Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Results
2.1. Photocytotoxicity of ICG in Treating A549 Cells
2.2. Photocytotoxicity of ICG-PDT Combined with VP-16 in Treating A549 Cells
2.3. Photocytotoxicity of ICG-PDT Combined with VP-16 in Treating GM05757 Cells
2.4. Sequence Dependence of the Cytotoxicity Induced by ICG-PDT Combined with VP-16
2.5. Cytotoxicity of Laser-Irradiated Mixtures of ICG and VP-16
2.6. In Vitro DNA Double-Strand Breaks Meausrement
3. Discussion
4. Materials and Methods
4.1. Chemicals, Cell line, and Cell Culture Conditions
4.2. Laser Treatment Conditions
4.3. MTT Cell Survival Assay
4.4. Photocytotoxicity of ICG in Treating A549 Cells
4.5. Cytotoxicity of ICG-PDT Combined with VP-16
4.6. Sequence Dependence of Cytotoxicity Induced by ICG-PDT Combined with VP-16
4.7. Cytotoxicity of Laser-Irradiated Mixtures of ICG and VP-16
4.8. In Vitro DNA Double-Strand Breaks Measurement
4.9. Data Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Canti, G.; Nicolin, A.; Cubeddu, R.; Taroni, P.; Bandieramonte, G.; Valentini, G. Antitumor efficacy of the combination of photodynamic therapy and chemotherapy in murine tumors. Cancer Lett. 1998, 125, 39–44. [Google Scholar] [CrossRef]
- Duska, L.; Hamblin, M.; Miller, J.; Hasan, T. Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo. J. Natl. Cancer Inst. 1999, 91, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Crescenzi, E.; Varriale, L.; Iovino, M.; Chiaviello, A.; Veneziani, B.M.; Palumbo, G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol. Cancer Ther. 2004, 3, 537–544. [Google Scholar] [PubMed]
- Crescenzi, E.; Chiaviello, A.; Canti, G.; Reddi, E.; Veneziani, B.M.; Palumbo, G. Low doses of cisplatin or gemcitabine plus photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299). Mol. Cancer Ther. 2006, 5, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Gantchev, T.; Brasseur, N.; van Lier, J. Combination toxicity of etoposide (VP-16) and photosensitisation with a water-soluble aluminium phthalocyanine in K562 human leukaemic cells. Br. J. Cancer 1996, 74, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.; Walt, H.; Haller, U.; Baas, P.; Klein, S.D. Effects of chlorin-mediated photodynamic therapy combined with fluoropyrimidines in vitro and in a patient. Cancer Chemother. Pharmacol. 2003, 51, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Jia, L.; Liu, Y.; Wei, C. Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. World J. Gastroenterol. 2009, 15, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Diez, B.; Ernst, G.; Teijo, M.J.; Batlle, A.; Hajos, S.; Fukuda, H. Combined chemotherapy and ALA-based photodynamic therapy in leukemic murine cells. Leuk. Res. 2012, 36, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Compagnin, C.; Mognato, M.; Celotti, L.; Canti, G.; Palumbo, G.; Reddi, E. Cell proliferation and cell cycle alterations in oesophageal p53-mutated cancer cells treated with cisplatin in combination with photodynamic therapy. Cell Prolif. 2010, 43, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Bradley, E.C.; Barr, J.W. Determination of blood volume using indocyanine green (cardio-green) dye. Life Sci. 1968, 7, 1001–1007. [Google Scholar] [CrossRef]
- Sauda, K.; Imasaka, T.; Ishibashi, N. Determination of protein in human serum by high-performance liquid chromatography with semiconductor laser fluorometric detection. Anal. Chem. 1986, 58, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Fleishaker, J.C.; Friedman, H.; Pollock, S.R. Extent and variability of the first-pass elimination of adinazolam mesylate in healthy male volunteers. Pharm. Res. 1991, 8, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Fickweiler, S.; Szeimies, R.; Bäumler, W.; Steinbach, P.; Karrer, S.; Goetz, A.E.; Abels, C.; Hofstädter, F.; Landthaler, M. Indocyanine green: Intracellular uptake and phototherapeutic effects in vitro. J. Photochem. Photobiol. B Biol. 1997, 38, 178–183. [Google Scholar] [CrossRef]
