Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions
Abstract
:1. Introduction
2. Current Applications of PDT in Oral Cancers and Precancers
2.1. PDT as a Topical Therapy
2.2. PDT as a Primary Treatment: Advantages and Limitations
2.3. PDT as an Adjuvant and/or Combined Modality
2.4. PDT as a Palliative Treatment Modality Using Interstitial PDT (iPDT)
2.5. PDT as a Surveillance Modality to Maintain Cancer Free Status
3. Uniqueness of the Oral Cavity in the Application of PDT
3.1. Visualization for Difficult-to-Reach Areas in the Mouth
3.2. Minimizing the Damage to Normal Adjacent Mucosa
4. Recent Developments in PDT
4.1. Targeted PS Delivery
4.2. Nanotechnology in PDT
4.3. Vascular Targeted PDT
4.4. Two-Photon PDT
4.5. PDT-based Tumor-Vaccines
4.5.1. Mechanism
4.5.2. Potential Clinical Application in Oral Cancer Treatment
4.5.3. Considerations for Clinical Trials
5. Conclusions
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in Globoscan 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Kligerman, J.; Lima, R.A.; Soares, J.R.; Prado, L.; Dias, F.L.; Freitas, E.Q.; Olivatto, L.O. Supraomohyoid neck dissection in the treatment of T1/T2 squamous-cell carcinoma of oral cavity. Am. J. Surg. 1994, 168, 391–394. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.; Yue, K.; Wang, X.D. The recurrence and survival of oral squamous cell carcinoma: A report of 275 cases. Chin. J. Cancer 2013, 32, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Cerrati, E.W.; Nguyen, S.A.; Farrar, J.D.; Lentsch, E.J. The efficacy of photodynamic therapy in the treatment of oral squamous cell carcinoma: A meta-analysis. Ear Nose Throat J. 2015, 94, 72–79. [Google Scholar] [PubMed]
- Vohra, F.; Al-Kheraif, A.A.; Qadri, T.; Hassan, M.I.A.; Ahmedef, A.; Warnakulasuriya, S.; Javed, F. Efficacy of photodynamic therapy in the management of oral premalignant lesions. A systematic review. Photodiagn. Photodyn. 2015, 12, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Poh, C.F.; Zhang, L.W.; Anderson, D.W.; Durham, J.S.; Williams, R.M.; Priddy, R.W.; Berean, K.W.; Ng, S.S.; Tseng, O.L.; MacAulay, C.; et al. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin. Cancer Res. 2006, 12, 6716–6722. [Google Scholar] [CrossRef] [PubMed]
- Bredell, M.G.; Besic, E.; Maake, C.; Walt, H. The application and challenges of clinical PD-PDTF in the head and neck region: A short review. J. Photochem. Photobiol. B 2010, 101, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Sibata, C.; Gay, H. Pdt for cancers of the head and neck. Photodiagn. Photodyn. Ther. 2009, 6, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Poh, C.F. Photodynamic therapy: A review and its prospective role in the management of oral potentially malignant disorders. Oral. Dis. 2013, 19, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Verrico, A.K.; Haylett, A.K.; Moore, J.V. In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia or photodynamic therapy. Lasers Med. Sci. 2001, 16, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Poh, C.F.; Anderson, D.W.; Durham, J.S.; Chen, J.H.; Berean, K.W.; MacAulay, C.E.; Rosin, M.P. Fluorescence visualization-guided surgery for early-stage oral cancer. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Biel, M.A. Photodynamic therapy in head and neck cancer. Curr. Oncol. Rep. 2002, 4, 87–96. [Google Scholar] [CrossRef]
- Biel, M.A. Photodynamic therapy of head and neck cancers. Methods Mol. Biol. 2010, 635, 281–293. [Google Scholar] [PubMed]
- Tan, I.B.; Dolivet, G.; Ceruse, P.; Vander Poorten, V.; Roest, G.; Rauschning, W. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck 2010, 32, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.F.; Hopper, C.; Speight, P.M.; Buonaccorsi, G.; MacRobert, A.J.; Bown, S.G. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer 1996, 78, 1374–1383. [Google Scholar] [CrossRef]
