Performance Analysis of an Adaptive Rate Scheme for QoE-Assured Mobile VR Video Streaming
Abstract
:1. Introduction
1.1. Related Work
1.1.1. Mobile Edge Computing for VR Videos
1.1.2. Quality of Experience
“The degree of delight or annoyance of the user of an application or service.”
1.2. Contributions
2. System Model
3. Queueing Analysis
4. Performance Analysis
4.1. Blocking Probability and Throughput
4.2. Delay in the System and Queueing Delay
4.3. Average Packet Error Rate
- Case 1: The SNR at the UE falls in the range , and the buffer has more than n empty positions.
- Case 2: The SNR at the UE falls in the range , and the buffer has exactly n empty positions.
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Notations
16-QAM | 16-ary quadrature amplitude modulation |
5G | 5th-Generation |
5G-HetNets | 5G heterogeneous networks |
6G | 6th-Generation |
A3C | Advantage actor–critic |
AR | Augmented reality |
BPSK | Binary phase shift keying |
CDF | Cumulative distribution function |
C-RAN | Cloud radio access network |
DRL | Deep reinforcement learning |
FOV | Field of view |
HMD | Head-mounted display |
KPI | Key performance indicator |
LTE-A | Long-term evolution-advanced |
MAR | Mobile augmented reality |
MCS | Modulation and coding scheme |
MEC | Mobile edge computing |
MEC-DC | Multi-user cost-efficient crowd-assisted delivery and computing |
mmWave | Millimeter wave |
MPEG-DASH | Moving Picture Experts Group-dynamic adaptive streaming over HTTP |
MVP | Mobile virtualization with prefetching |
Probability density function | |
PER | Packet error rate |
PVRV | Panoramic virtual reality video |
QoE | Quality of experience |
QoS | Quality of service |
QPSK | Quadrature phase shift keying |
RL | Reinforcement learning |
RNN | Recurrent neural network |
SNR | Signal-to-noise ratio |
UAV | Unmanned aerial vehicle |
UE | User equipment |
VEC | Vehicular edge computing |
VR | Virtual reality |
Symbol | Description |
Binomial coefficient | |
Exponential function | |
Minimum operator returning the smallest value of two values | |
Modulation parameter | |
Probability density function of random variable X | |
Modulation parameter | |
m | Fading severity parameter |
Probability that h new decoded packets are placed into the buffer conditioned that q empty positions are available in the buffer at the UE | |
Joint probability that the MVP unit transmitted v packets and the UE successfully decoded h packets given q empty positions in the buffer | |
Probability of the UE consuming k packets of its buffer given that packets reside in the buffer | |
Probability that the n-th MCS mode is selected for transmission | |
Probability that exactly h packets of v transmitted packets are decoded | |
Cumulative distribution function of random variable X | |
L | Length of the buffer at the UE |
N | Number of modulation and coding modes |
Noise power | |
P | Transmit power |
Blocking probability | |
Packet error rate for v packets being transmitted by the MVP unit and a signal-to-noise ratio of is available at the UE | |
Average number of erroneously decoded packets | |
Average number of erroneously decoded packets when the n-th MCS mode is selected | |
Target packet error rate | |
Duration of a time slot | |
Transition matrix | |
X | Channel power gain |
Transmit signal-to-noise ratio | |
Delay time | |
Transmission delay | |
Queuing delay | |
Average number of packets transmitted during a transmission interval | |
Switching threshold for the n-th MCS mode | |
Signal-to-noise ratio at the UE | |
Processing rate | |
Throughput | |
Steady-state probability that k packets are in the buffer of the UE | |
Transition probability for the buffer going from state i to state j | |
Steady-state probability vector | |
Gamma function | |
Incomplete gamma function | |
Average channel power gain |
References
- Nightingale, J.; Salva-Garcia, P.; Alcaraz Calero, J.M.; Wang, Q. 5G-QoE: QoE Modelling for Ultra-HD Video Steaming in 5G Networks. IEEE Trans. Broadcast. 2018, 64, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Wang, N.; Foster, G.; Wilson, M. Toward QoE-Assured 4K Video-on-Demand Delivery through Mobile Edge Virtualization with Adaptive Prefetching. IEEE Trans. Multimed. 2017, 19, 2222–2237. [Google Scholar] [CrossRef] [Green Version]
