A Brief Review on the Sensor Measurement Solutions for the Ten-Meter Walk Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Questions
2.2. Inclusion Criteria
2.3. Search Strategy
2.4. Extraction of Study Characteristics
3. Results
4. Discussion
5. Conclusions
- (RQ1) Which sensors can improve the measurement of the ten-meter walk test results? The sensors that can improve the measurement of the different outcomes are not identified. Still, the most used sensors are the inertial sensors available in mobile devices.
- (RQ2) Which features can be extracted from the sensors during the performance of the ten-meter walk test? As this test is related to the ten-meter walk test, the most extracted feature is the test’s speed.
- (RQ3) Based on the methods used, which are the benefits of the implementation of the different methods? The tests used for the analysis were mostly statistical tests to perform the comparison of the other people that completed the experiments.
Funding
Acknowledgments
Conflicts of Interest
References
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A Survey of Mobile Phone Sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Felizardo, V.; Sousa, P.; Sabugueiro, D.; Alexandre, C.; Couto, R.; Garcia, N.; Pires, I. E-Health: Current status and future trends. In Handbook of Research on Democratic Strategies and Citizen-Centered E-Government Services; IGI Global: Hershey, PA, USA, 2015; pp. 302–326. [Google Scholar]
- Oniani, S.; Pires, I.M.; Garcia, N.M.; Mosashvili, I.; Pombo, N. A Review of Frameworks on Continuous Data Acquisition for E-Health and m-Health. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; pp. 231–234. [Google Scholar]
- Sousa, P.S.; Sabugueiro, D.; Felizardo, V.; Couto, R.; Pires, I.; Garcia, N.M. mHealth Sensors and Applications for Personal Aid. In Mobile Health; Adibi, S., Ed.; Springer Series in Bio-/Neuroinformatics; Springer International Publishing: Cham, Germany, 2015; Volume 5, pp. 265–281. ISBN 978-3-319-12816-0. [Google Scholar]
- Anderson, K.; Burford, O.; Emmerton, L. Mobile Health Apps to Facilitate Self-Care: A Qualitative Study of User Experiences. PLoS ONE 2016, 11, e0156164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ureña, R.; Chiclana, F.; Gonzalez-Alvarez, A.; Herrera-Viedma, E.; Moral-Munoz, J.A. M-SFT: A Novel Mobile Health System to Assess the Elderly Physical Condition. Sensors 2020, 20, 1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, I.M.; Marques, G.; Garcia, N.M.; Pombo, N.; Flórez-Revuelta, F.; Zdravevski, E.; Spinsante, S. A Review on the Artificial Intelligence Algorithms for the Recognition of Activities of Daily Living Using Sensors in Mobile Devices. In Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s; Singh, P.K., Bhargava, B.K., Paprzycki, M., Kaushal, N.C., Hong, W.-C., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Germany, 2020; Volume 1132, pp. 685–713. ISBN 978-3-030-40304-1. [Google Scholar]
- Bayer, M.L.; Hoegberget-Kalisz, M.; Jensen, M.H.; Olesen, J.L.; Svensson, R.B.; Couppé, C.; Boesen, M.; Nybing, J.D.; Kurt, E.Y.; Magnusson, S.P.; et al. Role of Tissue Perfusion, Muscle Strength Recovery, and Pain in Rehabilitation after Acute Muscle Strain Injury: A Randomized Controlled Trial Comparing Early and Delayed Rehabilitation. Scand. J. Med. Sci. Sports 2018, 28, 2579–2591. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, M.; Varley, M.C. Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities. Int. J. Sports Physiol. Perform. 