Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning
Abstract
:1. Introduction
1.1. Massive Open Online Courses (MOOCs)
1.2. Prediction of Dropout and the SRL Factor
1.3. Handling Imbalanced Classes in Dropout Prediction
1.4. Rationale and Research Questions
- What is the performance of the five classic models (NB, LR, SVM, DT, kNN) in predicting dropout before and after oversampling for various oversampling methods?
- What appear to be the important predictors for students’ MOOC dropout and why?
- What is the impact of the SRL factor, as determined by self-reported student data, on the performance of dropout prediction?
2. Materials and Methods
2.1. Context
2.2. Description of the Data Set
2.3. Procedure
- Retrieval of data.
- Preprocessing and cleaning of the data.
- Selection of significant features.
- Normalization, dimensionality reduction using PCA, and oversampling.
- Training and testing the models using stratified 10-kfold cross-validation.
- Comparative evaluation of the models for different oversampling techniques.
2.3.1. Data Retrieval
2.3.2. Preprocessing and Data Cleaning
2.3.3. Feature Selection
2.3.4. Normalization, Dimension Reduction with PCA and Oversampling
2.3.5. Training and Testing
2.3.6. Prediction Performance Evaluation of Models
3. Results
4. Discussion
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsu, S.Y. An Experimental Study of Self-Regulated Learning Strategies Application in MOOCs. Ph.D. Thesis, Teachers College, Columbia University, New York, NY, USA, 2021. [Google Scholar]
- Gardner, J.; Brooks, C. Student success prediction in MOOCs. User Model. User-Adapt. Interact. 2018, 28, 127–203. [Google Scholar]
- Ihantola, P.; Fronza, I.; Mikkonen, T.; Noponen, M.; Hellas, A. Deadlines and MOOCs: How Do Students Behave in MOOCs with and without Deadlines. In Proceedings of the 2020 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden, 21–24 October 2020; IEEE: Piscateville, NJ, USA, 2020; pp. 1–9. [Google Scholar]
- Chuang, I.; Ho, A. HarvardX and MITx: Four years of open online courses-fall 2012-summer 2016. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2889436 (accessed on 1 June 2023).
- Kizilcec, R.F.; Schneider, E. Motivation as a lens to understand online learners: Toward data-driven design with the OLEI scale. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2015, 22, 1–24. [Google Scholar]
- Kizilcec, R.F.; Pérez-Sanagustín, M.; Maldonado, J.J. Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Comput. Educ. 2017, 104, 18–33. [Google Scholar]
- Zheng, S.; Rosson, M.B.; Shih, P.C.; Carroll, J.M. Designing MOOCs as interactive places for collaborative learning. In Proceedings of the Second (2015) ACM Conference on Learning@ Scale, Vancouver, BC, Canada, 14–18 March 2015; pp. 343–346. [Google Scholar]
- Jordan, K. Initial trends in enrolment and completion of massive open online courses. Int. Rev. Res. Open Distrib. Learn. 2014, 15, 133–160. [Google Scholar] [CrossRef]
- Peng, D.; Aggarwal, G. Modeling mooc dropouts. Entropy 2015, 10, 1–5. [Google Scholar]
- Feng, W.; Tang, J.; Liu, T.X. Understanding dropouts in MOOCs. Proc. AAAI Conf. Artif. Intell. 2019, 33, 517–524. [Google Scholar]
- Eriksson, T.; Adawi, T.; Stöhr, C. “Time is the bottleneck”: A qualitative study exploring why learners drop out of MOOCs. J. Comput. High. Educ. 2017, 29, 133–146. [Google Scholar] [CrossRef]
- Reich, J. MOOC completion and retention in the context of student intent. EDUCAUSE Rev. Online 2014.
