Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips
Abstract
:1. Introduction
- TOM Framework: Innovative architecture inspired by COM for efficient digital device implementation.
- Innovative Neural Architecture: Introduction of DLBS architecture enhancing TOM efficiency.
- Advanced Recognition Mechanism: XNOR gate utilization for improved pattern recognition.
- Detailed Test and Evaluation: Comprehensive testing under varying conditions, including high noise and message erasure.
- Integration of Synaptic Plasticity Rules: Incorporation of STDP and Hebbian rules for enhanced cognitive capabilities.
2. Background and Motivation
2.1. Message Memory
2.2. Message Retrieval Process
3. Implementation Method
3.1. Level I: LIF Neuron Hardware Architecture
3.2. Level II: WTA Hardware Architecture
3.3. Level III: TOM Hardware Architecture
3.4. A Novel COM Architecture Based on Digital Logic
4. Test Procedure
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shrestha, A.; Fang, H.; Mei, Z.; Rider, D.P.; Wu, Q.; Qiu, Q. A Survey on neuromorphic computing: Models and hardware. IEEE Circuits Syst. Mag. 2022, 22, 6–35. [Google Scholar] [CrossRef]
- CSchuman, C.D.; Kulkarni, S.R.; Parsa, M.; Mitchell, J.P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10–19. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of digital twins. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200360. [Google Scholar] [CrossRef] [PubMed]
- Daneshfar, F.; Jamshidi, M. An Octonion-Based Nonlinear Echo State Network for Speech Emotion Recognition in Metaverse. Neural Netw. 2023, 163, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Moztarzadeh, O.; Jamshidi, M.; Sargolzaei, S.; Keikhaee, F.; Jamshidi, A.; Shadroo, S.; Hauer, L. Metaverse and Medical Diagnosis: A Blockchain-Based Digital Twinning Approach Based on MobileNetV2 Algorithm for Cervical Vertebral Maturation. Diagnostics 2023, 13, 1485. [Google Scholar] [CrossRef] [PubMed]
- Khajooei, A.; Jamshidi, M.; Shokouhi, S.B. A Super-Efficient TinyML Processor for the Edge Metaverse. Information 2023, 14, 235. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Ren, Y.; Mao, J.; Wang, Z.; Zhou, Y.; Han, S. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. Adv. Mater. 2020, 32, e2003610. [Google Scholar] [CrossRef]
- Mead, C. How we created neuromorphic engineering. Nat. Electron. 2020, 3, 434–435. [Google Scholar] [CrossRef]
- Parhi, K.K.; Unnikrishnan, N.K. Brain-Inspired Computing: Models and Architectures. IEEE Open J. Circuits Syst. 2020, 1, 185–204. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef] [PubMed]
- Gripon, V.; Berrou, C. Sparse Neural Networks With Large Learning Diversity. IEEE Trans. Neural Networks 2011, 22, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, J.; Mohammadi, K.; Shokouhi, S.B. A Hardware Architecture for Columnar-Organized Memory Based on CMOS Neuron and Memristor Crossbar Arrays. IEEE Trans. Very Large Scale Integr. Syst. 2018, 26, 2795–2805. [Google Scholar] [CrossRef]
- Lu, S.; Xu, F. Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks. Front. Neurosci. 2022, 16, 857513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, L.; Adjouadi, M. A Generalized leaky integrate-and-fire neuron model with fast implementation method. Int. J. Neural Syst. 2014, 24, 1440004. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, L.; Buscarino, A. Spiking Neuron Mathematical Models: A Compact Overview. Bioengineering 2023, 10, 174. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef]
- Piccinini, G. Computational explanation in neuroscience. Synthese 2006, 153, 343–353. [Google Scholar] [CrossRef]
- Izhikevich, E. Which Model to Use for Cortical Spiking Neurons? IEEE Trans. Neural Networks 2004, 15, 1063–1070. [Google Scholar] [CrossRef]
- Mountcastle, V.B. The columnar organization of the neocortex. Brain 1997, 120, 701–722. [Google Scholar] [CrossRef]
- Masquelier, T.; Guyonneau, R.; Thorpe, S.J. Competitive STDP-based spike pattern learning. Neural Comput. 2009, 21, 1259–1276. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.-Q.; Poo, M.-M. Synaptic Modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajooei Nejad, A.; Jamshidi, M.; B. Shokouhi, S. Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips. Computers 2023, 12, 189. https://doi.org/10.3390/computers12100189
Khajooei Nejad A, Jamshidi M, B. Shokouhi S. Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips. Computers. 2023; 12(10):189. https://doi.org/10.3390/computers12100189
Chicago/Turabian StyleKhajooei Nejad, Arash, Mohammad (Behdad) Jamshidi, and Shahriar B. Shokouhi. 2023. "Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips" Computers 12, no. 10: 189. https://doi.org/10.3390/computers12100189
APA StyleKhajooei Nejad, A., Jamshidi, M., & B. Shokouhi, S. (2023). Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips. Computers, 12(10), 189. https://doi.org/10.3390/computers12100189