2017, 12, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brorsson, A.; Olsson, N.; Nilsson-Helander, K.; Karlsson, J.; Eriksson, B.I.; Silbernagel, K.G. Recovery of Calf Muscle Endurance 3 Months after an Achilles Tendon Rupture. Scand. J. Med. Sci. Sports 2016, 26, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Tavares, B.F.; Pires, I.M.; Marques, G.; Garcia, N.M.; Zdravevski, E.; Lameski, P.; Trajkovik, V.; Jevremovic, A. Mobile Applications for Training Plan Using Android Devices: A Systematic Review and a Taxonomy Proposal. Information 2020, 11, 343. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Fernandes, A.; Leithardt, V. The Importance of Software Development for the Monitoring of Training to High Competition. Braz. J. Dev. 2020, 6, 26005–26019. [Google Scholar] [CrossRef]
- Silva, J.; Sousa, I. Instrumented Timed up and Go: Fall Risk Assessment Based on Inertial Wearable Sensors. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Yin, H.; Jha, N.K. A Health Decision Support System for Disease Diagnosis Based on Wearable Medical Sensors and Machine Learning Ensembles. IEEE Trans. Multi-Scale Comp. Syst. 2017, 3, 228–241. [Google Scholar] [CrossRef]
- Costa, S.E.P.; Rodrigues, J.J.P.C.; Silva, B.M.C.; Isento, J.N.; Corchado, J.M. Integration of Wearable Solutions in AAL Environments with Mobility Support. J. Med. Syst. 2015, 39, 1–8. [Google Scholar] [CrossRef]
- Bisca, G.W.; Fava, L.R.; Morita, A.A.; Machado, F.V.C.; Pitta, F.; Hernandes, N.A. 4-Meter Gait Speed Test in Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabilit. Prev. 2018, 38, E10–E13. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Vargas, A.I.; Pajares, B.; Trinidad-Fernandez, M.; Alba, E.; Roldan-Jiménez, C. Inertial Sensors Embedded in Smartphones as a Tool for Fatigue Assessment Based on Acceleration in Survivors of Breast Cancer. Phys. Ther. 2020, 100, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Appelboom, G.; Camacho, E.; Abraham, M.E.; Bruce, S.S.; Dumont, E.L.; Zacharia, B.E.; D’Amico, R.; Slomian, J.; Reginster, J.Y.; Bruyère, O.; et al. Smart Wearable Body Sensors for Patient Self-Assessment and Monitoring. Arch. Public Health 2014, 72, 28. [Google Scholar] [CrossRef] [Green Version]
- Dimitrievski, A.; Zdravevski, E.; Lameski, P.; Trajkovik, V. Towards Application of Non-Invasive Environmental Sensors for Risks and Activity Detection. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 8–10 September 2016; pp. 27–33. [Google Scholar]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Villasana, M.V.; Garcia, N.M.; Leithardt, V. Detection of Diseases Based on Electrocardiography and Electroencephalography Signals Embedded in Different Devices: An Exploratory Study. Braz. J. Dev. 2020, 6, 27212–27231. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Marques, G.; Villasana, M.V.; Garcia, N.M.; Zdravevski, E.; Spinsante, S. Identification of Diseases Based on the Use of Inertial Sensors: A Systematic Review. Electronics 2020, 9, 778. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Villasana, M.V.; Canavarro Teixeira, M.; Zdravevski, E. Experimental Study for Determining the Parameters Required for Detecting ECG and EEG Related Diseases during the Timed-Up and Go Test. Computers 2020, 9, 67. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Garcia, N.M.; Pombo, N.; Spinsante, S.; Crisóstomo, R. Smartphone-Based Automatic Measurement of the Results of the Timed-Up and Go Test. In Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good, Valencia, Spain, 25–27 September 2019; pp. 239–242. [Google Scholar]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Garcia, N.M.; Pombo, N. Non-Invasive Measurement of Results of Timed-up and Go Test: Preliminary Results. In Proceedings of the Ageing Congress 2019, Coimbra, Portugal, 25 May 2019. [Google Scholar]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Marques, G.; Garcia, N.M.; Pombo, N.; Spinsante, S.; Zdravevski, E. Is The Timed-Up and Go Test Feasible in Mobile Devices? A Systematic Review. Electronics 2020, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Villasana, M.V.; Crisóstomo, R.; Canavarro-Teixeira, M.; Zdravevski, E. Mobile Computing Technologies for Health and Mobility Assessment: Research Design and Results of the Timed Up and Go Test in Older Adults. Sensors 2020, 20, 3481. [Google Scholar] [CrossRef]
