How to Find Orchestrated Trolls? A Case Study on Identifying Polarized Twitter Echo Chambers
Abstract
:1. Introduction
- A “status post” is a tweet that a user composes and shares on their own profile. It can include text, images, and links and can be seen by their followers. Status posts are the starting point of information distribution on social networks like Twitter. Their content can only be captured and processed using complex natural language processing (NLP) methods.
- A “reply” is a tweet a user composes in response to another user’s tweet. When a user replies to a tweet, the original tweet is linked within the reply so that others can see the context of the conversation. Replies can also be seen by the followers of the user who wrote the original tweet. Replies can be confirming, questioning, contradicting, referring, and, of course, any other form. Consequently, these interactions also require complex NLP methods to classify the interaction’s character.
- A “retweet” is when a user shares another user’s tweet on their profile. Retweets allow users to share content from other users with their followers. The analytical advantage of retweets is that content is shared without additional remarks or annotations. Although this cannot be said with certainty, it is predominantly safe to assume that a retweeter will have no significant issues with the original opinion of a tweet. Due to the accumulation of retweet interactions between the same accounts, it can be assumed that the content of these accounts is close to each other without having to analyze the actual content.
- A “quote” is similar to a retweet, but instead of simply sharing the original tweet, the user includes it as a quote in their tweet, along with their commentary. This allows users to share and comment on tweets in a way that allows the context of the original tweet to remain visible. Unlike a retweet, the original content is accompanied by comments that can change the meaning of the original tweet from case to case. This possible change in meaning can be sarcasm, corrections, annotations, etc., which usually require complex content-based analysis using NLP methods.
2. Materials and Methods
- One popular method for community detection is the use of modularity optimization algorithms [24], which aim to identify groups of nodes (representing individuals or groups) that are more densely connected than the rest of the network. This can reveal the existence of echo chambers within a larger online community.
- Network visualization techniques [27], such as graph layouts [28] and node coloring, can also be used to reveal patterns in the structure of echo chambers (see Section 2.2.2 for an example).
2.1. Recording
- Recorder: 250 m CPU, 250 MB Memory
- MongoDB: 8000 m CPU, 60 GB Memory
2.2. Echo Chamber Detection Algorithm
Algorithm 1: The Echo Chamber Detection Algorithm builds a directed graph based on retweet interactions observed in a given timeframe. In this graph, the largest connected component is determined, and the colors blue and red are assigned to the nodes based on authority values (HITS metric). The red nodes form the echo chamber. |
2.2.1. Community Detection (see Figure 3 Step ➌)
- The Kernighan–Lin bisection algorithm [38] partitions a network into two sets by iteratively swapping pairs of nodes to reduce the edge cut between the two sets.
- The asynchronous fluid communities algorithm [39] is based on the idea of fluids interacting in an environment, expanding and pushing each other. Its initialization is random, so found communities may vary on different executions.
- The Clauset–Newman–Moore greedy modularity maximization algorithm [40] finds a community partition with the largest modularity. Greedy modularity maximization begins with each node in its own community and repeatedly joins the pair of communities that lead to the largest modularity until no further increase in modularity is possible (a maximum). To obtain precisely n communities, the and parameters can be set to n (in our case, ).
2.2.2. Community Classification (see Figure 3 Step ➍)
- A hub is a node that links to many other nodes. It is a central information point and is used to connect different topics. In this study, context, a hub is an account that mainly retweets other accounts. So, a hub is a content disseminator.
- An authority is a node that is linked to many other nodes. It can be seen as an authoritative source of a community used to get information on a particular topic. In this study, an authority is an account mainly retweeted by other accounts. So, an authority is a content provider.
2.3. Evaluation
3. Results
- Observation period: 60 days in total ending on 25 January 2023;
- Tweets: 75.46 Mio. (thereof 33.10 Mio. retweets);
- Observed unique accounts: 6.75 Mio. (thereof 4.26 Mio. unique retweeting accounts);
- Data repo: [44] (gzipped jsonl raw data export of Mongo database, approx. 35 GB);
- Analyzed consecutive time frames: 60 (each covering 24 h).