- Lepp, M.; Luik, P.; Palts, T.; Papli, K.; Suviste, R.; Säde, M.; Tõnisson, E. MOOC in programming: A success story. In Proceedings of the International Conference on e-Learning, Belgrade, Serbia, 28–29 September 2017; pp. 138–147. [Google Scholar]
- Dalipi, F.; Imran, A.S.; Kastrati, Z. MOOC dropout prediction using machine learning techniques: Review and research challenges. In Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Spain, 17–20 April 2018; IEEE: Piscateville, NJ, USA, 2018; pp. 1007–1014. [Google Scholar]
- Zheng, S.; Rosson, M.B.; Shih, P.C.; Carroll, J.M. Understanding student motivation, behaviors and perceptions in MOOCs. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, Vancouver, BC, Canada, 13–18 March 2015; pp. 1882–1895. [Google Scholar]
- Hone, K.S.; El Said, G.R. Exploring the factors affecting MOOC retention: A survey study. Comput. Educ. 2016, 98, 157–168. [Google Scholar]
- Zhang, J. Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective. Comput. Educ. 2016, 95, 340–351. [Google Scholar]
- Dass, S.; Gary, K.; Cunningham, J. Predicting student dropout in self-paced MOOC course using random forest model. Information 2021, 12, 476. [Google Scholar] [CrossRef]
- Herrmannova, D.; Hlosta, M.; Kuzilek, J.; Zdrahal, Z. Evaluating weekly predictions of at-risk students at the open university: Results and issues. In Proceedings of the EDEN 2015 Annual Conference Expanding Learning Scenarios: Opening out the Educational Landscape, Barcelona, Spain, 9–12 June 2015. [Google Scholar]
- Callan, G.L.; Longhurst, D.; Ariotti, A.; Bundock, K. Settings, exchanges, and events: The SEE framework of self-regulated learning supportive practices. Psychol. Sch. 2021, 58, 773–788. [Google Scholar] [CrossRef]
- Sebesta, A.J.; Bray Speth, E. How should I study for the exam? Self-regulated learning strategies and achievement in introductory biology. CBE—Life Sci. Educ. 2017, 16, ar30. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B.J. Self-efficacy: An essential motive to learn. Contemp. Educ. Psychol. 2000, 25, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B.J. Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. Am. Educ. Res. J. 2008, 45, 166–183. [Google Scholar] [CrossRef]
- Jansen, R.S.; van Leeuwen, A.; Janssen, J.; Conijn, R.; Kester, L. Supporting learners’ self-regulated learning in Massive Open Online Courses. Comput. Educ. 2020, 146, 103771. [Google Scholar] [CrossRef]
- Zimmerman, B. Becoming learner: Self-regulated overview. Theory Into Pract. 2002, 41, 64–70. [Google Scholar] [CrossRef]
- Winne, P.H. Learning analytics for self-regulated learning. In Handbook of Learning Analytics; SOLAR, Society for Learning Analytics and Research: New York, NY, USA, 2017; pp. 241–249. [Google Scholar]
- Cunningham, J.A. Predicting Student Success in a Self-Paced Mathematics MOOC. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2017. [Google Scholar]
- Mourdi, Y.; Sadgal, M.; El Kabtane, H.; Fathi, W.B. A machine learning-based methodology to predict learners’ dropout, success or failure in MOOCs. Int. J. Web Inf. Syst. 2019, 15, 489–509. [Google Scholar] [CrossRef]
- Moreno-Marcos, P.M.; Munoz-Merino, P.J.; Maldonado-Mahauad, J.; Perez-Sanagustin, M.; Alario-Hoyos, C.; Kloos, C.D. Temporal analysis for dropout prediction using self-regulated learning strategies in self-paced MOOCs. Comput. Educ. 2020, 145, 103728. [Google Scholar] [CrossRef]
- Kuzilek, J.; Zdrahal, Z.; Fuglik, V. Student success prediction using student exam behaviour. Future Gener. Comput. Syst. 2021, 125, 661–671. [Google Scholar] [CrossRef]
