A.; Fleming, M.T.; Baker, S.D.; Kelly, W.K.; Cutchall, K.; Panageas, K.; Caravelli, J.; Yeung, H.; Kris, M.G.; Gomez, J.; et al. Pharmacokinetics and toxicity of weekly docetaxel in older patients. Clin. Cancer Res. 2006, 12, 6100–6105. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Tamura, T.; Kamiya, Y.; Sekine, I.; Kunitoh, H.; Saijo, N. Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. J. Clin. Oncol. 2000, 18, 2301–2308. [Google Scholar] [PubMed]
- Michael, M.; Cullinane, C.; Hatzimihalis, A.; O’Kane, C.; Milner, A.; Booth, R.; Schlicht, S.; Clarke, S.J.; Francis, P. Docetaxel pharmacokinetics and its correlation with two in vivo probes for cytochrome P450 enzymes: The C 14-erythromycin breath test and the antipyine clearance test. Cancer Chemother. Pharmacol. 2012, 69, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.; Vivier, N.; Veyat-Follet, C.; Montay, G.; Rhodes, G.R. Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel. Investig. New Drugs 2001, 19, 163–169. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use. In Scientific Discussion: Taxotere (Docetaxel); European Medicines Agency: London, UK, 2005. [Google Scholar]
- European Medicines Agency. Taxotere (Docetaxel); European Medicines Agency: London, UK, 2015. [Google Scholar]
- DRUGDEX®. Paclitaxel; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Henningsson, A.; Karlsson, M.O.; Viganò, L.; Gianni, L.; Verweij, J.; Sparreboom, A. Mechanism-based pharmacokinetic model for paclitaxel. J. Clin. Oncol. 2001, 19, 4065–4073. [Google Scholar] [PubMed]
- Nakamura, Y.; Sekine, I.; Furuse, K.; Saijo, N. Retrospective comparison of toxicity and efficacy in phase II trials of 3-h infusions of paclitaxel for patients 70 years of age or older and patients under 70 years of age. Cancer Chemother. Pharmacol. 2000, 46, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Fidias, P.; Supko, J.G.; Martins, R.; Boral, A.; Carey, R.; Grossbard, M.; Shapiro, G.; Ostler, P.; Lucca, J.; Johnson, B.E.; et al. Measurement and impact of co-morbidity in elderly patients with advanced non-small cell lung cancer treated with chemotherapy. A phase II study of weekly paclitaxel. Clin. Cancer Res. 2001, 7, 3942–3949. [Google Scholar] [PubMed]
- Borkowski, J.M.; Duerr, M.; Donehower, R.C.; Rowinsky, E.K.; Chen, T.L.; Ettinger, D.S.; Grochow, L.B. Relation between age and clearance rate of nine investigational anticancer drugs from phase I pharmacokinetic data. Cancer Chemother. Pharmacol. 1994, 33, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Smorenburg, C.H.; ten Tije, A.J.; Verweij, J.; Bontenbal, M.; Mross, K.; Van Zomeren, D.M.; Seynaeve, C.; Sparreboom, A. Altered clearance of unbound paclitaxel in elderly patients with metastatic breast cancer. Eur. J. Cancer 2003, 39, 196–202. [Google Scholar] [CrossRef]
- Joerger, M.; Huitema, A.D.R.; van den Bongard, D.H.J.G.; Schellens, J.H.M.; Beijnen, J.H. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of Paclitaxel in patients with solid tumors. Clin. Cancer Res. 2006, 12, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Joerger, M.; Kraff, S.; Huitema, A.D.R.; Feiss, G.; Moritz, B.; Schellens, J.H.M.; Beijnen, J.H.; Jaehde, U. Evaluation of a pharmacology-driven dosing algorithm of 3-weekly paclitaxel using therapeutic drug monitoring: A pharmacokinetic-pharmacodynamic simulation study. Clin. Pharmacokinet. 2012, 51, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, S.M.; Hollis, D.; Miller, A.A.; Rosner, G.L.; Rhoades, C.A.; Lester, E.P.; Millard, F.; Byd, J.; Cullinan, S.A.; Rosen, D.M.; et al. Prospective evaluation of the relationship of patient age and paclitaxel clinical pharmacology: Cancer and Leukemia Group B (CALGB 9762). J. Clin. Oncol. 2006, 24, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Huizing, M.T.; Giaccone, G.; van Warmerdam, L.J.; Rosing, H.; Bakker, P.J.; Vermorken, J.B.; Postmus, P.E.; van Zandwijk, N.; Koolen, M.G.; ten Bokkel Huinink, W.W.; et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Centre. J. Clin. Oncol. 1997, 15, 317–329. [Google Scholar] [PubMed]
- DRUGDEX®. Doxorubicin Hydrochloride; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Food and Drug Administration. Adriamycin RDF (Doxorubin Hydrochloride), NDA 050467, 2013.
