Addressing Uncertainty in Tool Wear Prediction with Dropout-Based Neural Network
Abstract
:1. Introduction
- The data and model uncertainty are incorporated for tool flank wear estimation.
- Different values of tool flank wear are estimated for a new observation by applying MC dropout.
- Tool flank wear is estimated as intervals from the mean and standard deviation of the predicted values to incorporate uncertainty.
2. Proposed Dropout-Based Prediction Method
2.1. Empirical Mode Decomposition
- For a given signal vector, the number of extrema and the number of zero crossings must either be equal or differ by at most one.
- At any point, the mean value of the envelope defined by the local maxima and the local minima is zero.
2.2. Feature Extraction
2.3. Principal Component Analysis
2.4. Overview of Neural Network
2.5. Monte Carlo (MC) Dropout
- The dropout is applied at probability, p.
- When training an NN, the weights of the retained neurons update in each epoch, and the weights of dropped-out neurons remain unchanged.
- Dropout is applied randomly until the desired level of accuracy is obtained.
- After training, the dropout is applied to the trained NN to predict different values for a new observation. This concept is known as MC dropout.
2.6. Interval Prediction
3. Numerical Experiments and Results
3.1. Data Description
3.2. Tool Flank Wear Prediction
3.3. Results Analysis
4. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Kalla, D.K.; Yodo, N. Recent advances in cutting tool materials and tool coatings for machining composite materials. In Proceedings of the Tooling for Composites Conference, Salt Lake City, UT, USA, 12–13 October 2010. [Google Scholar]
- Wang, J.; Wang, P.; Gao, R.X. Enhanced particle filter for tool wear prediction. J. Manuf. Syst. 2015, 36, 35–45. [Google Scholar] [CrossRef]
- Xia, T.; Dong, Y.; Xiao, L.; Du, S.; Pan, E.; Xi, L. Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliab. Eng. Syst. Saf. 2018, 178, 255–268. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N. Performance improvement techniques for neural networks in tool condition monitoring. Int. J. Mechatron. Manuf. Syst. 2022, 15, 107–126. [Google Scholar] [CrossRef]
- Zaman, K.; McDonald, M.; Mahadevan, S.; Green, L. Robustness-based design optimization under data uncertainty. Struct. Multidiscip. Optim. 2011, 44, 183–197. [Google Scholar] [CrossRef]
- Dey, A.; Zaman, K. A robust optimization approach for solving two-person games under interval uncertainty. Comput. Oper. Res. 2020, 119, 104937. [Google Scholar] [CrossRef]
- Zaman, K.; Rangavajhala, S.; McDonald, M.P.; Mahadevan, S. A probabilistic approach for representation of interval uncertainty. Reliab. Eng. Syst. Saf. 2011, 96, 117–130. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction. arXiv 2019, arXiv:1910.09457. [Google Scholar]
- Loquercio, A.; Segu, M.; Scaramuzza, D. A general framework for uncertainty estimation in deep learning. arXiv 2019, arXiv:1907.06890. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N. Conservative Confidence Interval Prediction in Fused Deposition Modeling Process with Linear Optimization Approach. SCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 4051750. [Google Scholar] [CrossRef]
- Hwang, J.G.; Ding, A.A. Prediction intervals for artificial neural networks. J. Am. Stat. Assoc. 1997, 92, 748–757. [Google Scholar] [CrossRef]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Tübingen, Germany, 2003. [Google Scholar]
- Heskes, T. Practical confidence and prediction intervals. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 3–5 December 1996. [Google Scholar]
- Duan, T.; Avati, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.Y.; Schuler, A. Ngboost: Natural gradient boosting for probabilistic prediction. arXiv 2019, arXiv:1910.03225. [Google Scholar]
- Ustimenko, A.; Prokhorenkova, L.; Malinin, A. Uncertainty in Gradient Boosting via Ensembles. arXiv 2020, arXiv:2006.10562. [Google Scholar]
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural networks. arXiv 2015, arXiv:1505.05424. [Google Scholar]
- Gal, Y.; Ghahraman, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the ICML’16: Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Koh, S.; Gunasekaran, A. A knowledge management approach for managing uncertainty in manufacturing. Ind. Manag. Data Syst. 2006, 106, 439–459. [Google Scholar] [CrossRef]
- Hu, Z.; Mahadevan, S. Uncertainty quantification and management in additive manufacturing: Current status, needs, and opportunities. Int. J. Adv. Manuf. Technol. 2017, 93, 2855–2874. [Google Scholar] [CrossRef]
- Karandikar, J.M.; Abbas, A.E.; Schmitz, T.L. Tool life prediction using random walk bayesian updating. Mach. Sci. Technol. 2013, 17, 410–442. [Google Scholar] [CrossRef]
- Ren, Q.; Balazinski, M.; Baron, L. Uncertainty prediction for tool wear condition using type-2 tsk fuzzy approach. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009. [Google Scholar]
- Pal, S.; Heyns, S.P.; Freyer, B.H.; Theron, N.J. Tool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertainties. J. Intell. Manuf. 2011, 22, 491–504. [Google Scholar] [CrossRef]
- Wu, D.; Jennings, C.; Terpenny, J.; Kumara, S.; Gao, R.X. Cloud-based parallel machine learning for tool wear prediction. J. Manuf. Sci. Eng. 2018, 140, 4038002. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; ISBN 978-1-0716-1417-4. [Google Scholar]