- Wan, H.; Liu, K.; Yu, Q.; Gao, X. Pedagogical intervention practices: Improving learning engagement based on early prediction. IEEE Trans. Learn. Technol. 2019, 12, 278–289. [Google Scholar] [CrossRef]
- Kuzilek, J.; Hlosta, M.; Herrmannova, D.; Zdrahal, Z.; Vaclavek, J.; Wolff, A. OU Analyse: Analysing at-risk students at The Open University. Learn. Anal. Rev. 2015, LAK15-1, 1–16. [Google Scholar]
- Yeomans, M.; Reich, J. Planning prompts increase and forecast course completion in massive open online courses. In Proceedings of the Seventh International Learning Analytics and Knowledge Conference, Vancouver, BC, Canada, 13–17 March 2017; pp. 464–473. [Google Scholar]
- Maldonado-Mahauad, J.; Pérez-Sanagustín, M.; Kizilcec, R.F.; Morales, N.; Munoz-Gama, J. Mining theory-based patterns from Big Data: Identifying self-regulated learning strategies in Massive Open Online Courses. Comput. Hum. Behav. 2018, 80, 179–196. [Google Scholar] [CrossRef]
- Nagrecha, S.; Dillon, J.Z.; Chawla, N.V. MOOC dropout prediction: Lessons learned from making pipelines interpretable. In Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Australia, 3–7 April 2017; pp. 351–359. [Google Scholar]
- Bajer, D.; Zonć, B.; Dudjak, M.; Martinović, G. Performance analysis of SMOTE-based oversampling techniques when dealing with data imbalance. In Proceedings of the 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), Osijek, Croatia, 5–7 June 2019; IEEE: Piscateville, NJ, USA, 2019; pp. 265–271. [Google Scholar]
- Buraimoh, E.; Ajoodha, R.; Padayachee, K. Importance of Data Re-Sampling and Dimensionality Reduction in Predicting Students’ Success. In Proceedings of the 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 12–13 June 2021; IEEE: Piscateville, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Fei, M.; Yeung, D.Y. Temporal models for predicting student dropout in massive open online courses. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; IEEE: Piscateville, NJ, USA, 2015; pp. 256–263. [Google Scholar]
- Al-Shabandar, R.; Hussain, A.; Laws, A.; Keight, R.; Lunn, J.; Radi, N. Machine learning approaches to predict learning outcomes in Massive open online courses. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; IEEE: Piscateville, NJ, USA, 2017; pp. 713–720. [Google Scholar]
- Barandela, R.; Valdovinos, R.M.; Sánchez, J.S.; Ferri, F.J. The imbalanced training sample problem: Under or over sampling? In Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, SSPR 2004 and SPR 2004, Lisbon, Portugal, 18–20 August 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 806–814. [Google Scholar]
- Mulyani, E.; Hidayah, I.; Fauziati, S. Dropout prediction optimization through smote and ensemble learning. In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 5–6 December 2019; IEEE: Piscateville, NJ, USA, 2019; pp. 516–521. [Google Scholar]
- Revathy, M.; Kamalakkannan, S.; Kavitha, P. Machine Learning based Prediction of Dropout Students from the Education University using SMOTE. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; IEEE: Piscateville, NJ, USA, 2022; pp. 1750–1758. [Google Scholar]
- Mduma, N.; Kalegele, K.; Machuve, D. Machine learning approach for reducing students dropout rates. International Journal of Advanced Computer Research. 9. 10.19101/IJACR.2018.839045. 2019. Available online: https://www.researchgate.net/publication/333016151_Machine_Learning_Approach_for_Reducing_Students_Dropout_Rates (accessed on 1 June 2023).