- Abels, C.; Karrer, S. Indocyanine green and laser light for the treatment of AIDS-associated cutaneous kaposi’s sarcoma. Br. J. Cancer 1998, 77, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, W.; Abels, C.; Karrer, S.; Weiβ, T.; Hessmann, H.; Landthaler, M.; Szeimies, R.-M. Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. Br. J. Cancer 1999, 80, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Farah, M.; Freymüller, E.; Morales, P.; Smith, R.; Cardillo, J. Choriocapillaris photodynamic therapy using indocyanine green. Am. J. Ophthalmol. 2001, 132, 557–565. [Google Scholar] [CrossRef]
- Costa, R.A.; Farah, M.E.; Cardillo, J.A.; Belfort, R. Photodynamic therapy with indocyanine green for occult subfoveal choroidal neovascularization caused by age-related macular degeneration. Curr. Eye Res. 2001, 23, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Urbanska, K.; Romanowska-Dixon, B.; Matuszak, Z.; Oszajca, J.; Nowak-Sliwinska, P.; Stochel, G. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta. Biochim. Pol. 2002, 49, 387–391. [Google Scholar] [PubMed]
- Sawa, M.; Awazu, K.; Takahashi, T.; Sakaguchi, H.; Horiike, H.; Ohji, M.; Tano, Y. Application of femtosecond ultrashort pulse laser to photodynamic therapy mediated indocyanine green. Br. J. Ophthalmol. 2004, 88, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Mamoon, A.; Gamal-Eldeen, A.; Ruppel, M.; Smith, R.; Tsang, T.; Miller, L. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma. Photodiagnosis Photodyn. Ther. 2009, 6, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Bozkulak, O.; Yamaci, R.; Tabakoglu, O.; Gulsoy, M. Photo-toxic effects of 809 nm diode laser and indocyanine green on MDA-MB231 breast cancer cells. Photodiagn. Photodyn. Ther. 2009, 6, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Giraudeau, C.; Moussaron, A.; Stallivieri, A.; Mordon, S.; Frochot, C. Interest of indocyanine green for photodynamic therapy and photothermal therapy applications. Curr. Med. Chem. 2014, 21, 1871–1897. [Google Scholar] [CrossRef] [PubMed]
- Gratz, H.; Penzkofer, A.; Abels, C.; Szeimies, R.; Landthaler, M.; Bäumler, W. Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions. J. Photochem. Photobiol. A Chem. 1999, 128, 101–109. [Google Scholar] [CrossRef]
- Cherrick, G.R.; Stein, S.W.; Leevy, C.M.; Davidson, C.S. Indocyanine green: Observations on its physical properties, plasma decay, and hepatic extraction. J. Clin. Investig. 1960, 39, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Landsman, M.; Kwant, G.; Mook, G.; Zijlstra, W. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 1976, 40, 575–583. [Google Scholar] [PubMed]
- Hartmann, J.T.; Lipp, H. Camptothecin and podophyllotoxin derivatives. Drug Saf. 2006, 29, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev. 2012, 112, 3611–3640. [Google Scholar] [CrossRef] [PubMed]
- Ratain, M.J.; Kaminer, L.S.; Bitran, J.D.; Larson, R.A.; Beau, M.L.; Skosey, C.; Purl, S.; Hoffman, P.C.; Wade, J.; Vardiman, J.W.; et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 1987, 70, 1412–1417. [Google Scholar] [PubMed]
- Pedersen-Bjergaard, J.; Daugaard, G.; Hansen, S.; Rorth, M.; Philip, P.; Larsen, S. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet 1991, 338, 359–363. [Google Scholar] [CrossRef]
- Hande, K.R. Clinical applications of anticancer drugs targeted to topoisomerase II. BBA-Gene Struct. Expr. 1998, 1400, 173–184. [Google Scholar] [CrossRef]
- Ezoe, S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int. J. Environ. Res. Publ. Health 2012, 9, 2444–2453. [Google Scholar] [CrossRef] [PubMed]