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications, and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Huawei iLab. VR Big Data Report; Huawei Technologies Co., Ltd.: Shenzhen, China, 2017. [Google Scholar]
- Huawei iLab. Cloud VR Bearer Networks—Huawei iLab VR Technology White Paper; Huawei Technologies Co., Ltd.: Shenzhen, China, 2017. [Google Scholar]
- Ameur, C.B.; Mory, E.; Cousin, B.; Dedu, E. TcpHas: TCP for HTTP Adaptive Streaming. In Proceedings of the IEEE International Conference on Communications, Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Nagashima, T.; Kanai, K.; Katto, J. QoS and QoE Evaluations of 2K and 4K Video Distribution Using MPEG-DASH. In Proceedings of the IEEE Global Conference on Consumer Electronics, Nagoya, Japan, 24–27 October 2017; pp. 1–2. [Google Scholar]
- Akhshabi, S.; Begen, A.C.; Dovrolis, C. An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP. In Proceedings of the ACM Conference on Multimedia Systems, San Jose, CA, USA, 23–25 February 2011; pp. 157–168. [Google Scholar]
- Jiang, J.; Sekar, V.; Zhang, H. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. IEEE/ACM Trans. Netw. 2014, 22, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Mok, R.K.P.; Luo, X.; Chan, E.W.W.; Chang, R.K.C. QDASH: A QoE-Aware DASH System. In Proceedings of the ACM Multimedia Systems Conference, Chapel Hill, NC, USA, 22–24 February 2012; pp. 11–22. [Google Scholar]
- Thang, T.C.; Ho, Q.D.; Kang, J.W.; Pham, A.T. Adaptive Streaming of Audiovisual Content Using MPEG DASH. IEEE Trans. Consum. Electron. 2012, 58, 78–85. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.C.; Oran, D. Probe and Adapt: Rate Adaptation for HTTP Video Streaming at Scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733. [Google Scholar] [CrossRef] [Green Version]
- Essaili, A.E.; Schroeder, D.; Steinbach, E.; Staehle, D.; Shehada, M. QoE-Based Traffic and Resource Management for Adaptive HTTP Video Delivery in LTE. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 988–1001. [Google Scholar] [CrossRef]
- Beben, A.; Wiśniewski, P.; Batalla, J.M.; Krawiec, P. ABMA+: Lightweight and Efficient Algorithm for HTTP Adaptive Streaming. In Proceedings of the International Conference on Multimedia Systems, Klagenfurt, Austria, 10–13 May 2016; pp. 2:1–2:11. [Google Scholar]
- Zhou, C.; Lin, C.W.; Guo, Z. mDASH: A Markov Decision-Based Rate Adaptation Approach for Dynamic HTTP Streaming. IEEE Trans. Multimed. 2016, 18, 738–751. [Google Scholar] [CrossRef]
- Wang, X.; Kwon, T.; Choi, Y.; Wang, H.; Liu, J. Cloud-Assisted Adaptive Video Streaming and Social-Aware Video Prefetching for Mobile Users. IEEE Wirel. Commun. 2013, 20, 72–79. [Google Scholar] [CrossRef]
- Krishnamoorthi, V.; Carlsson, N.; Eager, D.; Mahanti, A.; Shahmehri, N. Quality-Adaptive Prefetching for Interactive Branched Video Using HTTP-Based Adaptive Streaming. In Proceedings of the ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 317–326. [Google Scholar]
- Krishnamoorthi, V.; Carlsson, N.; Eager, D.; Mahanti, A.; Shahmehri, N. Bandwidth-Aware Prefetching for Proactive Multi-Video Preloading and Improved HAS Performance. In Proceedings of the ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 551–560. [Google Scholar]
- Wilk, S.; Schreiber, D.; Stohr, D.; Effelsberg, W. On the Effectiveness of Video Prefetching Relying on Recommender Systems for Mobile Devices. In Proceedings of the IEEE Annual Consumer Communications & Networking Conference, Las Vegas, NV, USA, 9–12 March 2016; pp. 429–434. [Google Scholar]
- Master, N.; Dua, A.; Tsamis, D.; Singh, J.P.; Bambos, N. Adaptive Prefetching in Wireless Computing. IEEE Trans. Wirel. Commun. 2016, 15, 3296–3310. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Taleb, T.; Ksentini, A.; Leung, V.C.M. Cache in the Air: Exploiting Content Caching and Delivery Techniques for 5G Systems. IEEE Commun. Mag. 2014, 52, 131–139. [Google Scholar] [CrossRef]
- Fajardo, J.O.; Taboada, I.; Liberal, F. Improving Content Delivery Efficiency Through Multi-Layer Mobile Edge Adaptation. IEEE Netw. 2015, 29, 40–46. [Google Scholar] [CrossRef]