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887. [Google Scholar]
- Rahman, M.M.; Davis, D.N. Addressing the class imbalance problem in medical datasets. Int. J. Mach. Learn. Comput. 2013, 3, 224. [Google Scholar] [CrossRef]
- Shelke, M.S.; Deshmukh, P.R.; Shandilya, V.K. A review on imbalanced data handling using undersampling and oversampling technique. Int. J. Recent Trends Eng. Res 2017, 3, 444–449. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; IEEE: Piscateville, NJ, USA, 2008; pp. 1322–1328. [Google Scholar]
- Brandt, J.; Lanzén, E. A comparative review of SMOTE and ADASYN in imbalanced data classification. (Dissertation). 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-432162. (accessed on 1 June 2023).
- Brooks, C.; Thompson, C. Predictive modelling in teaching and learning. In Handbook of Learning Analytics; SOLAR, Society for Learning Analytics and Research: New York, NY, USA, 2017; pp. 61–68. [Google Scholar]
- Demetriadis, S.; Tegos, S.; Psathas, G.; Tsiatsos, T.; Weinberger, A.; Caballé, S.; Dimitriadis, Y.; Sánchez, G.E.; Papadopoulos, M.; Karakostas, A. Conversational agents as group-teacher interaction mediators in MOOCs. In Proceedings of the 2018 Learning With MOOCS (LWMOOCS), Madrid, Spain, 26–28 September 2018; pp. 43–46. [Google Scholar]
- Tegos, S.; Demetriadis, S.; Papadopoulos, P.M.; Weinberger, A. Conversational agents for academically productive talk: A comparison of directed and undirected agent interventions. Int. J. Comput.-Support. Collab. Learn. 2016, 11, 417–440. [Google Scholar] [CrossRef]
- Stein, R.M.; Allione, G. Mass attrition: An analysis of drop out from a Principles of Microeconomics MOOC; PIER Working Paper Archive 14-031; Penn Institute for Economic Research, Department of Economics, University of Pennsylvania: Philadelphia, PA, USA, 2014. [Google Scholar]
- Haq, A.U.; Zhang, D.; Peng, H.; Rahman, S.U. Combining multiple feature-ranking techniques and clustering of variables for feature selection. IEEE Access 2019, 7, 151482–151492. [Google Scholar] [CrossRef]
- Shohag, S.I.; Bakaul, M. A Machine Learning Approach to Detect Student Dropout at University. Int. J. Adv. Trends Comput. Sci. Eng. 2021, 10. [Google Scholar]
- Holland, S.M. Principal Components Analysis (PCA); Department of Geology, University of Georgia: Athens, GA, USA, 2008; pp. 30602–32501. [Google Scholar]
- Mulla, G.A.; Demir, Y.; Hassan, M. Combination of PCA with SMOTE Oversampling for Classification of High-Dimensional Imbalanced Data. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2021, 10, 858–869. [Google Scholar] [CrossRef]
- Umer, R.; Susnjak, T.; Mathrani, A.; Suriadi, S. Prediction of students’ dropout in MOOC environment. Int. J. Knowl. Eng. 2017, 3, 43–47. [Google Scholar] [CrossRef]
- Pelánek, R. Metrics for Evaluation of Student Models. J. Educ. Data Min. 2015, 7, 1–19. [Google Scholar]
MOOC1 | MOOC2 | |
---|---|---|
Enrolled | 1.324 | 219 |
Started | 935 | 134 |
% | 0.70 | 0.61 |
Features (Corresponding Question in the Questionnaire) | Type | Values |
---|---|---|