3.1. Research Question 1: Classification Results
3.2. Research Question 2: Scope and Quantity Considerations
4. Discussion
4.1. Limitations
4.2. Threats to Validity
5. Related Work
- Content-based approaches focus on the leaning of content shared or consumed by users and their sentiment on controversy. For example, [46] investigate the political discourse on Facebook and Twitter between Liberals and Conservatives by identifying users sharing news articles aligning with their political beliefs. The authors of [47] adopt a comparable approach on Facebook but additionally take into account users’ exposure to diverse content from their news feed or friends.
- Network-based approaches focus on finding clustered topologies in users’ interactions. The authors of [35,36] explored online communication resembling an echo chamber by inferring users’ ideology through follow and retweet, and media slant shared and consumed. The authors of [37] tackled this task on Reddit, focusing on the 2016 Republican and Democrat election debate.
- Macro-scale echo chambers look at the users’ interaction network on an aggregated level, not taking into account differences within certain areas of the network. As an example, [17,37] examine whether the entire network is distinctly marked by two separated user groups, representing the two opposing sides of the controversy. Similarly, [34] employ a community detection method to look for a comparable outcome, but with the algorithm compelled to identify exactly two communities (polarity).
- Meso-scale echo chambers are a subset of nodes in the overall network that resembles an echo chamber and multiple echo chambers with the same ideological leaning can be identified. As an illustration [7] uses the modularity function to identify numerous compact clusters on Facebook pages.
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Account | Verified | Description | Color | Topics |
---|---|---|---|---|
SHomburg | No | Professor, @UniHannover, Autor “Corona-Getwitter”, Leseprobe: http://bit.ly/3H9JIil (accessed on 1 February 2023) Bildung statt Haltung, Like ≠ Zustimmung | red | Covid anti-vaccination |
george_orwell3 | No | Mit fast tödlicher Sicherheit bewegen wir uns auf ein Zeitalter totalitärer Diktaturen zu. | red | Russian misinfo, Kremlin propaganda, Covid anti-vaccination |
Georg_Pazderski | Yes | Oberst i.G. (a.D.), Ehemaliger AfD-Fraktionsvorsitzender im Abgeordnetenhaus von Berlin (Follow und RT sind keine Zustimmung) | red | Politician, right-wing populism |
rosenbusch_ | No | Independent Journalist/photographer, committed to the truth to the best of my knowledge and belief since 2001. | red | Russian misinfo, Covid anti-vaccination |
reitschuster | Yes | In 16 Jahren als Korrespondent in Moskau allergisch geworden gegen Ideologen, Sozialismus-Nostalgiker und Journalisten-Kollegen, die die Regierung loben. | red | Covid anti-vaccination |
RolandTichy | Yes | Roland Tichy, Gründer TichysEinblick; Das Leben ist kein Ponyhof | Impressum: https://tichyseinblick.de/impressum/ (accessed on 1 February 2023) | red | Journalist, market liberalism |
Eddie_1412 | No | Was Lucky Luke im Wilden Westen bin ich auf Twitter. Ich blockiere schneller als mein Schatten... | red | Kremlin propaganda, right-wing populism, Russian misinfo |
jreichelt | Yes | I’m back! | red | Online journalist, right-wing populism |
ZentraleV | No | Zentrale Ermittlungsstelle fremde Medien Ost | red | Russian disinfo, Kremlin propaganda |
MrJonasDanner | No | Der Account, vor dem euch die Tagesschau immer gewarnt hat. | red | Russian misinfo, Covid anti-vaccination |