- Claeys, M.; Bouten, N.; De Vleeschauwer, D.; Van Leekwijck, W.; Latré, S.; De Turck, F. An Announcement-Based Caching Approach for Video-on-Demand Streaming. In Proceedings of the International Conference on Network and Service Management, Barcelona, Spain, 9–13 November 2015; pp. 310–317. [Google Scholar]
- Ge, C.; Wang, N.; Skillman, S.; Foster, G.; Cao, Y. QoE-Driven DASH Video Caching and Adaptation at 5G Mobile Edge. In Proceedings of the ACM Conference on Information-Centric Networking, Kyoto, Japan, 26–28 September 2016; pp. 237–242. [Google Scholar]
- Chen, S.; Shen, B.; Wee, S.; Zhang, X. Segment-Based Streaming Media Proxy: Modeling and Optimization. IEEE Trans. Multimed. 2006, 8, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthi, V.; Carlsson, N.; Eager, D.; Mahanti, A.; Shahmehri, N. Helping Hand or Hidden Hurdle: Proxy-Assisted HTTP-Based Adaptive Streaming Performance. In Proceedings of the International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, San Francisco, CA, USA, 14–16 August 2013; pp. 182–191. [Google Scholar]
- Dong, K.; He, J.; Song, W. QoE-Aware Adaptive Bitrate Video Streaming over Mobile Networks with Caching Proxy. In Proceedings of the International Conference on Computing, Networking and Communications, Garden Grove, CA, USA, 16–19 February 2015; pp. 737–741. [Google Scholar]
- Kleinrouweler, J.W.; Cabrero, S.; Cesar, P. Delivering Stable High-Quality Video: An SDN Architecture with DASH Assisting Network Elements. In Proceedings of the ACM International Conference on Multimedia Systems, Klagenfurt, Austria, 10–13 May 2016; pp. 4:1–4:10. [Google Scholar]
- Liu, J.; Wan, J.; Jia, D.; Zeng, B.; Li, D.; Hsu, C.H.; Chen, H. High-Efficiency Urban Traffic Management in Context-Aware Computing and 5G Communication. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef]
- Alkassab, N.; Huang, C.T.; Chen, Y.; Choi, B.Y.; Song, S. Benefits and Schemes of Prefetching from Cloud to Fog Networks. In Proceedings of the IEEE International Conference on Cloud Networking, Prague, Czech Republic, 25–27 September 2017; pp. 1–5. [Google Scholar]
- Liu, Y.; Liu, J.; Argyriou, A.; Ci, S. MEC-Assisted Panoramic VR Video Streaming over Millimeter Wave Mobile Networks. IEEE Trans. Multimed. 2019, 21, 1302–1316. [Google Scholar] [CrossRef]
- Du, J.; Yu, F.R.; Lu, G.; Wang, J.; Jiang, J.; Chu, X. MEC-Assisted Immersive VR Video Streaming over Terahertz Wireless Networks: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020, 7, 9517–9529. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y. Learning-Based Prediction, Rendering and Association Optimization for MEC-Enabled Wireless Virtual Reality (VR) Networks. IEEE Trans. Wirel. Commun. 2021, 20, 6356–6370. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Argyriou, A.; Wang, L.; Xu, Z. Rendering-Aware VR Video Caching Over Multi-Cell MEC Networks. IEEE Trans. Veh. Technol. 2021, 70, 2728–2742. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y. Adaptive Digital Twin for Vehicular Edge Computing and Networks. J. Commun. Inf. Netw. 2022, 7, 48–59. [Google Scholar]
- Zhang, L.; Chakareski, J. UAV-Assisted Edge Computing and Streaming for Wireless Virtual Reality: Analysis, Algorithm Design, and Performance Guarantees. IEEE Trans. Veh. Technol. 2022, 71, 3267–3275. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, X.; Xu, C.; Ma, Y.; Wang, M.; Zhao, Y.; Muntean, G.M. A Multi-User Cost-Efficient Crowd-Assisted VR Content Delivery Solution in 5G-and-Beyond Heterogeneous Networks. IEEE Trans. Mob. Comput. 2022. early access. [Google Scholar] [CrossRef]
- Le Callet, P.; Möller, S.; Perkis, A. (Eds.) Qualinet White Paper on Definitions of Quality of Experience; EU COST Action IC 1003 QUALINET: Lausanne, Switzerland, 2013. [Google Scholar]
- Recommendation ITU-T, P. 10/G.100. Vocabulary for Performance, Quality of Service and Quality of Experience; International Telecommunication Union—Telecommunication Standardization Sector: Geneva, Switzerland, 2016. [Google Scholar]