- Dobbs, N.A.; Twelves, C.J.; Gillies, H.; James, C.A.; Harper, P.G.; Rubens, R.D. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother. Pharmacol. 1995, 36, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Dees, E.C.; O’Reilly, S.; Goodman, S.N.; Sartorius, S.; Levine, M.A.; Jones, R.J.; Grochow, L.B.; Donehower, R.C.; Fetting, J.H. A prospective pharmacologic evaluation of age-related toxicity of adjuvant chemotherapy in women with breast cancer. Cancer Investig. 2000, 18, 521–529. [Google Scholar] [CrossRef]
- Robert, J.; Hoerni, B. Age dependence of the early-phase pharmacokinetics of doxorubicin. Cancer Res. 1983, 43, 4467–9. [Google Scholar] [PubMed]
- Li, J.; Gwilt, P.R. The effect of age on the early disposition of doxorubicin. Cancer Chemother. Pharmacol. 2003, 51, 395–402. [Google Scholar] [PubMed]
- Joerger, M.; Huitema, A.D.R.; Richel, D.J.; Dittrich, C.; Pavlidis, N.; Briasoulis, E.; Vermorken, J.B.; Strocchi, E.; Martoni, A.; Sorio, R.; et al. Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients: A study by the EORTC-PAMM-NDDG. Clin. Pharmacokinet. 2007, 46, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- DRUGDEX®. Epirubicin Hydrochloride; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Jakobsen, P.; Steiness, E.; Bastholt, L.; Dalmark, M.; Lorenzen, A.; Petersen, D.; Gjedde, S.B.; Sandberg, E.; Rose, C.; Nielsen, O.S.; et al. Multiple-dose pharmacokinetics of epirubicin at four different dose levels: Studies in patients with metastatic breast cancer. Cancer Chemother. Pharmacol. 1991, 28, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Wade, J.R.; Kelman, A.W.; Kerr, D.J.; Robert, J.; Whiting, B. Variability in the pharmacokinetics of epirubicin: A population analysis. Cancer Chemother. Pharmacol. 1992, 29, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Eksborg, S.; Hardell, L.; Bengtsson, N.O.; Sjödin, M.; Elfsson, B. Epirubicin as a single agent therapy for the treatment of breast cancer—A pharmacokinetic and clinical study. Med. Oncol. Tumor Pharmacother. 1992, 9, 75–80. [Google Scholar] [PubMed]
- Food and Drug Administration. Ellence (Epirubicin Hydrochloride), NDA 050778, 2014.
- Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review: Ellence (Epirubicin Hydrochloride); FDA: Rockville, MD, USA, 1999.
- DRUGDEX®. Cyclophosphamide; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Moore, M.J. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 1991, 20, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Lyophilized Cytoxan (Cyclophosphamide), NDA 012142, 2013.