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Spinsante, S. Sensors Are Capable to Help in the Measurement of the Results of the Timed-Up and Go test? A Systematic Review. J. Med. Syst. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Pires, I.M.; Andrade, M.; Garcia, N.M.; Crisóstomo, R.; Florez-Revuelta, F. Measurement of Heel-Rise Test Results Using a Mobile Device. In Proceedings of the Doctoral Consortium—DCPhyCS, (PhyCS 2015), Loire Valley, France, 11–13 February 2015; pp. 9–18. [Google Scholar]
- Pires, I.M.; Ponciano, V.; Garcia, N.M.; Zdravevski, E. Analysis of the Results of Heel-Rise Test with Sensors: A Systematic Review. Electronics 2020, 9, 1154. [Google Scholar] [CrossRef]
- Marques, D.L.; Pires, I.M.; Farias, J.F.; Barbosa, M.M.; Alvarinhas, S.I.; Garcia, N.M.; Marques, M.C. Validation of a Method to Determine the Reaction Time in the 30-s Chair Stand Test in Elderly People. In Proceedings of the AGEINGCONGRESS2018—Congresso Internacional sobre o Envelhecimento, Coimbra, Portugal, 27 May 2018. [Google Scholar]
- Pires, I.M.; Marques, D.; Pombo, N.; Garcia, N.M.; Marques, M.C.; Flórez-Revuelta, F. Measurement of the Reaction Time in the 30-S Chair Stand Test Using the Accelerometer Sensor Available in off-the-Shelf Mobile Devices. In Proceedings of the ICT4AWE 2018, Madeira, Portugal, 22–23 March 2018. [Google Scholar]
- Pires, I.M.; Garcia, N.M.; Zdravevski, E. Measurement of Results of Functional Reach Test with Sensors: A Systematic Review. Electronics 2020, 9, 1078. [Google Scholar] [CrossRef]
- Amatachaya, S.; Kwanmongkolthong, M.; Thongjumroon, A.; Boonpew, N.; Amatachaya, P.; Saensook, W.; Thaweewannakij, T.; Hunsawong, T. Influence of Timing Protocols and Distance Covered on the Outcomes of the 10-Meter Walk Test. Physiother. Theory Pr. 2020, 36, 1348–1353. [Google Scholar] [CrossRef]
- Eden, M.M.; Tompkins, J.; Verheijde, J.L. Reliability and a Correlational Analysis of the 6MWT, Ten-Meter Walk Test, Thirty Second Sit to Stand, and the Linear Analog Scale of Function in Patients with Head and Neck Cancer. Physiother. Theory Pr. 2018, 34, 202–211. [Google Scholar] [CrossRef]
- Zdravevski, E.; Lameski, P.; Trajkovik, V.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, N.M. Automation in Systematic, Scoping and Rapid Reviews by an NLP Toolkit: A Case Study in Enhanced Living Environments. In Enhanced Living Environments; Ganchev, I., Garcia, N.M., Dobre, C., Mavromoustakis, C.X., Goleva, R., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Germany, 2019; Volume 11369, pp. 1–18. ISBN 978-3-030-10751-2. [Google Scholar]
- Held, J.P.O.; Yu, K.; Pyles, C.; Veerbeek, J.M.; Bork, F.; Heining, S.-M.; Navab, N.; Luft, A.R. Augmented Reality–Based Rehabilitation of Gait Impairments: Case Report. JMIR Mhealth Uhealth 2020, 8, e17804. [Google Scholar] [CrossRef]