- Konopka, K.; Goslinski, T. Photodynamic therapy in dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Grossweiner, L.I.; Hill, J.H.; Lobraico, R.V. Photodynamic therapy of head and neck squamous cell carcinoma: Optical dosimetry and clinical trial. Photochem. Photobiol. 1987, 46, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, J.L. Hematoporphyrin photodynamic therapy: Is there truly a future in head and neck oncology? Reflections on a 5-year experience. Laryngoscope 1991, 101, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.F.; Hopper, C.; Speight, P.M.; Buonaccorsi, G.A.; Bown, S.G. Photodynamic therapy using mTHPC for malignant disease in the oral cavity. Int. J. Cancer 1997, 73, 25–32. [Google Scholar] [CrossRef]
- Schweitzer, V.G. Photofrin-mediated photodynamic therapy for treatment of early stage oral cavity and laryngeal malignancies. Lasers Surg. Med. 2001, 29, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Copper, M.P.; Tan, I.B.; Oppelaar, H.; Ruevekamp, M.C.; Stewart, F.A. Meta-tetra(hydroxyphenyl)chlorin photodynamic therapy in early-stage squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Dilkes, M.G.; Benjamin, E.; Ovaisi, S.; Banerjee, A.S. Treatment of primary mucosal head and neck squamous cell carcinoma using photodynamic therapy: Results after 25 treated cases. J. Laryngol. Otol. 2003, 117, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Hopper, C. Photodynamic therapy: A clinical reality in the treatment of cancer. Lancet Oncol. 2000, 1, 212–219. [Google Scholar] [CrossRef]
- Copper, M.P.; Triesscheijn, M.; Tan, I.B.; Ruevekamp, M.C.; Stewart, F.A. Photodynamic therapy in the treatment of multiple primary tumours in the head and neck, located to the oral cavity and oropharynx. Clin. Otolaryngol. 2007, 32, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Rigual, N.R.; Thankappan, K.; Cooper, M.; Sullivan, M.A.; Dougherty, T.; Popat, S.R.; Loree, T.R.; Biel, M.A.; Henderson, B. Photodynamic therapy for head and neck dysplasia and cancer. Arch. Otolaryngol. Head Neck Surg. 2009, 135, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Hamdoon, Z.; Alexander Mosse, C.; Morcos, M.; Hopper, C. Photodynamic therapy outcome for T1/T2 N0 oral squamous cell carcinoma. Lasers Surg. Med. 2011, 43, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Hamdoon, Z.; Abbas, S.; Akram, S.; Mosse, C.A.; Morley, S.; Hopper, C. Photodynamic therapy: The minimally invasive surgical intervention for advanced and/or recurrent tongue base carcinoma. Lasers Surg. Med. 2011, 43, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Karakullukcu, B.; van Oudenaarde, K.; Copper, M.P.; Klop, W.M.; van Veen, R.; Wildeman, M.; Bing Tan, I. Photodynamic therapy of early stage oral cavity and oropharynx neoplasms: An outcome analysis of 170 patients. Eur. Arch. Otorhinolaryngol. 2011, 268, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakullukcu, B.; Stoker, S.D.; Wildeman, A.P.; Copper, M.P.; Wildeman, M.A.; Tan, I.B. A matched cohort comparison of mthpc-mediated photodynamic therapy and trans-oral surgery of early stage oral cavity squamous cell cancer. Eur. Arch. Otorhinolaryngol. 2013, 270, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- De Visscher, S.A.; Melchers, L.J.; Dijkstra, P.U.; Karakullukcu, B.; Tan, I.B.; Hopper, C.; Roodenburg, J.L.; Witjes, M.J. Mthpc-mediated photodynamic therapy of early stage oral squamous cell carcinoma: A comparison to surgical treatment. Ann. Surg. Oncol. 2013, 20, 3076–3082. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Tobita, T.; Ohba, S.; Uehara, M.; Asahina, I. Treatment outcome of photofrin-based photodynamic therapy for T1 and T2 oral squamous cell carcinoma and dysplasia. Photodiagn. Photodyn. Ther. 2013, 10, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Rigual, N.; Shafirstein, G.; Cooper, M.T.; Baumann, H.; Bellnier, D.A.; Sunar, U.; Tracy, E.C.; Rohrbach, D.J.; Wilding, G.; Tan, W.; et al. Photodynamic therapy with 3-(1′-hexyloxyethyl) pyropheophorbide a for cancer of the oral cavity. Clin. Cancer Res. 2013, 19, 6605–6613. [Google Scholar] [CrossRef] [PubMed]