- DRUGDEX®. Vinorelbine Tartrate; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Sorio, R.; Robieux, I.; Galligioni, E.; Freschi, A.; Colussi, A.M.; Crivellari, D.; Saracchini, S.; Monfardini, S. Pharmacokinetics and tolerance of vinorelbine in elderly patients with metastatic breast cancer. Eur. J. Cancer 1997, 33, 301–303. [Google Scholar] [CrossRef]
- Nguyen, L.; Tranchand, B.; Puozzo, C.; Variol, P. Population pharmacokinetics model and limited sampling strategy for intravenous vinorelbine derived from phase I clinical trials. Br. J. Clin. Pharmacol. 2002, 53, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Variol, P.; Nguyen, L.; Tranchand, B.; Puozzo, C. A simultaneous oral/intravenous population pharmacokinetic model for vinorelbine. Eur. J. Clin. Pharmacol. 2002, 58, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Lush, R.M.; McCune, J.S.; Tetteh, L.; Thompson, J.A.; Mahany, J.J.; Garland, L.; Suttle, A.B.; Sullivan, D.M. The absolute bioavailability of oral vinorelbine in patients with solid tumors. Cancer Chemother. Pharmacol. 2005, 56, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Balleine, R.L.; Blair, E.Y.L.; McLachlan, A.J.; Ackland, S.P.; Garg, M.B.; Evans, S.; Farlow, D.; Collins, M.; Rivory, L.P.; et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J. Clin. Oncol. 2006, 24, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Gauvin, A.; Pinguet, F.; Culine, S.; Astre, C.; Gomeni, R.; Bressolle, F. Bayesian estimate of vinorelbine pharmacokinetic parameters in elderly patients with advanced metastatic cancer. Clin. Cancer Res. 2000, 6, 2690–2695. [Google Scholar] [PubMed]
- Gauvin, A.; Pinguet, F.; Culine, S.; Astre, C.; Gomeni, R.; Bressolle, F. A limited-sampling strategy to estimate individual pharmacokinetic parameters of vinorelbine in elderly patients with advanced metastatic cancer. Anticancer Drugs 2002, 13, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Navelbine (Vinorelbine), NDA 020388, 2014.
- Depierre, A.; Freyer, G.; Jassem, J.; Orfeuvre, H.; Ramlau, R.; Lemarie, E.; Koralewski, P.; Mauriac, L.; Breton, J.L.; Delozier, T.; et al. Oral vinorelbine: Feasibility and safety profile. Ann. Oncol. 2001, 12, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Colomer, R.; Alba, E.; González-Martin, A.; Paz-Ares, L.; Martín, M.; Llombart, A.; Rodríguez Lescure, A.; Salvador, J.; Albanell, J.; Isla, D.; et al. Treatment of cancer with oral drugs: A position statement by the Spanish Society of Medical Oncology (SEOM). Ann. Oncol. 2010, 21, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Pierre Fabre Press Release: Pierre Fabre Médicament Obtains MA in China for NAVELBINE®Oral (Vinorelbine) in the Treatment of Advanced Lung and Breast Cancer. Available online: http://www.pierre-fabre.com/sites/default/files/files/document/file/amm_chine_navelbine_oralven.pdf (accessed on 1 December 2015).
- Therapeutic Goods Administration. Australian Public Assessment Report: Navelbine Oral (Vinorelbine Capsules); Therapeutic Goods Administration: Woden, Austrilia, 2012. [Google Scholar]
- Marty, M.; Fumoleau, P.; Adenis, A.; Rousseau, Y.; Merrouche, Y.; Robinet, G.; Senac, I.; Puozzo, C. Oral vinorelbine pharmacokinetics and absolute bioavailability study in patients with solid tumors. Ann. Oncol. 2001, 12, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Puozzo, C.; Gridelli, C. Non-Small-Cell Lung Cancer in Elderly Patients: Influence of Age on Vinorelbine Oral Pharmacokinetics. Clin. Lung Cancer 2004, 5, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Gridelli, C.; Manegold, C.; Mali, P.; Reck, M.; Portalone, L.; Castelnau, O.; Stahel, R.; Betticher, D.; Pless, M.; Pons, J.T.; et al. Oral vinorelbine given as monotherapy to advanced, elderly NSCLC patients: A multicentre phase II trial. Eur. J. Cancer 2004, 40, 2424–2431. [Google Scholar] [CrossRef] [PubMed]