nikitheblogger | No | YouTuber mit 300,000 Abonnenten, freier Journalist und politischer Blogger | red | Online journalist, right-wing populism |
ElliotStabler92 | No | Marcel | red | Conspiracy-related theories, Russian misinfo |
DrPuerner | No | Facharzt für Öffentliches Gesundheitswesen, Epidemiologe, Impfstatus: privat | red | Medical, Covid anti-vaccination |
RZitelmann | No | ILOVECAPITALISM Kapitalismus ist nicht das Problem, sondern die Lösung. Official German profile | red | Market liberalism, climate measures skeptics |
OERRBlog | Yes | Kritische Beobachter des deutschen Öffentlich-rechtlichen Rundfunks. Für eine Verkleinerung und Kostenreduzierung. ReformOerr | red | Media blog |
kripp_m | No | Eine Investition in Wissen bringt immer noch die besten Zinsen. (Benjamin Franklin) | red | Russian misinfo, Covid anti-vaccination |
SILVERF26971227 | No | VOX POPULI-VOX DEI | red | Russian disinfo, Kremlin propaganda |
FreifrauvonF | No | Natürlich Patriotin! Für ein Europa der Vaterländer! Du kannst alles verkaufen, nur nicht deine Leute und nicht dein Land. Pronomen: Mom/Milf | red | Right-wing populism |
haintz_markus | No | Rechtsanwalt und Journalist FreeAssange | red | Right-wing populism, Russian misinfo, Covid anti-vaccination |
MGGA2021h | No | Für ein starkes Europa mit eigenen Nationen. Für glückliche+ungeimpfte Kinder. Keine Islamisierung. “Journalist”. Master o.t.U. | red | Right-wing populism, Russian misinfo, Covid anti-vaccination |
Account | Verified | Description | Color | Topics |
---|---|---|---|---|
tagesschau | Yes | Schlagzeilen von https://tagesschau.de (accessed on 1 February 2023) | blue | TV news, public service |
derspiegel | Yes | Nachrichten, Analysen, Kommentare, Videos, Podcasts: Mehr als 500 SPIEGEL-Journalistinnen und Journalisten decken auf, setzen Themen und sorgen für Kontext. | blue | Print media |
ShouraHashemi | No | Bitte googelt mich nicht. she/her | blue | Iran, activist |
ZDFheute | No | Hier twittert die ZDFheute-Redaktion Nachrichten, Videos und Hintergründe. | blue | TV news, public service |
BR24 | Yes | Hier ist Bayern. | blue | TV station, public service |
Karl_Lauterbach | Yes | SPD Bundestagsabgeordneter, Bundesgesundheitsminister, der hier selbst und privat tweetet. | blue | Politician, health, Covid |
NurderK | No | Skills can be taught. Character you either have or you do not have. | blue | Climate change, social fairness |
GildaSahebi | Yes | Journalistin/Ärztin/Politikwissenschaftlerin, @tazgezwitscher, Antisemitismus, Rassismus, Naher Osten, Wissenschaft, Medizin. | blue | Activist, health, anti-racism, Near East |
faznet | Yes | Die wichtigsten Nachrichten des Tages, die besten Faz.net-Artikel und Empfehlungen der Redaktion. | blue | Print media |
ntvde | Yes | NTV Nachrichten: FürAlledieFragenhaben, Mehr von ntv: @ntv_EIL, @ntvde_politik, @teleboerse, @ntvde_Sport, @ntvde_Auto, @ntvpodcast | blue | TV news, private broadcaster |
AufstandLastGen | No | Wir sind die LetzteGeneration, die den völligen Klimakollaps noch aufhalten kann! | blue | Activist, climate change |
zeitonline | Yes | Ja, das ist unser offizieller Twitter-Account. Hier bekommen Sie die wichtigsten Geschichten und aktuelle News. | blue | Print media |
VeroWendland | No | Energoblogger. Ecomodernist. Science, Technology, Society Studies. Eastern Europe. Status: Reaktorversteherin. | blue | Climate change, energy transition, pro-nuclear energy |
Anonymous9775 | No | Hier twittert Anonymous gegen Faschismus, Rassismus, Ungerechtigkeit, Unterdrückung, Zensur, Kriege, Diktatoren, Sekten | blue | Activist, anti-racism, anti-war |
