Advances in Precision Medicine: Tailoring Individualized Therapies
Abstract
:1. Introduction
2. Ex Vivo Models Predict Treatment Responses
3. Real-Time Monitoring of Treatment Responses and Ex Vivo Guided Personalized Treatments
4. Metabolic Profiling Enhances Mutational Profiling
5. Real Time Mutational Profiling Led Risk Stratification
6. Circulating Biomarker Led Detection of High-Risk Patients
7. Discussion and Concluding Remarks
Acknowledgments
Conflicts of Interest
Appendix A
Speaker | Affiliation |
---|---|
Professor David Sidransky | The Johns Hopkins University School of Medicine, Baltimore, MD, USA |
Professor Sue Burchill | Leeds Institute of Cancer and Pathology, University of Leeds, United Kingdom |
Professor Irene Roberts | Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom |
Dr. Ian Mills | Centre for Cancer Research and Cell Biology, Queens’ University Belfast, United Kingdom |
Dr. Luca Magnani | Imperial College London, United Kingdom |
Professor Alberto Bardelli | Candiolo Cancer Institute-FPO and University of Torino, Italy |
Dr. Guiseppe Gullo | St Vincent’s University Hospital, Ireland |
Dr. Karen Keeshan | Paul O’Gorman Leukemia Research Centre, University of Glasgow, United Kingdom |
Professor Tariq Enver | Cancer Institute, University College London, United Kingdom |
Professor Raymond Stallings | Royal College of Surgeons in Ireland, Ireland |
Professor Richard Marais | Cancer Research UK Manchester Institute, University of Manchester, United Kingdom |
Dr. Janusz Krawczyk | Galway University Hospital and National University of Ireland Galway, Ireland |
Dr. Alex Eustace | Royal College of Surgeons in Ireland, Ireland |
Dr. Declan Soden | Cork Cancer Research Centre, University College Cork, Ireland |
Dr. Derek Power | Cork University Hospital and Cork Cancer Research Centre, University College Cork, Ireland |
Dr. Annette Byrne | Royal College of Surgeons in Ireland, Ireland |
Professor William Gallagher | UCD Conway Institute, University College Dublin, Ireland |
References
- Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 2012, 366, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Arnold, D.; Casali, P.G.; Cervantes, A.; Douillard, J.Y.; Eggermont, A.; Eniu, A.; McGregor, K.; Peters, S.; Piccart, M.; et al. Delivering precision medicine in oncology today and in future-the promise and challenges of personalised cancer medicine: A position paper by the European Society for Medical Oncology (ESMO). Ann. Oncol. 2014, 25, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef] [PubMed]
- DeRose, Y.S.; Wang, G.; Lin, Y.-C.; Bernard, P.S.; Buys, S.S.; Ebbert, M.T.; Factor, R.; Matsen, C.; Milash, B.A.; Nelson, E.; et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 2011, 17, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Sidransky, D. The Johns Hopkins University School of Medicine, Baltimore, MD, USA. Unpublished work. 2017. [Google Scholar]
- Brait, M.; Izumchenko, E.; Kagohara, L.T.; Long, S.; Wysocki, P.T.; Faherty, B.; Fertig, E.J.; Khor, T.O.; Bruckheimer, E.; Baia, G.; et al. Comparative mutational landscape analysis of patient-derived tumour xenografts. Br. J. Cancer 2017, 116, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Claerhout, S.; Prat, A.; Dobrolecki, L.E.; Petrovic, I.; Lai, Q.; Landis, M.D.; Wiechmann, L.; Schiff, R.; Giuliano, M.; et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer Xenograft models. Cancer Res. 2013, 73, 4885–4897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Guan, J.; English, J.C.; Flint, J.; Yee, J.; Evans, K.; Murray, N.; Macaulay, C.; Ng, R.T.; Gout, P.W.; et al. Patient-derived first generation xenografts of non-small cell lung cancers: Promising tools for predicting drug responses for personalized chemotherapy. Clin. Cancer Res. 2010, 16, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Izumchenko, E.; Paz, K.; Ciznadija, D.; Sloma, I.; Katz, A.; Vasquez-Dunddel, D.; Ben-Zvi, I.; Stebbing, J.; McGuire, W.; Harris, W.; et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 2017, 28, 2595–2605. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.R.; Gremel, G.; Lee, R.; Galvani, E.; Rothwell, D.; Viros, A.; Mandal, A.K.; Lim, K.H.; Saturno, G.; Furney, S.J.; et al. Application of sequencing, liquid biopsies, and patient-derived Xenografts for personalized medicine in melanoma. Cancer Discov. 2016, 6, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Gremel, G.; Lee, R.J.; Girotti, M.R.; Mandal, A.K.; Valpione, S.; Garner, G.; Ayub, M.; Wood, S.; Rothwell, D.G.; Fusi, A.; et al. Distinct subclonal tumour responses to therapy revealed by circulating cell-free DNA. Ann. Oncol. 2016, 27, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, C.L.; Morrow, C.J.; Li, Y.; Metcalf, R.L.; Rothwell, D.G.; Trapani, F.; Polanski, R.; Burt, D.J.; Simpson, K.L.; Morris, K.; et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 2014, 20, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Mills, I.G. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat. Rev. Cancer 2014, 14, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Barfeld, S.J.; Itkonen, H.M.; Urbanucci, A.; Mills, I.G. Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocr. Relat. Cancer 2014, 21, T57–T66. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1125. [Google Scholar]