- Toratani, S.; Tani, R.; Kanda, T.; Koizumi, K.; Yoshioka, Y.; Okamoto, T. Photodynamic therapy using photofrin and excimer dye laser treatment for superficial oral squamous cell carcinomas with long-term follow up. Photodiagn. Photodyn. Ther. 2016, 14, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Hong, J.W.; Boo, S.H.; Kim, M.G.; Lee, K.D.; Ahn, J.C.; Hwang, H.J.; Shin, J.I.; Lee, S.J.; Oh, J.K.; et al. Combination treatment of cetuximab and photodynamic therapy in SNU-1041 squamous cancer cell line. Oncol. Rep. 2009, 22, 701–708. [Google Scholar]
- Ge, R.; Ahn, J.C.; Shin, J.I.; Bahk, C.W.; He, P.; Chung, P.S. An in vitro and in vivo study of combination therapy with Photogem®-mediated photodynamic therapy and cisplatin on mouse cancer cells (CT-26). Photomed. Laser Surg. 2011, 29, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Compagnin, C.; Mognato, M.; Celotti, L.; Canti, G.; Palumbo, G.; Reddi, E. Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin in combination with photodynamic therapy. Cell Prolif. 2010, 43, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.N.; Allman, R.; Loh, C.; Mason, M.; Matthews, P.N. Effect of photodynamic therapy in combination with mitomycin c on a mitomycin-resistant bladder cancer cell line. Br. J. Cancer 1997, 76, 312–317. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, A.K.; Robinson, M.H.; Biel, M.A. Mthpc-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study of 128 patients. Head Neck 2004, 26, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Upile, T.; Akram, S.; Hopper, C. The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin. Oncol. 2010, 22, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Li, L.B.; Luo, R.C.; Liao, W.J.; Zhang, M.J.; Luo, Y.L.; Miao, J.X. Clinical study of photofrin photodynamic therapy for the treatment of relapse nasopharyngeal carcinoma. Photodiagn. Photodyn. Ther. 2006, 3, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Kreth, F.W.; Beyer, W.; Mehrkens, J.H.; Obermeier, A.; Stepp, H.; Stummer, W.; Baumgartner, R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin ix. Lasers Surg. Med. 2007, 39, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Lou, P.J.; Jager, H.R.; Jones, L.; Theodossy, T.; Bown, S.G.; Hopper, C. Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. Br. J. Cancer 2004, 91, 441–446. [Google Scholar] [CrossRef]
- Karakullukcu, B.; Nyst, H.J.; van Veen, R.L.; Hoebers, F.J.; Hamming-Vrieze, O.; Witjes, M.J.; de Visscher, S.A.; Burlage, F.R.; Levendag, P.C.; Sterenborg, H.J.; et al. mTHPC mediated interstitial photodynamic therapy of recurrent nonmetastatic base of tongue cancers: Development of a new method. Head Neck 2012, 34, 1597–1606. [Google Scholar] [CrossRef]
- Canti, G.; Lattuada, D.; Nicolin, A.; Taroni, P.; Valentini, G.; Cubeddu, R. Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light. Anticancer Drugs 1994, 5, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hady, E.S.; Martin-Hirsch, P.; Duggan-Keen, M.; Stern, P.L.; Moore, J.V.; Corbitt, G.; Kitchener, H.C.; Hampson, I.N. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2001, 61, 192–196. [Google Scholar]
- Reis e Sousa, C. Activation of dendritic cells: Translating innate into adaptive immunity. Curr. Opin. Immunol. 2004, 16, 21–25. [Google Scholar] [CrossRef]