- Lottner, C.; Bart, K.; Bernhardt, G.; Brunner, H. Hematoporphyrin-derived soluble porphyrin-platinum conjugates with combined cytotoxic and phototoxic antitumor activity. J. Med. Chem. 2002, 45, 2064–2078. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhang, Y.; Zhu, J.; Zhang, C.; Guo, Z. Molecular combo of photodynamic therapeutic agent silicon (iv) phthalocyanine and anticancer drug cisplatin. Chem. Commun. 2009, 8, 908–910. [Google Scholar] [CrossRef] [PubMed]
- Kirveliene, V.; Grazeliene, G.; Dabkeviciene, D.; Micke, I.; Kirvelis, D.; Juodka, B.; Didziapetriene, J. Schedule-dependent interaction between doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo. Cancer Chemother. Pharmacol. 2006, 57, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Lai, P.; Lin, F.; Yueh-Hsiu Wu, S.; Shieh, M. Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials 2009, 30, 3614–3625. [Google Scholar] [CrossRef] [PubMed]
- Abels, C.; Fickweiler, S.; Weiderer, P.; Bäumler, W.; Hofstädter, F.; Landthaler, M.; Szeimies, R.M. Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch. Dermatol. Res. 2000, 292, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Shafirstein, G.; Bäumler, W.; Hennings, L.J.; Siege, E.R.; Friedman, R.; Moreno, M.A.; Webber, J.; Jackson, G.; Griffin, R.J. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma. Int. J. Cancer 2012, 130, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yang, L.; Huang, J.; Zhang, L.; Weng, X.; Zhang, X.; Shen, X.; Zhou, X.; Zheng, C. Cationic ester porphyrins cause high levels of phototoxicity in tumor cells and induction of apoptosis in HeLa cells. Chem. Biodivers. 2009, 6, 1066–1067. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.N. Introduction to Biophotonics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Rich, T.; Allen, R.L.; Wyllie, A.H. Defying death after DNA damage. Nature 2000, 407, 777–783. [Google Scholar] [PubMed]
- Richardson, C.; Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000, 405, 697–700. [Google Scholar] [PubMed]
- Kim, S.; Jun, D.H.; Kim, H.J.; Jeong, K.; Lee, C. Development of a high-content screening method for chemicals modulating DNA damage response. J. Biomol. Screen. 2011, 16, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Smart, D.J.; Halicka, H.D.; Schmuck, G.; Traganos, F.; Darzynkiewicz, Z.; Willams, G.M. Assessment of DNA double-strand breaks and γH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat. Res. 2008, 641, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Watters, G.P.; Smart, D.J.; Harvey, J.S.; Austin, C.A. H2AX phosphorylation as a genotoxicity endpoint. Mutat. Res. 2009, 679, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Harada, A.; Takeiri, A.; Tanaka, K.; Mishima, M. Whole cell-ELISA to measure the γH2AX response of six aneugens and eight DNA-damaging chemicals. Mutat. Res. 2010, 700, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gantchev, T.G.; Hunting, D.J. Enhancement of etoposide (VP-16) cytotoxicity by enzymatic and photodynamically induced oxidative stress. Anti-Cancer Drugs 1997, 8, 164–173. [Google Scholar] [CrossRef]
- Gantchev, T.G.; Lier, J.E. Catalase inactivation following photosensitization with tetrasulfonated metallophthalocyanines. Photochem. Photobiol. 1995, 62, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Stolik, S.; Delgado, J.; Perez, A.; Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B Biol. 2000, 57, 90–93. [Google Scholar] [CrossRef]
- Kirchherr, A.; Briel, A.; Mäder, K. Stabilization of indocyanine green by encapsulation within micellar systems. Mol. Pharm. 2009, 6, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Javier, D.; Yaseen, M.A.; Nitin, N.; Richards-Kortum, R.; Anvari, B.; Wong, M.S. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J. Am. Chem. Soc. 2010, 132, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, B.; Vullev, V.; Anvari, B. Development of anti-HER2 conjugated ICG-loaded polymeric nanoparticles for targeted optical imaging of ovarian cancer. Proc. SPIE 2012. [Google Scholar] [CrossRef]