- DRUGDEX®. Fluorouracil; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Deenen, M.J.; Tol, J.; Burylo, A.M.; Doodeman, V.D.; de Boer, A.; Vincent, A.; Guchelaar, H.J.; Smits, P.H.M.; Beijnen, J.H.; Punt, C.J.A.; et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 2011, 17, 3455–3468. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Fang, J.M.; Xue, P.; Song, W.F.; Hu, J.; Gu, H.L.; Yang, H.Y.; Wang, L.W. The role of IVS14+1 G > A genotype detection in the dihydropyimidine dehydrogenase gene and pharmacokinetic monitoring of 5-fluorouracil in the individualized adjustment of 5-fluorouracil for patients with local advanced and metastatic colorectal cancer: Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1247–1258. [Google Scholar]
- Denham, J.W.; Ackland, S.P.; Burmeister, B.; Walpole, E.; Lamb, D.S.; Dady, P.; Spry, N.A. Causes for increased myelosuppression with increasing age in patients with oesophageal cancer treated by chemoradiotherapy. Eur. J. Cancer 1999, 35, 921–927. [Google Scholar] [CrossRef]
- Port, R.E.; Daniel, B.; Ding, R.W.; Herrmann, R. Relative importance of dose, body surface area, sex, and age for 5-fluorouracil clearance. Oncology 1991, 48, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Mueller, F.; Büchel, B.; Köberle, D.; Schürch, S.; Pfister, B.; Krähenbühl, S.; Froehlich, T.K.; Largiader, C.R.; Joerger, M. Gender-specific elimination of continuous-infusional 5-fluorouracil in patients with gastrointestinal malignancies: Results from a prospective population pharmacokinetic study. Cancer Chemother. Pharmacol. 2013, 71, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Milano, G.; Etienne, M.C.; Cassuto-Viguier, E.; Thyss, A.; Santini, J.; Frenay, M.; Renee, N.; Schneider, M.; Demard, F. Influence of sex and age on fluorouracil clearance. J. Clin. Oncol. 1992, 10, 1171–1175. [Google Scholar] [PubMed]
- Duffour, J.; Roca, L.; Bressolle, F.; Abderrahim, A.G.; Poujol, S.; Pinguet, F.; Ychou, M. Clinical impact of intesified 5-Fluorouracil-based chemotherapy using a prospective pharmacokinetically-guided dosing approach: Comparative study in elderly and non-elderly patients with metastatic colorectal cancer. J. Chemother. 2010, 22, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Medicines and Healthcare products Regulatory Agency. Public Assessment Report: Fluorouracil; Medicines and Healthcare products Regulatory Agency: London, UK, 2014. [Google Scholar]
- Seymour, M.T.; Thompson, L.C.; Wasan, H.S.; Middleton, G.; Brewster, A.E.; Shepherd, S.F.; O’Mahony, M.S.; Maughan, T.S.; Parmar, M.; Langley, R.E. Chemotherapy options in elderly and frail patients with metastatic colorectal cancer (MRC FOCUS2): An open-label, randomised factorial trial. Lancet 2011, 377, 1749–1759. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, W.J.; Woo, S.M.; Kim, T.H.; Han, S.S.; Kim, B.H.; Moon, S.H.; Kim, S.S.; Koh, Y.H.; Park, S.J.; et al. Comparison of capecitabine and 5-fluorouracil in chemoradiotherapy for locally advanced pancreatic cancer. Radiat. Oncol. 2013, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.J.; Lee, K.W.; Kim, J.H.; Bang, S.M.; Kim, Y.J.; Kim, D.W.; Kang, S.B.; Lee, J.S. Adjuvant capecitabine chemotherapy using a tailored-dose strategy in elderly patients with colon cancer. Ann. Oncol. 2012, 23, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Twelves, C.; Scheithauer, W.; Mckendrick, J.; Seitz, J.F.; van Hazel, G.; Wong, A.; Díaz-Rubio, E.; Gilberg, F.; Cassidy, J. Capecitabine versus 5-fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: Final results from the X-ACT trial with analysis by age and preliminary evidence of a pharmacodynamic marker of efficacy. Ann. Oncol. 2012, 23, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Bajetta, E.; Procopio, G.; Celio, L.; Gattinoni, L.; Della Torre, S.; Mariani, L.; Catena, L.; Ricotta, R.; Longarini, R.; Zilembo, N.; Buzzoni, R. Safety and efficacy of two different doses of capecitabine in the treatment of advanced breast cancer in older women. J. Clin. Oncol. 2005, 23, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Lang, I.; Marcuello, E.; Lorusso, V.; Ocvirk, J.; Shin, D.B.; Jonker, D.; Osborne, S.; Andre, N.; Waterkamp, D.; Saunders, M.P. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): An open-label, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1077–1085. [Google Scholar] [CrossRef]