- Sur, B.W.; Nguyen, P.; Sun, C.H.; Tromberg, B.J.; Nelson, E.L. Immunophototherapy using pdt combined with rapid intratumoral dendritic cell injection. Photochem. Photobiol. 2008, 84, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Saji, H.; Song, W.; Furumoto, K.; Kato, H.; Engleman, E.G. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin. Cancer Res. 2006, 12, 2568–2574. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, G.S.; O’Malley, B.W., Jr.; Snyder, W.; Sherman, E.; Quon, H. Transoral robotic surgery: Radical tonsillectomy. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, B.W., Jr.; Weinstein, G.S.; Snyder, W.; Hockstein, N.G. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006, 116, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Quon, H.; Finlay, J.; Cengel, K.; Zhu, T.; O’Malley, B., Jr.; Weinstein, G. Transoral robotic photodynamic therapy for the oropharynx. Photodiagn. Photodyn. Ther. 2011, 8, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Quon, H.; Grossman, C.E.; Finlay, J.C.; Zhu, T.C.; Clemmens, C.S.; Malloy, K.M.; Busch, T.M. Photodynamic therapy in the management of pre-malignant head and neck mucosal dysplasia and microinvasive carcinoma. Photodiagn. Photodyn. Ther. 2011, 8, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Canavesi, C.; Cassarly, W.J.; Foster, T.H.; Rolland, J.P. Lightpipe device for delivery of uniform illumination for photodynamic therapy of the oral cavity. Appl. Opt. 2011, 50, 2322–2325. [Google Scholar] [CrossRef] [PubMed]
- Canavesi, C.; Fournier, F.; Cassarly, W.J.; Foster, T.H.; Rolland, J.P. Illumination devices for photodynamic therapy of the oral cavity. Biomed. Opt. Express 2010, 1, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Solban, N.; Rizvi, I.; Hasan, T. Targeted photodynamic therapy. Lasers Surg. Med. 2006, 38, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Carcenac, M.; Larroque, C.; Langlois, R.; van Lier, J.E.; Artus, J.C.; Pelegrin, A. Preparation, phototoxicity and biodistribution studies of anti-carcinoembryonic antigen monoclonal antibody-phthalocyanine conjugates. Photochem. Photobiol. 1999, 70, 930–936. [Google Scholar] [PubMed]
- Hamblin, M.R.; Del Governatore, M.; Rizvi, I.; Hasan, T. Biodistribution of charged 17.1A photoimmunoconjugates in a murine model of hepatic metastasis of colorectal cancer. Br. J. Cancer 2000, 83, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Carcenac, M.; Dorvillius, M.; Garambois, V.; Glaussel, F.; Larroque, C.; Langlois, R.; Hynes, N.E.; van Lier, J.E.; Pelegrin, A. Internalisation enhances photo-induced cytotoxicity of monoclonal antibody-phthalocyanine conjugates. Br. J. Cancer 2001, 85, 1787–1793. [Google Scholar] [CrossRef] [PubMed]
- Yarmush, M.L.; Thorpe, W.P.; Strong, L.; Rakestraw, S.L.; Toner, M.; Tompkins, R.G. Antibody targeted photolysis. Crit. Rev. Ther. Drug Carrier Syst. 1993, 10, 197–252. [Google Scholar]
- Smith, K.A.; Nelson, P.N.; Warren, P.; Astley, S.J.; Murray, P.G.; Greenman, J. Demystified...Recombinant antibodies. J. Clin. Pathol. 2004, 57, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Staneloudi, C.; Smith, K.A.; Hudson, R.; Malatesti, N.; Savoie, H.; Boyle, R.W.; Greenman, J. Development and characterization of novel photosensitizer: SCFV conjugates for use in photodynamic therapy of cancer. Immunology 2007, 120, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.D.; Adler-Storthz, K.; Clayman, G.L.; Yung, A.W.; Chen, Z. Differential expression of epidermal growth factor receptor in human head and neck cancers. Head Neck 1998, 20, 320–327. [Google Scholar] [CrossRef]
- El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-egfr antibody conjugated gold nanoparticles. Cancer Lett. 2006, 239, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Soukos, N.S.; Hamblin, M.R.; Keel, S.; Fabian, R.L.; Deutsch, T.F.; Hasan, T. Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res. 2001, 61, 4490–4496. [Google Scholar] [PubMed]
- del Carmen, M.G.; Rizvi, I.; Chang, Y.; Moor, A.C.; Oliva, E.; Sherwood, M.; Pogue, B.; Hasan, T. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl. Cancer Inst. 2005, 97, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008, 60, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Bakalova, R.; Ohba, H.; Zhelev, Z.; Ishikawa, M.; Baba, Y. Quantum dots as photosensitizers? Nat. Biotechnol. 2004, 22, 1360–1361. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, J.Y.; Idowu, M.; Nyokong, T. Generation of singlet oxygen via the composites of water-soluble thiol-capped cdte quantum dots-sulfonated aluminum phthalocyanines. J. Phys. Chem. B 2008, 112, 4465–4469. [Google Scholar] [CrossRef] [PubMed]
- Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008, 26, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.C. Emerging strategies in photodynamic therapy. In Advances in Photodynamic Therapy: Basic, Translational and Clinical (Engineering in Medicine and Biology), First ed.; Hamblin, M.R., Mroz, P., Eds.; Artech House: London, UK, 2008; pp. 235–252. [Google Scholar]
- Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 2007, 129, 4526–4527. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145–6154. [Google Scholar] [CrossRef] [PubMed]
- Cinteza, L.O.; Ohulchanskyy, T.Y.; Sahoo, Y.; Bergey, E.J.; Pandey, R.K.; Prasad, P.N. Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol. Pharmaceutics 2006, 3, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Oo, M.K.; Yang, X.; Du, H.; Wang, H. 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Nanomedicine 2008, 3, 777–786. [Google Scholar] [PubMed]
- Chen, B.; Pogue, B.W.; Hoopes, P.J.; Hasan, T. Vascular and cellular targeting for photodynamic therapy. Crit. Rev. Eukaryot. Gene Expression 2006, 16, 279–305. [Google Scholar] [CrossRef]
- Kurohane, K.; Tominaga, A.; Sato, K.; North, J.R.; Namba, Y.; Oku, N. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett. 2001, 167, 49–56. [Google Scholar] [CrossRef]
- Chen, B.; Crane, C.; He, C.; Gondek, D.; Agharkar, P.; Savellano, M.D.; Hoopes, P.J.; Pogue, B.W. Disparity between prostate tumor interior versus peripheral vasculature in response to verteporfin-mediated vascular-targeting therapy. Int. J. Cancer 2008, 123, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Starkey, J.R.; Rebane, A.K.; Drobizhev, M.A.; Meng, F.; Gong, A.; Elliott, A.; McInnerney, K.; Spangler, C.W. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse. Clin. Cancer Res. 2008, 14, 6564–6573. [Google Scholar] [CrossRef] [PubMed]
- Collins, H.A.; Khurana, M.; Moriyama, E.H.; Mariampillai, A.; Dahlstedt, E.; Balaz, M.; Kuimova, M.K.; Drobizhev, M.; YangVictor, X.D.; Phillips, D.; et al. Blood-vessel closure using photosensitizers engineered for two-photon excitation. Nat. Photon. 2008, 2, 420–424. [Google Scholar] [CrossRef]
- Brown, S. Photodynamic therapy: Two photons are better than one. Nat. Photon. 2008, 2, 394–395. [Google Scholar] [CrossRef]
- Karotki, A.; Khurana, M.; Lepock, J.R.; Wilson, B.C. Simultaneous two-photon excitation of photofrin in relation to photodynamic therapy. Photochem. Photobiol. 2006, 82, 443–452. [Google Scholar] [CrossRef]
- Korbelik, M. Cancer vaccines generated by photodynamic therapy. Photochem. Photobiol. 2011, 10, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.Y.; Ma, W.J.; Li, Y.X. Generation of effective vaccines against liver cancer by using photodynamic therapy. Lasers Med. Sci. 2009, 24, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, S.O.; Vaughan, L.; Henderson, B.W. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 2002, 62, 1604–1608. [Google Scholar] [PubMed]
- Korbelik, M.; Sun, J.H. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol. Immun. 2006, 55, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Merchant, S. Photodynamic therapy-generated cancer vaccine elicits acute phase and hormonal response in treated mice. Cancer Immunol. Immunother. 2012, 61, 1387–1394. [Google Scholar] [CrossRef]