- Hyuná-Chung, B. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes. Chem. Commun. 2012, 48, 8628–8630. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, M.; Gong, P.; Jia, D.; Zhang, P.; Shi, B.; Sheng, Z.; Ma, Y.; Cai, L. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 2012, 33, 5603–5609. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Anvari, B. Synthesis and characterization of bovine serum albumin-coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs. Biotechnol. Prog. 2012, 28, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, M.A.; Yu, J.; Wong, M.S.; Anvari, B. In-vivo fluorescence imaging of mammalian organs using charge-assembled mesocapsule constructs containing indocyanine green. Opt. Express 2008, 16, 20577–20578. [Google Scholar] [CrossRef] [PubMed]
- Rehm, D.; Weller, A. Kinetics of fluorescence quenching by electron transfer and H-atom transfer. Isr. J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Holthuis, J.; Van Oort, W.; Römkens, F.; Renema, J.; Zuman, P. Electrochemistry of podophyllotoxin derivatives: Part I. oxidation mechanism of etoposide (VP 16–213). J. Electroanal. Chem. Interfacial Electrochem. 1985, 184, 317–329. [Google Scholar] [CrossRef]
- Barros, T.C.; Toma, S.H.; Toma, H.E.; Bastos, E.L.; Baptista, M.S. Polymethine cyanine dyes in β-cyclodextrin solution: Multiple equilibria and chemical oxidation. J. Phys. Org. Chem. 2010, 23, 893–903. [Google Scholar] [CrossRef]
- Haim, N.; Roman, J.; Nemec, J.; Sinha, B.K. Peroxidative free radical formation and O-demethylation of etoposide (VP-16) and teniposide (VM-26). Biochem. Biophys. Res. Commun. 1986, 135, 215–220. [Google Scholar] [CrossRef]
- Bender, R.P.; Ham, A.L.; Osheroff, N. Quinone-induced enhancement of DNA cleavage by human topoisomerase IIα: Adduction of cysteine residues 392 and 405. Biochemistry 2007, 46, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.A.; Mercer, S.L.; Osheroff, N.; Deweese, J.E. Etoposide quinone is a redox-dependent topoisomerase II poison. Biochemistry 2011, 50, 5660–5667. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.A.; Gibson, E.G.; Mercer, S.L.; Deweese, J.E. Etoposide catechol is an oxidizable topoisomerase II poison. Chem. Res. Toxicol. 2013, 26, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Gantchev, T.G.; Hunting, D.J. The ortho-quinone metabolite of the anticancer drug etoposide (VP-16) is a potent inhibitor of the topoisomerase II/DNA cleavable complex. Mol. Pharmacol. 1998, 53, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Kalantari, S.; Wang, C. Electron transfer reaction mechanism of cisplatin with DNA at the molecular level. Mol. Pharm. 2007, 4, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q. Molecular reaction mechanisms of combination treatments of low-dose cisplatin with radiotherapy and photodynamic therapy. J. Med. Chem. 2007, 50, 2601–2604. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Yu, J.; Nguyen, J.; Wang, C.; Bristow, R.G.; Jaffray, D.A.; Lu, Q. Electron transfer-based combination therapy of cisplatin with tetramethyl-p-phenylenediamine for ovarian, cervical, and lung cancers. Proc. Natl. Acad. Sci. USA 2012, 109, 10175–10180. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, T.; Zhang, Q.; Lu, Q.-B. Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer. Cancers 2017, 9, 63. https://doi.org/10.3390/cancers9060063
Luo T, Zhang Q, Lu Q-B. Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer. Cancers. 2017; 9(6):63. https://doi.org/10.3390/cancers9060063
Chicago/Turabian StyleLuo, Ting, Qinrong Zhang, and Qing-Bin Lu. 2017. "Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer" Cancers 9, no. 6: 63. https://doi.org/10.3390/cancers9060063
APA StyleLuo, T., Zhang, Q., & Lu, Q. -B. (2017). Combination of Near Infrared Light-Activated Photodynamic Therapy Mediated by Indocyanine Green with Etoposide to Treat Non-Small-Cell Lung Cancer. Cancers, 9(6), 63. https://doi.org/10.3390/cancers9060063