- Twelves, C.; Wong, A.; Nowacki, M.P.; Abt, M.; Burris, H.; Carrato, A.; Cassidy, J.; Cervantes, A.; Fagerberg, J.; Georgoulias, V.; et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 2005, 352, 2696–2704. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.L.; Dieras, V.; lo Russo, P.M.; Horton, J.; Rutman, O.; Buzdar, A.; Osterwalder, B. Multicenter, Phase II study of capecitabine in taxane-pretreated metastatic breast carcinoma patients. Cancer 2001, 92, 1759–1768. [Google Scholar] [CrossRef]
- Fumoleau, P.; Largillier, R.; Clippe, C.; Dièras, V.; Orfeuvre, H.; Lesimple, T.; Culine, S.; Audhuy, B.; Serin, D.; Curé, H.; et al. Multicentre, phase II study evaluating capecitabine monotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer. Eur. J. Cancer 2004, 40, 536–542. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, P.; Zhang, Y.; Deng, X.; Meng, W.; Wei, M.; Yang, T.; Wang, Z.; Qiu, M. Low-dose capecitabine adjuvant chemotherapy in elderly stage II/III colorectal cancer patients (LC-ACEC): Study protocol for a randomized controlled trial. Trials 2015, 16, 238. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Medical Review: Xeloda (Capecitabine); FDA: Rockville, MD, USA, 1998.
- Food and Drug Administration. Xeloda (Capecitbine), NDA 020896, 2015.
- Gieschke, R.; Burger, H.U.; Reigner, B.; Blesch, K.S.; Steimer, J.L. Population pharmacokinetics and concentration-effect relationships of capecitabine metabolites in colorectal cancer patients. Br. J. Clin. Pharmacol. 2003, 55, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.; Twelves, C.; Cameron, D.; Steward, W.; O’Byne, K.; Jodrell, D.; Banken, L.; Goggin, T.; Jones, D.; Roos, B.; et al. Bioequivalence of two tablet formulations of capecitabine and exploration of age, gender, body surface area, and creatinine clearance as factors influencing systemic exposure in cancer patients. Cancer Chemother. Pharmacol. 1999, 44, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Gieschke, R.; Reigner, B.; Blesch, K.S.; Steimer, J.L. Population pharmacokinetic analysis of the major metabolites of capecitabine. J. Pharmacokinet. Pharmacodyn. 2002, 29, 25–47. [Google Scholar] [CrossRef] [PubMed]
- Fischel, J.L.; Formento, P.; Ciccolini, J.; Etienne-Grimaldi, M.C.; Milano, G. Lack of contribution of dihydrofluorouracil and alpha-fluoro-beta-alanine to the cytotoxicity of 5’-deoxy-5-fluorouridine on human keratinocytes. Anticancer Drugs 2004, 15, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Daher Abdi, Z.; Lavau-Denes, S.; Prémaud, A.; Urien, S.; Sauvage, F.L.; Martin, J.; Leobon, S.; Marquet, P.; Tubiana-Mathieu, N.; Rousseau, A. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer. Cancer Chemother. Pharmacol. 2014, 73, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, S.G.; Ely, B.; Lenz, H.J.; Albain, K.S.; Gotay, C.; Coleman, D.; Raghavan, D.; Shields, A.F.; Gold, P.J.; Blanke, C.D. Higher capecitabine AUC in elderly patients with advanced colorectal cancer (SWOGS0030). Br. J. Cancer 2013, 109, 1744–1749. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Xeloda (Capecitabine); European Medicines Agency: London, UK, 2014. [Google Scholar]
- DRUGDEX®. Carboplatin; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Ainsworth, N.L.; Marshall, A.; Hatcher, H.; Whitehead, L.; Whitfield, G.A.; Earl, H.M. Evaluation of glomerular filtration rate estimation by Cockcroft-Gault, Jelliffe, Wright and Modification of Diet in Renal Disease (MDRD) formulae in oncology patients. Ann. Oncol. 2012, 23, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Paraplatin (Carboplatin), NDA 020452, 2004.