- Garg, A.D.; Krysko, D.V.; Vandenabeele, P.; Agostinis, P. Damps and PDT-mediated photo-oxidative stress: Exploring the unknown. Photoch. Photobio. Sci. 2011, 10, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Korbelik, M.; Banath, J.; Sun, J.H.; Canals, D.; Hannun, Y.A.; Separovic, D. Ceramide and sphingosine-1-phosphate act as photodynamic therapy-elicited damage-associated molecular patterns: Cell surface exposure. Int. Immunopharmacol. 2014, 20, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 2010, 140, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Sun, J.H.; Cecic, I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response. Cancer Res. 2005, 65, 1018–1026. [Google Scholar] [PubMed]
- Suzuki, S.; Kulkarni, A.B. Extracellular heat shock protein HSP90β secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-β1. Biochem. Biophys. Res. Commun. 2010, 398, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, S.O. Photodynamic therapy and antitumor immunity. J. Natl. Compr. Cancer Netw. 2012, 10, S40–S43. [Google Scholar]
- Korbelik, M.; Stott, B.; Sun, J. Photodynamic therapy-generated vaccines: Relevance of tumour cell death expression. Br. J. Cancer 2007, 97, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, E.C.; Gupta, R.K.; Qi, K.; Morton, D.L. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J. Clin. Oncol. 1998, 16, 2913–2920. [Google Scholar] [PubMed]
- Disis, M.L.; Schiffman, K.; Gooley, T.A.; McNeel, D.G.; Rinn, K.; Knutson, K.L. Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after her-2/neu peptide immunization. Clin. Cancer Res. 2000, 6, 1347–1350. [Google Scholar] [PubMed]
- Fong, L.; Carroll, P.; Weinberg, V.; Chan, S.; Lewis, J.; Corman, J.; Amling, C.L.; Stephenson, R.A.; Simko, J.; Sheikh, N.A.; et al. Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J. Natl. Cancer Inst. 2014. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.Q.; Li, Y.X.; Cui, Y.X.; Yin, H.J.; Liu, T.J.; Yu, G.Q.; Lv, F.; Yang, J.C. Generation of an effective anti-lung cancer vaccine by dtpp-mediated photodynamic therapy and mechanistic studies. Lasers Med. Sci. 2013, 28, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
Year | Photosensitizer | Stage | Patients /Tumour Sites (n) | Complete Response (n, %) | Follow-up time (months) | References |
---|---|---|---|---|---|---|
1987 | Photofrin II | T1/T2 | 8 | 7 (88) | 7–18 | [17] |
1991 | Photofrin | T1 | 23 | 20 (87) | 8–53 | [18] |
1996 | ALA * | SCC | 6 | 1 (17) | 76–88 | [15] |
1997 | Foscan | T1/T2 T3/T4 | 13 7 | 6 (46) 4 (57) | 6–22 | [19] |
2001 | Photofrin | T1/T2 | 10 | 8 (80) | 4–115 | [20] |
2003 | Foscan | T1/T2 | 25 | 21 (84) | 12–69 | [21] |
2003 | Foscan | T1/T2 T3 | 7 2 | 7 (100) 1 (50) | 6–48 3–12 | [22] |
2004 | Foscan | T1/T2 | 85 | 72 (85) | 12–24 | [23] |
2007 | Foscan | T1/T2 | 20 | 12 (60) | 6–105 | [24] |
2009 | Photofrin | T1 | 11 | 10 (91) | 7–52 | [25] |
2010 | Photofrin | T1/T2 | 135 | 129 (96) | 8–211 | [13] |
2011 | Foscan | T1/T2 | 38 | 26 (68) | 60 | [26] |
2011 | Foscan | T3/T4 | 21 | 1 (5) | 21–45 | [27] |
2011 | mTHPC * | T1/T2 | 145 | 99 (68) | 60 | [28] |
2012 | mTHPC * | T1/T2 T3/T4 | 4 7 | 3 (75) 2 (29) | 6–80 | [29] |
2013 | mTHPC * | T1 T2 | 126 30 | 180 (86) 19 (63) | 33 (median) | [30] |
2013 | Photofrin | T1/T2 | 18 | 17 (94) | 24 | [31] |
2013 | HPPH * | T1 | 20 | 17 (85) | 5–40 | [32] |
2016 | Photofrin | T1/T2 T3 | 29 3 | 28 (88) overall | 68–158 | [33] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R.; Lee, N.V.; Liu, K.Y.P.; Poh, C.F. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers 2016, 8, 83. https://doi.org/10.3390/cancers8090083
Saini R, Lee NV, Liu KYP, Poh CF. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers. 2016; 8(9):83. https://doi.org/10.3390/cancers8090083
Chicago/Turabian StyleSaini, Rajan, Nathan V. Lee, Kelly Y. P. Liu, and Catherine F. Poh. 2016. "Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions" Cancers 8, no. 9: 83. https://doi.org/10.3390/cancers8090083
APA StyleSaini, R., Lee, N. V., Liu, K. Y. P., & Poh, C. F. (2016). Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions. Cancers, 8(9), 83. https://doi.org/10.3390/cancers8090083