Performance_A1 (Grade in programming assignment at the end of the first module) | Continuous that was discretized | 1–10 |
Gender | Categorical |
|
Age | Categorical |
|
Employment (Are you employed?) | Categorical |
|
Studies | Categorical |
|
MOOC Experience (What is your prior experience in MOOCs?) | Categorical |
|
Programming Experience (Previous experience in any programming language) | Categorical |
|
Python Experience (Previous experience in Python) | Categorical |
|
UseOfChatTools (Frequency of use of chat tools like Skype, Messenger, or Google Hangouts) | Categorical |
|
Intention_to_Participate Which of the following best matches your intended way of participating in the course? | Categorical |
|
SRL START num (SRL profile in the intro questionnaire) | Continuous | 1–7 |
Features | Alg. | Roc_auc | Acc. | Prec. | Rec. | f1 |
---|---|---|---|---|---|---|
SRL START num | LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 |
DT | 0.50 | 0.79 | 0.13 | 0.11 | 0.13 | |
SRL START num, Employment | LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 |
DT | 0.55 | 0.78 | 0.20 | 0.24 | 0.22 | |
Intention_to_Participate | kNN | 0.56 | 0.72 | 0.18 | 0.35 | 0.24 |
SRL START num, Intention_to_Participate | LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 |
UseOfChatTools | kNN | 0.59 | 0.69 | 0.07 | 0.35 | 0.12 |
Intention_to_Participate, SRL START num, Employment, Age | DT | 0.54 | 0.77 | 0.18 | 0.24 | 0.20 |
kNN | 0.63 | 0.89 | 0.56 | 0.29 | 0.39 | |
Performance_A1 | NB | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 |
LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
SVM | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
DT | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
kNN | 0.56 | 0.88 | 0.67 | 0.12 | 0.20 | |
SRL START num, Performance_A1 | LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 |
Intention_to_Participate, Performance_A1, SRL START num | LR | 0.49 | 0.89 | 0.00 | 0.00 | 0.00 |
SVM | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
DT | 0.52 | 0.77 | 0.16 | 0.18 | 0.17 | |
Intention_to_Participate, Performance_A1, SRL START num, Age | kNN | 0.58 | 0.88 | 0.60 | 0.17 | 0.27 |
Intention_to_Participate, Performance_A1, SRL START num, Employment | NB | 0.46 | 0.80 | 0.00 | 0.00 | 0.00 |
LR | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
SVM | 0.50 | 0.87 | 0.00 | 0.00 | 0.00 | |
DT | 0.44 | 0.72 | 0.04 | 0.06 | 0.05 | |
kNN | 0.51 | 0.85 | 0.20 | 0.06 | 0.09 | |
Intention_to_Participate, Performance_A1, Programming Experience | kNN | 0.59 | 0.80 | 0.26 | 0.29 | 0.28 |
Intention_to_Participate, Performance_A1, SRL START num, Programming Experience | DT | 0.59 | 0.80 | 0.26 | 0.29 | 0.28 |
Features | Alg. | Oversampling Method, k = 5 | Roc_auc | Acc. | Prec. | Rec. | f1 |
---|---|---|---|---|---|---|---|
Employment | kNN | ADASYN, SMOTE, Borderline-SMOTE1, Borderline-SMOTE2 | 0.50 | 0.13 | 0.13 | 1.00 | 0.23 |
UseOfChatTools | NB | Borderline-SMOTE2 | 0.59 | 0.28 | 0.15 | 1.00 | 0.26 |
UseOfChatTools | NB, LR | ADASYN | 0.50 | 0.13 | 0.13 | 1.00 | 0.23 |
Programming experience, Gender | kNN | SMOTE | 0.54 | 0.25 | 0.14 | 0.94 | 0.24 |