- Merino-Sanjuán, M.; Monteiro, J.F.; Porta-Oltra, B.; Maestu, I.; Almenar, D.; Jiménez-Torres, N.V. Effect of age on systemic exposure and haematological toxicity of carboplatin in advanced non-small cell lung cancer patients. Basic Clin. Pharmacol. Toxicol. 2011, 109, 457–464. [Google Scholar] [CrossRef] [PubMed]
- DRUGDEX®. Cisplatin; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Himmelstein, K.J.; Patton, T.F.; Belt, R.J.; Taylor, S.; Repta, A.J.; Sternson, L.A. Clinical kinetics on intact cisplatin and some related species. Clin. Pharmacol. Ther. 1981, 29, 658–664. [Google Scholar] [CrossRef] [PubMed]
- CBG-MEB. SmPC Platinol; CBG-MEB: Utrecht, The Netherlands, 2011. [Google Scholar]
- Food and Drug Administration. Platinol (Cisplatin), NDA 018057. 2015. [Google Scholar]
- Medicines and Healthcare products Regulatory Agency. Public Assessment Report: Platinol (Cisplatin); Medicines and Healthcare products Regulatory Agency: London, UK, 2010. [Google Scholar]
- Reece, P.A.; Stafford, I.; Russell, J.; Khan, M.; Gill, P.G. Creatinine clearance as a predictor of ultrafilterable platinum disposition in cancer patients treated with cisplatin: Relationship between peak ultrafilterable platinum plasma levels and nephrotoxicity. J. Clin. Oncol. 1987, 5, 304–309. [Google Scholar] [PubMed]
- Yamamoto, N.; Tamura, T.; Maeda, M.; Ando, M.; Shinkai, T.; Eguchi, K.; Ohe, Y.; Oshita, F.; Shiraishi, J.; Katsumata, N. The influence of ageing on cisplatin pharmacokinetics in lung cancer patients with normal organ function. Cancer Chemother. Pharmacol. 1995, 36, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Thyss, A.; Saudes, L.; Otto, J.; Creisson, A.; Gaspard, M.H.; Dassonville, O.; Schneider, M. Renal tolerance of cisplatin in patients more than 80 years old. J. Clin. Oncol. 1994, 12, 2121–2125. [Google Scholar] [PubMed]
- Lichtman, S.M.; Buchholtz, M.; Marino, J.; Schulman, P.; Allen, S.L.; Weiselberg, L.; Budman, D.; DeMarco, L.; Schuster, M.; Lovecchio, J. Use of cisplatin for elderly patients. Age Ageing 1992, 21, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Cubillo, A.; Cornide, M.; López, J.L.; Molina, R.; Feliu, J.; Espinosa, E.; Zamora, P.; de Castro, J.; Ordoñez, A.; González Barón, M. Renal tolerance to cisplatin in patients 70 years and older. Am. J. Clin. Oncol. 2001, 24, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Seidman, A.D.; Berry, D.; Cirrincione, C.; Harris, L.; Muss, H.; Marcom, P.K.; Gipson, G.; Burstein, H.; Lake, D.; Shapiro, C.L.; et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: Final results of Cancer and Leukemia Group B Protocol 9840. J. Clin. Oncol. 2008, 26, 1642–49. [Google Scholar] [PubMed]
- Van Hasselt, J.G.C.; Boekhout, A.H.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R. Population pharmacokinetic-pharmacodynamic analysis of trastuzumab-associated cardiotoxicity. Clin. Pharmacol. Ther. 2012, 29, 3499–511. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Kadcyla (Ado-Trastuzumab Emtansine), BLA 125427; FDA: Rockville, MD, USA, 2015.