- Astakhov, V.P. The assessment of cutting tool wear. Int. J. Mach. Tools Manuf. 2004, 44, 637–647. [Google Scholar] [CrossRef]
- Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. Prediction of tool wear using regression and ANN models in end-milling operation. Int. J. Adv. Manuf. Technol. 2008, 37, 29–41. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, C. Modeling Flank Wear Progression Based on Cutting Force and Energy Prediction in Turning Process. Procedia Manuf. 2016, 5, 536–545. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Schlurmann, T. The empirical mode decomposition and the Hilbert spectra to analyse embedded characteristic oscillations of extreme waves. In Rogue Waves 2000, Proceedings of the Rogue Waves Workshop, Brest, France, 29–30 November 2000; Ifremer: Brest, France, 2000. [Google Scholar]
- Huang, N.E.; Shen, S.S.P.; Riemenschneider, S.; Liu, B.; Xu, Y.; Flandrin, P.; Gonçalvès, P.; Rilling, G.; Meeson, J.R.N.; Wu, Z.; et al. Hilbert-Huang Transform and Its Applications; World Scientific: Singapore, 2014; Volume 16. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Liu, Y.-Y.; Yang, G.-L. EMD interval thresholding denoising based on correlation coefficient to select relevant modes. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015. [Google Scholar]
- Altın, C.; Er, O. Comparison of different time and frequency domain feature extraction methods on elbow gesture’s EMG. Eur. J. Interdiscip. Stud. 2016, 2, 35–44. [Google Scholar] [CrossRef]
- Dargie, W. Analysis of time and frequency domain features of accelerometer measurements. In Proceedings of the 2009 18th International Conference on Computer Communications and Networks, San Antonio, TX, USA, 2–6 August 2009. [Google Scholar]
- Wu, J.; Su, Y.; Cheng, Y.; Shao, X.; Deng, C.; Liu, C. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system. Appl. Soft Comput. 2018, 68, 13–23. [Google Scholar] [CrossRef]
- Box, G.E. Science and statistics. J. Am. Stat. Assoc. 1976, 71, 791–799. [Google Scholar] [CrossRef]
- PHM Society Conference Data Challenge. 2010. Available online: https://www.phmsociety.org/competition/phm/10 (accessed on 23 May 2023).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Binder, M.; Klocke, F.; Doebbeler, B. An advanced numerical approach on tool wear simulation for tool and process design in metal cutting. Simul. Model. Pract. Theory 2017, 70, 65–82. [Google Scholar] [CrossRef]
- Zegarra, F.C.; Vargas-Machuca, J.; Coronado, A.M. Tool wear and remaining useful life (RUL) prediction based on reduced feature set and Bayesian hyperparameter optimization. Prod. Eng. 2022, 16, 465–480. [Google Scholar] [CrossRef]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? arXiv 2017, arXiv:1703.04977. [Google Scholar]
- Hammer, B.; Villmann, T. How to process uncertainty in machine learning? In Proceedings of the ESANN’2007 Proceedings—European Symposium on Artificial Neural Networks, Bruges, Belgium, 25–27 April 2007. [Google Scholar]
- Solomatine, D.P.; Shrestha, D.L. A novel method to estimate model uncertainty using machine learning techniques. Water Resour. Res. 2009, 45, W00B11. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Mo, R.; Zhang, X. In-process tool condition forecasting based on a deep learning method. Robot. Comput. Manuf. 2020, 64, 101924. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, W.; Hu, X.; Liu, Y. A hybrid information model based on long short-term memory network for tool condition monitoring. J. Intell. Manuf. 2020, 31, 1497–1510. [Google Scholar] [CrossRef]
- Abu-Abed, F.N.; Martynov, D.V.; Ivanova, A.V.; Dopira, R.V.; Kordyukov, R.Y. Simulation model performance evaluation of repair-diagnostic complex. ARPN J. Eng. Appl. Sci. 2016, 11, 9636–9645. [Google Scholar]
Features | Formula | Features | Formula |
---|---|---|---|
1. Mean | 7. Crest factor | ||
2. Standard deviation | 8. Shape factor | ||
3. Root mean square | 9. Impulse factor | ||
4. Square mean root | 10. Marginal factor | ||
5. Skewness | 11. Peak to peak | ||
6. Kurtosis |
Sensor type | X-axis force Y-axis force Z-axis force X-axis vibration Y-axis vibration Z-axis vibration |
Total extracted features | |
Target variable | Tool flank wear |
Data size | 315 datapoints 315 datapoints 315 datapoints |
Training data size | : 630 data points |
Test data size | : 315 datapoints |
Performance Matrices | Formulae |
---|---|
MAE | |
RMSE | |
R2 value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, A.; Yodo, N.; Yadav, O.P.; Shanmugam, R.; Ramoni, M. Addressing Uncertainty in Tool Wear Prediction with Dropout-Based Neural Network. Computers 2023, 12, 187. https://doi.org/10.3390/computers12090187
Dey A, Yodo N, Yadav OP, Shanmugam R, Ramoni M. Addressing Uncertainty in Tool Wear Prediction with Dropout-Based Neural Network. Computers. 2023; 12(9):187. https://doi.org/10.3390/computers12090187
Chicago/Turabian StyleDey, Arup, Nita Yodo, Om P. Yadav, Ragavanantham Shanmugam, and Monsuru Ramoni. 2023. "Addressing Uncertainty in Tool Wear Prediction with Dropout-Based Neural Network" Computers 12, no. 9: 187. https://doi.org/10.3390/computers12090187
APA StyleDey, A., Yodo, N., Yadav, O. P., Shanmugam, R., & Ramoni, M. (2023). Addressing Uncertainty in Tool Wear Prediction with Dropout-Based Neural Network. Computers, 12(9), 187. https://doi.org/10.3390/computers12090187