- Scourzic, L.; Mouly, E.; Bernard, O.A. TET proteins and the control of cytosine demethylation in cancer. Genome Med. 2015, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Mills, I.G. Centre for Cancer Research and Cell Biology, Queen’s University Belfast, UK. Unpublished work. 2017. [Google Scholar]
- Massie, C.E.; Spiteri, I.; Ross-Adams, H.; Luxton, H.; Kay, J.; Whitaker, H.C.; Dunning, M.J.; Lamb, A.D.; Ramos-Montoya, A.; Brewer, D.S.; et al. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr. Relat. Cancer 2015, 22, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, M.; Sabelnykova, V.Y.; Yamaguchi, T.N.; Heisler, L.E.; Livingstone, J.; Huang, V.; Shiah, Y.J.; Yousif, F.; Lin, X.; Masella, A.P.; et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017, 541, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Fribbens, C.; O’Leary, B.; Kilburn, L.; Hrebien, S.; Garcia-Murillas, I.; Beaney, M.; Cristofanilli, M.; Andre, F.; Loi, S.; Loibl, S.; et al. Plasma ESR1 Mutations and the Treatment of Estrogen Receptor-Positive Advanced Breast Cancer. J. Clin. Oncol. 2016, 34, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.M.; Barozzi, I.; Faronato, M.; Lombardo, Y.; Steel, J.H.; Patel, N.; Darbre, P.; Castellano, L.; Győrffy, B.; Woodley, L.; et al. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat. Commun. 2015, 6, 10044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnani, L.; Frige, G.; Gadaleta, R.M.; Corleone, G.; Fabris, S.; Kempe, M.H.; Vershure, P.J.; Barozzi, I.; Vircillo, V.; Hong, S.P.; et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERα metastatic breast cancer. Nat. Genet. 2017, 49, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Cowan, G.; Mead, A.J.; Filippi, S.; Bohn, G.; Chaidos, A.; Tunstall, O.; Chan, J.K.; Choolani, M.; Bennett, P.; et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc. Natl. Acad. Sci. USA 2012, 109, 17579–17584. [Google Scholar] [CrossRef] [PubMed]
- Hasle, H.; Clemmensen, I.H.; Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 2000, 355, 165–169. [Google Scholar] [CrossRef]
- Roberts, I. Weatherall Institute of Molecular Medicine, University of Oxford, UK. Unpublished work. 2017. [Google Scholar]
- Burchill, S.A.; Beiske, K.; Shimada, H.; Ambros, P.F.; Seeger, R.; Tytgat, G.A.M.; Brock, P.R.; Haber, M.; Park, J.R.; Berthold, F.; et al. Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group. Cancer 2017, 123, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Burchill, S.A.; Lewis, I.J.; Abrams, K.R.; Riley, R.; Imeson, J.; Pearson, A.D.J.; Pinkerton, R.; Selby, P. Circulating neuroblastoma cells detected by reverse transcriptase polymerase chain reaction for tyrosine hydroxylase mRNA are an independent poor prognostic indicator in stage 4 neuroblastoma in children over 1 year. J. Clin. Oncol. 2001, 19, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Viprey, V.F.; Gregory, W.M.; Corrias, M.V.; Tchirkov, A.; Swerts, K.; Vicha, A.; Dallorso, S.; Brock, P.; Luksch, R.; Valteau-Couanet, D.; et al. Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: A European HR-NBL1/SIOPEN study. J. Clin. Oncol. 2014, 32, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- A Phase II Neo-adjuvant Study Assessing TCH (Docetaxel, Carboplatin and Trastuzumab) and TCHL (Docetaxel, Carboplatin, Trastuzumab and Lapatinib) in HER-2 Positive Breast Cancer Patients. NCT01485926; clinicaltrials.gov, 2011. Available online: https://clinicaltrials.gov/ct2/show/NCT01485926 (accessed on 18 October 2017).
- Gullo, G. St Vincent’s University Hospital, Dublin, Ireland. Unpublished work. 2017. [Google Scholar]
- Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer 2016, 16, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Rospo, G.; Corti, G.; Crisafulli, G.; Novara, L.; Bardelli, A. Tracking colorectal cancer evolution in time and space. Ann. Oncol. 2017, 28, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Bardelli, A. Candiolo Cancer Institute-FPO and University of Torino. Italy. Unpublished work. 2017. [Google Scholar]
- Ledford, H. Cancer-genome study challenges mouse “avatars”. Nat. News 2017. [Google Scholar] [CrossRef]
- Ben-David, U.; Ha, G.; Tseng, Y.-Y.; Greenwald, N.F.; Oh, C.; Shih, J.; McFarland, J.M.; Wong, B.; Boehm, J.S.; Beroukhim, R.; et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.A.L.; Ni Chonghaile, T.; Matchett, K.B.; Lynam-Lennon, N.; Kiely, P.A. Big Data-Led Cancer Research, Application, and Insights. Cancer Res. 2016, 76, 6167–6170. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matchett, K.B.; Lynam-Lennon, N.; Watson, R.W.; Brown, J.A.L. Advances in Precision Medicine: Tailoring Individualized Therapies. Cancers 2017, 9, 146. https://doi.org/10.3390/cancers9110146
Matchett KB, Lynam-Lennon N, Watson RW, Brown JAL. Advances in Precision Medicine: Tailoring Individualized Therapies. Cancers. 2017; 9(11):146. https://doi.org/10.3390/cancers9110146
Chicago/Turabian StyleMatchett, Kyle B., Niamh Lynam-Lennon, R. William Watson, and James A. L. Brown. 2017. "Advances in Precision Medicine: Tailoring Individualized Therapies" Cancers 9, no. 11: 146. https://doi.org/10.3390/cancers9110146
APA StyleMatchett, K. B., Lynam-Lennon, N., Watson, R. W., & Brown, J. A. L. (2017). Advances in Precision Medicine: Tailoring Individualized Therapies. Cancers, 9(11), 146. https://doi.org/10.3390/cancers9110146