- Food and Drug Administration. Drug Approvals: Kadcyla (Ado-Trastuzumab Emtansine); FDA: Rockville, MD, USA, 2013.
- European Medicines Agency. Committee for Medicinal Products for Human Use. In Summary of Opinion: Kadcyla (Trastuzumab Emtansine); European Medicines Agency: London, UK, 2013. [Google Scholar]
- Lu, D.; Joshi, A.; Wang, B.; Olsen, S.; Yi, J.H.; Krop, I.E.; Burris, H.A.; Girish, S. An integrated multiple-analyte pharmacokinetic model to characterize trastuzumab emtansine (T-DM1) clearance pathways and to evaluate reduced pharmacokinetic sampling in patients with HER2-positive metastatic breast cancer. Clin. Pharmacokinet. 2013, 52, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; LoRusso, P.M.; Wang, B.; Yi, J.H.; Burris, H.A.; Beeram, M.; Modi, S.; Chu, Y.W.; Agresta, S.; Klencke, B.; et al. Clinical Implications of Pathophysiological and Demographic Covariates on the Population Pharmacokinetics of Trastuzumab Emtansine, a HER2-Targeted Antibody-Drug Conjugate, in Patients With HER2-Positive Metastatic Breast Cancer. J. Clin. Pharmacol. 2012, 52, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Girish, S.; Gao, Y.; Wang, B.; Yi, J.H.; Guardino, E.; Samant, M.; Cobleigh, M.; Rimawi, M.; Conte, P.; et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: Clinical implications of the effect of covariates. Cancer Chemother. Pharmacol. 2014, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Dubbelman, A.; Rosing, H.; Jansen, R.S.; Mergui-roelvink, M.; Huitema, A.D.R.; Koetz, B.; Lymboura, M.; Reyderman, L.; Lopez-anaya, A.; Schellens, J.H.M.; et al. Mass Balance Study of [ 14 C ] Eribulin in Patients with Advanced Solid Tumors. Drug Metab. Dispos. 2012, 40, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Halaven (Eribulin Mesylate), NDA 201532, 2014.
- European Medicines Agency. Halaven (Erybulin Mesylate); European Medicines Agency: London, UK, 2015. [Google Scholar]
- Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review(s): Halaven (Erybulin Mesylate); FDA: Rockville, MD, USA, 2010.
- DRUGDEX®. Everolimus; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Food and Drug Administration. Afinitor (Everolimus), NDA 022334, 2015.
- Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
- Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review(s): AFINITOR (everolimus); FDA: Rockville, MD, USA, 2009.
- Xu, B.; Wu, Y.; Shen, L.; Ye, D.; Jappe, A.; Cherfi, A.; Wang, H.; Yuan, R. Two-dose-level confirmatory study of the pharmacokinetics and tolerability of everolimus in Chinese patients with advanced solid tumors. J. Hematol. Oncol. 2011, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- DRUGDEX®. Lapatinib; Truven Health Analytics: Thomson Micromedex, Greenwood Village, CO, USA, 2015. [Google Scholar]
- Food and Drug Administration. Tykerb (Lapatinib Ditosylate), NDA 022059, 2015.
- Scheffler, M.; di Gion, P.; Doroshyenko, O.; Wolf, J.; Fuhr, U. Clinical pharmacokinetics of tyosine kinase inhibitors. Clin. Pharmacokinet. 2011, 50, 371–403. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review(s): Tykerb (Lapatinib Ditosylate); FDA: Rockville, MD, USA, 2007.