Intention, Education | LR | ADASYN | 0.59 | 0.37 | 0.16 | 0.89 | 0.26 |
Python experience, MOOC experience | kNN | Borderline-SMOTE2 | 0.56 | 0.32 | 0.14 | 0.89 | 0.25 |
Python experience, MOOC experience | kNN | ADASYN | 0.53 | 0.27 | 0.14 | 0.88 | 0.23 |
Python experience, MOOC experience | kNN | SMOTE | 0.56 | 0.32 | 0.14 | 0.88 | 0.25 |
Python experience, MOOC experience | kNN | Borderline-SMOTE1 | 0.55 | 0.29 | 0.14 | 0.88 | 0.24 |
Education | SVM | SMOTE, Borderline-SMOTE1 | 0.57 | 0.38 | 0.15 | 0.82 | 0.25 |
Python experience, Gender | NB | Borderline-SMOTE1 | 0.57 | 0.38 | 0.15 | 0.82 | 0.25 |
Python experience, Gender | LR | Borderline-SMOTE1 | 0.57 | 0.37 | 0.15 | 0.82 | 0.25 |
Python experience, Gender | SVM | Borderline-SMOTE2 | 0.57 | 0.37 | 0.15 | 0.82 | 0.25 |
Python experience, Gender | SVM | SMOTE | 0.56 | 0.37 | 0.15 | 0.82 | 0.25 |
Python experience, Gender | DT | SMOTE | 0.58 | 0.40 | 0.15 | 0.82 | 0.26 |
Python experience, Gender | DT, kNN | Borderline-SMOTE2 | 0.58 | 0.40 | 0.15 | 0.82 | 0.26 |
Programming experience, Gender | NB, SVM, DT | Borderline-SMOTE1 | 0.51 | 0.27 | 0.13 | 0.82 | 0.22 |
Python experience, Gender, Intention | NB | SMOTE | 0.64 | 0.51 | 0.18 | 0.82 | 0.30 |
Python experience, Gender, Intention | LR | Borderline-SMOTE1 | 0.57 | 0.37 | 0.15 | 0.82 | 0.25 |
MOOC experience, Gender | kNN | Borderline-SMOTE1 | 0.62 | 0.46 | 0.17 | 0.82 | 0.28 |
MOOC experience, Gender | LR | Borderline-SMOTE2 | 0.61 | 0.46 | 0.17 | 0.82 | 0.28 |
Features | Alg. | Oversampling Method, k = 5 | Roc_auc | Acc. | Prec. | Rec. | f1 |
---|---|---|---|---|---|---|---|
SRL, MOOC experience, UseOfChat | LR | ADASYN | 0.61 | 0.50 | 0.17 | 0.77 | 0.28 |
SRL, MOOC experience | LR | ADASYN, Borderline-SMOTE1 | 0.64 | 0.59 | 0.19 | 0.71 | 0.30 |
SRL, MOOC experience | LR | SMOTE | 0.63 | 0.57 | 0.19 | 0.71 | 0.29 |
SRL, Education | SVM | ADASYN | 0.61 | 0.54 | 0.17 | 0.71 | 0.28 |
SRL, Programming experience | DT | SMOTE | 0.66 | 0.66 | 0.22 | 0.65 | 0.33 |
SRL, Programming experience | NB | Borderline-SMOTE2 | 0.65 | 0.65 | 0.21 | 0.65 | 0.32 |
SRL, Intention | LR | Borderline-SMOTE2 | 0.62 | 0.60 | 0.19 | 0.65 | 0.29 |
SRL | kNN | SMOTE | 0.61 | 0.62 | 0.19 | 0.59 | 0.28 |
SRL | LR | ADASYN, SMOTE | 0.57 | 0.55 | 0.16 | 0.59 | 0.25 |
SRL | LR | Borderline-SMOTE1 | 0.57 | 0.56 | 0.16 | 0.59 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psathas, G.; Chatzidaki, T.K.; Demetriadis, S.N. Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning. Computers 2023, 12, 194. https://doi.org/10.3390/computers12100194
Psathas G, Chatzidaki TK, Demetriadis SN. Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning. Computers. 2023; 12(10):194. https://doi.org/10.3390/computers12100194
Chicago/Turabian StylePsathas, Georgios, Theano K. Chatzidaki, and Stavros N. Demetriadis. 2023. "Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning" Computers 12, no. 10: 194. https://doi.org/10.3390/computers12100194
APA StylePsathas, G., Chatzidaki, T. K., & Demetriadis, S. N. (2023). Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning. Computers, 12(10), 194. https://doi.org/10.3390/computers12100194