- Harari, Y.; O’Brien, M.K.; Lieber, R.L.; Jayaraman, A. Inpatient Stroke Rehabilitation: Prediction of Clinical Outcomes Using a Machine-Learning Approach. J. NeuroEng. Rehabilit. 2020, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and Repeatability of Inertial Measurement Units for Measuring Gait Parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reissman, M.E.; Gordon, K.E.; Dhaher, Y.Y. Manipulating Post-Stroke Gait: Exploiting Aberrant Kinematics. J. Biomech. 2018, 67, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lonini, L.; Shawen, N.; Scanlan, K.; Rymer, W.Z.; Kording, K.P.; Jayaraman, A. Accelerometry-Enabled Measurement of Walking Performance with a Robotic Exoskeleton: A Pilot Study. J. NeuroEng. Rehabilit. 2016, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Fallahzadeh, R.; Ghasemzadeh, H. Glaucoma-Specific Gait Pattern Assessment Using Body-Worn Sensors. IEEE Sens. J. 2016, 16, 6406–6415. [Google Scholar] [CrossRef]
- Mudge, S.; Stott, N.S. Timed Walking Tests Correlate With Daily Step Activity In Persons With Stroke. Arch. Phys. Med. Rehabilit. 2009, 90, 296–301. [Google Scholar] [CrossRef] [Green Version]
Study | Year of Publication | Location | Population | Purpose | Sensors Used | Type of Methods | Diseases |
---|---|---|---|---|---|---|---|
Held et al. [36] | 2020 | Switzerland | 1 patient | The study proposed a method for gait rehabilitation and a system to capture motions’ data with sensors to provide feedback on gait performance. | Accelerometer Gyroscope Magnetometer | Statistical | Stroke |
Harari et al. [37] | 2020 | United States of America | 50 participants | It presented a method to develop predictive models for ten meter walk test during inpatient rehabilitation. | Accelerometer Gyroscope Magnetometer | Machine learning | Stroke |
Washabaugh et al. [38] | 2017 | United States of America | 39 subjects | This study aimed to validate and analyze the repeatability of spatiotemporal metrics. | Accelerometer Gyroscope Magnetometer | Statistical | Not applicable |
Study | Year of Publication | Location | Population | Purpose | Sensors Used | Type of Methods | Diseases |
Reissman et al. [39] | 2017 | United States of America | 12 individuals | The ten meter walk test was used for the assessment at self-selected velocity of gait. | Eight camera video system with reflective markers Electromyography (EMG) sensors | Statistical | Stroke |
Lonini et al. [40] | 2016 | United States of America | 11 subjects | The study proposed a method for the evaluation of walking skills with lower limb exoskeletons. | Accelerometer | Statistical | Not applicable |
Ma et al. [41] | 2016 | United States of America | 19 persons | It presented a gait analysis approach to examine gait patterns. | Accelerometer Gyroscope Magnetometer | Machine learning | Glaucoma |
Mudge et al. [42] | 2009 | New Zealand | 49 participants | It presented the analysis of four clinical measures of the walking ability and the results obtained. | StepWatch Activity Monitor | Statistical | Stroke |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, I.M.; Lopes, E.; Villasana, M.V.; Garcia, N.M.; Zdravevski, E.; Ponciano, V. A Brief Review on the Sensor Measurement Solutions for the Ten-Meter Walk Test. Computers 2021, 10, 49. https://doi.org/10.3390/computers10040049
Pires IM, Lopes E, Villasana MV, Garcia NM, Zdravevski E, Ponciano V. A Brief Review on the Sensor Measurement Solutions for the Ten-Meter Walk Test. Computers. 2021; 10(4):49. https://doi.org/10.3390/computers10040049
Chicago/Turabian StylePires, Ivan Miguel, Eurico Lopes, María Vanessa Villasana, Nuno M. Garcia, Eftim Zdravevski, and Vasco Ponciano. 2021. "A Brief Review on the Sensor Measurement Solutions for the Ten-Meter Walk Test" Computers 10, no. 4: 49. https://doi.org/10.3390/computers10040049
APA StylePires, I. M., Lopes, E., Villasana, M. V., Garcia, N. M., Zdravevski, E., & Ponciano, V. (2021). A Brief Review on the Sensor Measurement Solutions for the Ten-Meter Walk Test. Computers, 10(4), 49. https://doi.org/10.3390/computers10040049