LyllithB | No | nix mit Medien, Orwell, Psychedelic, Coffee, Tea, Seventies, HippieGoth, Sea, Regen, Pfalz, Yellow, Cohen, Dylan, Reed, Wader | blue | Influencer, diversity, gender |
Gert_Woellmann | Yes | Landesvorstand der @fdphh, Kreisvorstand FDP Alstertal-Walddörfer | blue | Politician, liberalism, pro-Ukraine |
NatalieAmiri | Yes | Int. Correspondent - 2015-20 Iran/Tehran ARD, @DasErste, German Television bureau chief-Anchorwoman @Weltspiegel_ARD, Autorin: “Zwischen den Welten” | blue | Journalist, Iran, Near East |
AxelSchaumburg | No | Dezidiert liberal, Gegen Rechts- und Linksextremismus und alles Totalitäre, My only “phobias” are Naziphobia und Wokophobia, Following ≠ endorsement | blue | Entrepreneur, agriculture, forestry, liberalism |
missdelein2 | No | Madeleine | blue | Activist, gender, diversity |
RND_de | Yes | Exklusive News, interessante Hintergründe und fundierte Meinungen. Hier twittert das RedaktionsNetzwerk Deutschland (RND). | blue | Print media |
References
- KhosraviNik, M. Right wing populism in the west: Social media discourse and echo chambers. Insight Turk. 2017, 19, 53–68. [Google Scholar] [CrossRef]
- Boulianne, S.; Koc-Michalska, K.; Bimber, B. Right-wing populism, social media and echo chambers in Western democracies. New Media Soc. 2020, 22, 683–699. [Google Scholar] [CrossRef]
- Margetts, H. Rethinking democracy with social media. Political Q. 2018, 90, 107–123. [Google Scholar] [CrossRef]
- Persily, N.; Tucker, J.A. Social Media and Democracy: The State of the Field, Prospects for Reform; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Barberá, P. Social Media, Echo Chambers, and Political Polarization; Cambridge University Press: Cambridge, UK, 2020; Volume 34. [Google Scholar]
- Ross Arguedas, A.; Robertson, C.; Fletcher, R.; Nielsen, R. Echo Chambers, Filter Bubbles, and Polarisation: A Literature Review; University of Oxford: Oxford, UK, 2022. [Google Scholar]
- Grömping, M. ‘Echo chambers’ partisan facebook groups during the 2014 Thai election. Asia Pac. Media Educ. 2014, 24, 39–59. [Google Scholar]
- Hayat, T.; Samuel-Azran, T. “You too, second screeners?” Second screeners’ echo chambers during the 2016 US elections primaries. J. Broadcast. Electron. Media 2017, 61, 291–308. [Google Scholar] [CrossRef]
- Guo, L.; Rohde, J.A.; Wu, H.D. Who is responsible for Twitter’s echo chamber problem? Evidence from 2016 US election networks. Inf. Commun. Soc. 2020, 23, 234–251. [Google Scholar] [CrossRef]
- Hänska, M.; Bauchowitz, S. Tweeting for Brexit: How social media influenced the referendum. In Brexit, Trump and the Media; Abramis Academic Publishing: Bury St Edmunds, UK, 2017; pp. 31–35. [Google Scholar]
- Bastos, M.; Mercea, D.; Baronchelli, A. The geographic embedding of online echo chambers: Evidence from the Brexit campaign. PLoS ONE 2018, 13, e0206841. [Google Scholar] [CrossRef]
- Gorodnichenko, Y.; Pham, T.; Talavera, O. Social media, sentiment and public opinions: Evidence from #Brexit and #USElection. Eur. Econ. Rev. 2021, 136, 103772. [Google Scholar]
- Badawy, A.; Ferrara, E.; Lerman, K. Analyzing the digital traces of political manipulation: The 2016 Russian interference Twitter campaign. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28–31 August 2018; pp. 258–265. [Google Scholar]
- Zannettou, S.; Caulfield, T.; De Cristofaro, E.; Sirivianos, M.; Stringhini, G.; Blackburn, J. Disinformation warfare: Understanding state-sponsored trolls on Twitter and their influence on the web. In Proceedings of the Companion Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 218–226. [Google Scholar]