- European Medicines Agency. Tyverb (Lapatinib Ditosylate Monohydrate); European Medicines Agency: London, UK, 2015. [Google Scholar]
- Di Gion, P.; Kanefendt, F.; Lindauer, A.; Scheffler, M.; Doroshyenko, O.; Fuhr, U.; Wolf, J.; Jaehde, U. Clinical pharmacokinetics of tyosine kinase inhibitors: Focus on pyimidines, pyidines and pyroles. Clin. Pharmacokinet. 2011, 50, 551–603. [Google Scholar] [CrossRef] [PubMed]
- Joerger, M. Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J. 2012, 14, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.H.; Temin, S.; Kirshner, J.J.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Gonzalez-Angulo, A.M.; Krop, I.; Levinson, J.; et al. Systemic Therapy for Patients With Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2014, 32, 1–23. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Early and Locally Advanced Breast Cancer (Update): Diagnosis and Treatment; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- National Institute for Health and Care Excellence. Advanced Breast Cancer (Update): Diagnosis and Treatment; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Partridge, A.H.; Rumble, R.B.; Carey, L.A.; Come, S.E.; Davidson, N.E.; di Leo, A.; Gralow, J.; Hortobagyi, G.N.; Moy, B.; Yee, D.; et al. Chemotherapy and Targeted Therapy for Women With Human Epidermal Growth Factor Receptor 2-Negative (or unknown) Advanced Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2014, 32, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, L.; Wildiers, H.; Oakman, C.; Marotti, L.; Loibl, S.; Kunkler, I.; Reed, M.; Ciatto, S.; Voogd, A.C.; Brain, E.; et al. Management of elderly patients with breast cancer: Updated recommendations of the International Society of Geriatric Oncology (SIOG) and European Society of Breast Cancer Specialists (EUSOMA). Lancet Oncol. 2012, 13, e148–e160. [Google Scholar] [CrossRef]
- Comprehensive Cancer Centre the Netherlands (IKNL). Guideline: Breast Cancer (Draft); Comprehensive Cancer Centre the Netherlands (IKNL): Amsterdam, The Netherlands, 2015. [Google Scholar]
- Balducci, L.; Colloca, G.; Cesari, M.; Gambassi, G. Assessment and treatment of elderly patients with cancer. Surg. Oncol. 2010, 19, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, M.E.; Jonker, J.M.; de Rooij, S.E.; Vos, A.G.; Smorenburg, C.H.; van Munster, B.C. Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: A systematic review. Lancet Oncol. 2012, 13, e437–e444. [Google Scholar] [CrossRef]
- Mathoulin-Pélissier, S.; Bellera, C.; Rainfray, M.; Soubeyan, P. Screening methods for geriatric frailty. Lancet Oncol. 2013, 14, e1–e2. [Google Scholar] [CrossRef]
- Aaldriks, A.A.; Maartense, E.; Nortier, H.J.W.R.; van der Geest, L.G.M.; le Cessie, S.; Tanis, B.C.; Portielje, J.E.A.; Ypma, P.; Giltay, E.J. Prognostic factors for the feasibility of chemotherapy and the Geriatric Prognostic Index (GPI) as risk profile for mortality before chemotherapy in the elderly. Acta Oncol. 2016, 55, 15–23. [Google Scholar] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crombag, M.-R.B.S.; Joerger, M.; Thürlimann, B.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer. Cancers 2016, 8, 6. https://doi.org/10.3390/cancers8010006
Crombag M-RBS, Joerger M, Thürlimann B, Schellens JHM, Beijnen JH, Huitema ADR. Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer. Cancers. 2016; 8(1):6. https://doi.org/10.3390/cancers8010006
Chicago/Turabian StyleCrombag, Marie-Rose B.S., Markus Joerger, Beat Thürlimann, Jan H.M. Schellens, Jos H. Beijnen, and Alwin D.R. Huitema. 2016. "Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer" Cancers 8, no. 1: 6. https://doi.org/10.3390/cancers8010006
APA StyleCrombag, M. -R. B. S., Joerger, M., Thürlimann, B., Schellens, J. H. M., Beijnen, J. H., & Huitema, A. D. R. (2016). Pharmacokinetics of Selected Anticancer Drugs in Elderly Cancer Patients: Focus on Breast Cancer. Cancers, 8(1), 6. https://doi.org/10.3390/cancers8010006