- Reiter, U.; Brunnström, K.; De Moor, K.; Larabi, M.-C.; Pereira, M.; Pinheiro, A.; You, J.; Zgank, A. Factors influencing quality of experience. In Quality of Experience; Möller, S., Raake, A., Eds.; T-Labs Series in Telecommunication Services; Springer: New York, NY, USA, 2014. [Google Scholar]
- Zepernick, H.J.; Engelke, U. Quality of Experience of Multimedia Services: Past, Present, and Future. In Proceedings of the European Conference on Interactive TV and Video, Lisbon, Portugal, 29 June–1 July 2011; pp. 1–5. [Google Scholar]
- Laghari, A.A.; He, H.; Khan, A.; Kumar, N.; Kharel, R. Quality of Experience Framework for Cloud Computing (QoC). IEEE Access 2018, 6, 64876–64889. [Google Scholar] [CrossRef]
- Azevedo, R.G.D.A.; Birkbeck, N.; Simone, F.D.; Janatra, I.; Adsumilli, B.; Frossard, P. Visual Distortions in 360∘ Videos. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2524–2537. [Google Scholar]
- Chiariotti, F. A Survey on 360∘ Video: Coding, Quality of Experience and Streaming. Comput. Commun. 2021, 177, 133–155. [Google Scholar]
- Hu, F.; Deng, Y.; Saad, W.; Bennis, M.; Aghvami, A.H. Cellular-Connected Wireless Virtual Reality: Requirements, Challenges, and Solutions. IEEE Commun. Mag. 2020, 58, 105–110. [Google Scholar] [CrossRef]
- Müller, A.; Yang, H.C. Dual-Hop Adaptive Packet Transmission Systems with Regenerative Relaying. IEEE Trans. Wirel. Commun. 2010, 9, 234–244. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, S.; Giannakis, G.B. Cross-Layer Combining of Adaptive Modulation and Coding with Truncated ARQ over Wireless Links. IEEE Trans. Wirel. Commun. 2004, 3, 1746–1755. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Bianchi, G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE J. Sel. Areas Commun. 2000, 18, 535–547. [Google Scholar] [CrossRef]
- WirelessHD. Overview of WirelessHD Specification Version 1.1; Broadcom Co.: San Jose, CA, USA; Intel Co.: San Francisco, CA, USA; LG Electronics Inc.: Seoul, Korea; NEC Co.: Tokyo, Japan; Panasonic Co.: Osaka, Japan; Royal Philips Electronics: Amsterdam, The Netherlands; Samsung Electronics Co. LTD: Suwon, Korea; SiBEAM Inc.: Sunnyvale, CA, USA; Sony Co.: Tokyo, Japan; Toshiba Co.: Tokyo, Japan, 2010. [Google Scholar]
- TPCAST. TPCAST Business Edition; TPCAST: Amsterdam, The Netherlands, 2017. [Google Scholar]
- IEEE 802. IEEE P802.11 Task Group BE (EHT) Meeting Update. Available online: http://www.ieee802.org/11/Reports/tgbe_update.htm (accessed on 25 September 2021).
Modulation | BPSK | QPSK | QPSK | 16−QAM | 16−QAM |
Code Rate | 1/2 | 1/2 | 3/4 | 9/16 | 3/4 |
Rate (bps) | 0.50 | 1.00 | 1.50 | 2.25 | 3.00 |
274.72 | 90.25 | 67.61 | 50.12 | 53.39 | |
7.99 | 3.49 | 1.68 | 0.66 | 0.37 | |
(dB) | 1.9518 | 5.1447 | 8.2085 | 12.1477 | 14.6864 |
Weak-Interaction VR Services | |||
---|---|---|---|
KPI | Entry-Level VR | Advanced VR | Ultimate VR |
Full view: | Full view: | Full view: | |
75 Mbps (2D) | 630 Mbps | 4.4 Gbps | |
Typical | 120 Mbps (3D) | ||
throughput | FOV: | FOV: | FOV: |
40 Mbps (2D) | 340 Mbps | 2.34 Gbps | |
63 Mbps (3D) | |||
Typical round- | 30 ms (2D) | 20 ms | 10 ms |
trip time | 20 ms (3D) | ||
Typical packet loss | |||
Strong-Interaction VR Services | |||
KPI | Entry-Level VR | Advanced VR | Ultimate VR |
Typical | 120 Mbps (2D) | 1.4 Gbps | 3.36 Gbps |
throughput | 200 Mbps (3D) | ||
Typical round-trip time | 10 ms | 5 ms | 5 ms |
Typical packet loss |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, T.M.C.; Zepernick, H.-J. Performance Analysis of an Adaptive Rate Scheme for QoE-Assured Mobile VR Video Streaming. Computers 2022, 11, 69. https://doi.org/10.3390/computers11050069
Chu TMC, Zepernick H-J. Performance Analysis of an Adaptive Rate Scheme for QoE-Assured Mobile VR Video Streaming. Computers. 2022; 11(5):69. https://doi.org/10.3390/computers11050069
Chicago/Turabian StyleChu, Thi My Chinh, and Hans-Jürgen Zepernick. 2022. "Performance Analysis of an Adaptive Rate Scheme for QoE-Assured Mobile VR Video Streaming" Computers 11, no. 5: 69. https://doi.org/10.3390/computers11050069
APA StyleChu, T. M. C., & Zepernick, H. -J. (2022). Performance Analysis of an Adaptive Rate Scheme for QoE-Assured Mobile VR Video Streaming. Computers, 11(5), 69. https://doi.org/10.3390/computers11050069