- Golovchenko, Y.; Buntain, C.; Eady, G.; Brown, M.A.; Tucker, J.A. Cross-platform state propaganda: Russian trolls on Twitter and YouTube during the 2016 US presidential election. Int. J. Press. 2020, 25, 357–389. [Google Scholar] [CrossRef] [Green Version]
- Karami, A.; Lundy, M.; Webb, F.; Turner-McGrievy, G.; McKeever, B.W.; McKeever, R. Identifying and analyzing health-related themes in disinformation shared by conservative and liberal Russian trolls on twitter. Int. J. Environ. Res. Public Health 2021, 18, 2159. [Google Scholar] [CrossRef]
- Cinelli, M.; Morales, G.D.F.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Donkers, T.; Ziegler, J. The Dual Echo Chamber: Modeling Social Media Polarization for Interventional Recommending. In Proceedings of the 15th ACM Conference on Recommender Systems, RecSys ’21, Amsterdam, The Netherlands, 27 September–1 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 12–22. [Google Scholar] [CrossRef]
- Ghanem, B.; Buscaldi, D.; Rosso, P. TexTrolls: Identifying Russian trolls on Twitter from a textual perspective. arXiv 2019, arXiv:1910.01340. [Google Scholar]
- Kim, D.; Graham, T.; Wan, Z.; Rizoiu, M.A. Analysing user identity via time-sensitive semantic edit distance (t-SED): A case study of Russian trolls on Twitter. J. Comput. Soc. Sci. 2019, 2, 331–351. [Google Scholar] [CrossRef] [Green Version]
- Im, J.; Chandrasekharan, E.; Sargent, J.; Lighthammer, P.; Denby, T.; Bhargava, A.; Hemphill, L.; Jurgens, D.; Gilbert, E. Still out there: Modeling and identifying russian troll accounts on twitter. In Proceedings of the 12th ACM Conference on Web Science, Southampton, UK, 6–10 July 2020; pp. 1–10. [Google Scholar]
- Zannettou, S.; Caulfield, T.; Bradlyn, B.; De Cristofaro, E.; Stringhini, G.; Blackburn, J. Characterizing the use of images in state-sponsored information warfare operations by russian trolls on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, Dublin, Ireland, 4–7 June 2020; Volume 14, pp. 774–785. [Google Scholar]
- Wang, Y.; Callan, J.; Zheng, B. Should we use the sample? Analyzing datasets sampled from Twitter’s stream API. ACM Trans. Web TWEB 2015, 9, 1–23. [Google Scholar] [CrossRef]
- Bedi, P.; Sharma, C. Community detection in social networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2016, 6, 115–135. [Google Scholar] [CrossRef]
- Landherr, A.; Friedl, B.; Heidemann, J. A critical review of centrality measures in social networks. Wirtschaftsinformatik 2010, 52, 367–382. [Google Scholar] [CrossRef]
- Das, K.; Samanta, S.; Pal, M. Study on centrality measures in social networks: A survey. Soc. Netw. Anal. Min. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Moody, J.; McFarland, D.; Bender-deMoll, S. Dynamic network visualization. Am. J. Sociol. 2005, 110, 1206–1241. [Google Scholar] [CrossRef] [Green Version]
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Roesslein, J. Tweepy: Twitter for Python! 2020. Available online: https://github.com/tweepy/tweepy (accessed on 2 March 2023).
- Chodorow, K.; Dirolf, M. MongoDB-The Definitive Guide: Powerful and Scalable Data Storage; O’Reilly: Sebastopol, CA, USA, 2010; pp. I–XVII, 1–193. [Google Scholar]
- Kratzke, N. The #BTW17 Twitter Dataset - Recorded Tweets of the Federal Election Campaigns of 2017 for the 19th German Bundestag. Data 2017, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Lee, K.; Yoo, C. On the Resource Management of Kubernetes. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 154–158. [Google Scholar] [CrossRef]
- Kratzke, N. Twista-Twitter Stream Recording and Analysis. GitLab Repository, 2023. Available online: https://git.mylab.th-luebeck.de/nane.kratzke/twista (accessed on 2 March 2023).
- Conover, M.; Ratkiewicz, J.; Francisco, M.; Gonçalves, B.; Menczer, F.; Flammini, A. Political polarization on twitter. In Proceedings of the International AAAI Conference on Web and Social Media, Barcelona, Spain, 17–21 July 2011; Volume 5, pp. 138–141. [Google Scholar]
- Barberá, P.; Jost, J.T.; Nagler, J.; Tucker, J.A.; Bonneau, R. Tweeting from left to right: Is online political communication more than an echo chamber? Psychol. Sci. 2015, 26, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Garimella, K.; De Francisci Morales, G.; Gionis, A.; Mathioudakis, M. Political discourse on social media: Echo chambers, gatekeepers, and the price of bipartisanship. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 913–922. [Google Scholar]
- Morales, G.D.F.; Monti, C.; Starnini, M. No echo in the chambers of political interactions on Reddit. Sci. Rep. 2021, 11, 1–12. [Google Scholar]
- Kernighan, B.W.; Lin, S. An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [Google Scholar] [CrossRef]
- Parés, F.; Garcia-Gasulla, D.; Vilalta, A.; Moreno, J.; Ayguadé, E.; Labarta, J.; Cortés, U.; Suzumura, T. Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm. arXiv 2017, arXiv:1703.09307. [Google Scholar]
- Clauset, A.; Newman, M.E.J.; Moore, C. Finding community structure in very large networks. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 2004, 70 Pt 2, 066111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langville, A.N.; Meyer, C.D. A Survey of Eigenvector Methods for Web Information Retrieval. SIAM Rev. 2005, 47, 135–161. [Google Scholar] [CrossRef] [Green Version]
- Kleinberg, J.M. Authoritative Sources in a Hyperlinked Environment. J. ACM 1999, 46, 604–632. [Google Scholar] [CrossRef] [Green Version]
- Morini, V.; Pollacci, L.; Rossetti, G. Toward a Standard Approach for Echo Chamber Detection: Reddit Case Study. Appl. Sci. 2021, 11, 5390. [Google Scholar] [CrossRef]
- Kratzke, N. A One Percent Sample of German Twitter Retweet Traffic over Two Months. 2023. Available online: https://zenodo.org/record/7669923#.Y_8plB9ByUk (accessed on 2 March 2023).
- Aro, J. Putin’s Trolls: On the Frontlines of Russia’s Information War against the World; Blackstone Publishing: Ashland, OR, USA, 2022. [Google Scholar]
- An, J.; Quercia, D.; Crowcroft, J. Partisan sharing: Facebook evidence and societal consequences. In Proceedings of the 2nd ACM Conference on Online Social Networks, Dublin, Ireland, 1–2 October 2014; pp. 13–24. [Google Scholar]
- Bakshy, E.; Messing, S.; Adamic, L. Exposure to ideologically diverse news and opinion on Facebook. Science 2015, 348, 1130–1132. [Google Scholar] [CrossRef]
- Kratzke, N. Monthly Samples of German Tweets (2019–2022). 2022. Available online: https://zenodo.org/record/7528718#.Y_8p_R9ByUk (accessed on 2 March 2023).
- Kratzke, N. Monthly Samples of German Tweets. 2023. Available online: https://zenodo.org/record/7670098#.Y_8qEB9ByUk (accessed on 2 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratzke, N. How to Find Orchestrated Trolls? A Case Study on Identifying Polarized Twitter Echo Chambers. Computers 2023, 12, 57. https://doi.org/10.3390/computers12030057
Kratzke N. How to Find Orchestrated Trolls? A Case Study on Identifying Polarized Twitter Echo Chambers. Computers. 2023; 12(3):57. https://doi.org/10.3390/computers12030057
Chicago/Turabian StyleKratzke, Nane. 2023. "How to Find Orchestrated Trolls? A Case Study on Identifying Polarized Twitter Echo Chambers" Computers 12, no. 3: 57. https://doi.org/10.3390/computers12030057
APA StyleKratzke, N. (2023). How to Find Orchestrated Trolls? A Case Study on Identifying Polarized Twitter Echo Chambers. Computers, 12(3), 57. https://doi.org/10.3390/computers12030057