Robust Face Mask Detection by a Socially Assistive Robot Using Deep Learning
Abstract
:1. Introduction
2. Related Works
2.1. Machine Learning Methods for Mask Detection
2.2. Deep Learning Methods for Mask Detection
2.3. Autonomous Mask Detection by Robots
2.4. Summary of Limitations
3. Autonomous Mask Detection and Classification Methodology
3.1. Pre-Processing Module
3.2. Face Detection Module
3.3. Classification Module
4. Training
4.1. Training Dataset
4.2. Training Procedure
4.3. Classifier 1: Training and Validation Results
4.4. Classifier 2: Training and Validation Results
5. Comparison Study
6. Robot Experiments
6.1. Robot Setup
6.2. Experiment Procedure
- Mask covering parts of the nose, mouth, and chin;
- Long hair partially covering the face or mask;
- Hand covering the face or mask;
- Different head rotations with respect to the robot (looking down, up, or to the sides);
- Different mask colors and shapes;
- Mask covering the forehead;
- No mask worn;
- Different lighting conditions (dim to bright lighting).
6.3. Results
6.4. Comparison of Single-Step and Two-Step Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAjw_L6LBhBb%2520EiwA4c46umlkirJ1KOaEq4v4SAUw8blELjV2hpge91FIa33ZFPae7WaxShqzBoCOmQQAvD_B%2520wE (accessed on 6 April 2022).
- Savela, N.; Latikka, R.; Oksa, R.; Kortelainen, S.; Oksanen, A. Affective Attitudes Toward Robots at Work: A Population-Wide Four-Wave Survey Study. Int. J. Soc. Robot. 2022, 14, 1379–1395. [Google Scholar] [CrossRef] [PubMed]
- (Sam) Kim, S.; Kim, J.; Badu-Baiden, F.; Giroux, M.; Choi, Y. Preference for robot service or human service in hotels? Impacts of the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 93, 102795. [Google Scholar]
- Sathyamoorthy, A.J.; Patel, U.; Paul, M.; Savle, Y.; Manocha, D. COVID surveillance robot: Monitoring social distancing constraints in indoor scenarios. PLoS ONE 2021, 16, e0259713. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.H.; Steinnes, O.M.H.; Gustafsson, E.G.; Hameed, I.A. Multi-agent robot system to monitor and enforce physical distancing constraints in large areas to combat COVID-19 and future pandemics. Appl. Sci. 2021, 11, 7200. [Google Scholar] [CrossRef]
- Turja, T.; Taipale, S.; Niemelä, M.; Oinas, T. Positive Turn in Elder-Care Workers’ Views Toward Telecare Robots. Int. J. Soc. Robot. 2022, 14, 931–944. [Google Scholar] [CrossRef]
- Getson, C.; Nejat, G. The adoption of socially assistive robots for long-term care: During COVID-19 and in a post-pandemic society. Healthc. Manag. Forum 2022, 35, 301–309. [Google Scholar] [CrossRef]
- Augello, A.; Città, G.; Gentile, M.; Lieto, A. A Storytelling Robot Managing Persuasive and Ethical Stances via ACT-R: An Exploratory Study. Int. J. Soc. Robot. 2021, 15, 2115–2131. [Google Scholar] [CrossRef]
- World Health Organization. Advice for the Public on COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 16 October 2021).
- Ueki, H.; Furusawa, Y.; Iwatsuki-Horimoto, K.; Imai, M.; Kabata, H.; Nishimura, H.; Kawaoka, Y. Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. mSphere 2020, 5, e00637-20. [Google Scholar] [CrossRef]
- Brooks, J.T.; Butler, J.C. Effectiveness ofMaskWearing toControl Community Spread ofSARS-CoV-2. Ann. Intern. Med. 2021, 174, 335–343. [Google Scholar]
- Centers for Disease Control and Prevention. Masks and Respirators. Available online: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/types-of-masks.html (accessed on 1 August 2022).
- YouTube. Hikvision Mask Detection Solution. Available online: https://www.youtube.com/watch?v=FagQhPkrrws (accessed on 6 April 2022).
- TRISTATE LOW VOLTAGE SUPPLY. Covid-19 Tablet Face, Mask, and Temperature Detection. Available online: https://tristatetelecom.com/productdetailI2.aspx?dataid=NEXUS (accessed on 6 April 2022).
- Snyder, S.E.; Husari, G. Thor: A deep learning approach for face mask detection to prevent the COVID-19 pandemic. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021. [Google Scholar]
- Li, Y.; Yan, J.; Hu, B. Mask Detection Based on Efficient-YOLO. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 4056–4061. [Google Scholar]
- Sierra M, S.D.; Sergio, D.; Insuasty, M.; Daniel, D.E.; Munera, M.; Cifuentes, C.A. Improving Health and Safety Promotion with a Robotic Tool: A Case Study for Face Mask Detection. In Proceedings of the Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, Stockholm, Sweden, 13–16 March 2023; pp. 716–719. [Google Scholar]
- SoftBank Robotics. New Feature: Pepper Mask Detection. Available online: https://www.softbankrobotics.com/emea/en/blog/news-trends/new-feature-pepper-mask-detection (accessed on 6 April 2022).
- SMP Robotics-Autonomous Mobile Robot. Face Mask Detection Robot with a Voice Warning of a Fine for Not Wearing It in the Public Area. Available online: https://smprobotics.com/usa/face-mask-detection-robot/ (accessed on 6 April 2022).
- Vibhandik, H.; Kale, S.; Shende, S.; Goudar, M. Medical Assistance Robot with capabilities of Mask Detection with Automatic Sanitization and Social Distancing Detection/Awareness. In Proceedings of the 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 340–347. [Google Scholar]
- Putro, M.D.; Nguyen, D.L.; Jo, K.H. Real-Time Multi-View Face Mask Detector on Edge Device for Supporting Service Robots in the COVID-19 Pandemic; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 12672. [Google Scholar]
- Li, C.; Wang, R.; Li, J.; Fei, L. Face Detection Based on YOLOv3; AISC; Springer: Singapore, 2020; Volume 1031. [Google Scholar]
- Bosheng, Q.; Li, D. Identifying Facemask-Wearing Condition Using Image Super-Resolution with Classification Network. Sensors 2020, 20, 5236. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection. Sustain. Cities Soc. 2021, 65, 102600. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sreenivasu, S.V.N.; Chouhan, K.; Shrivastava, A.; Sahu, B.; Manohar Potdar, R. Novel Face Mask Detection Technique using Machine Learning to control COVID’19 pandemic. Mater. Today Proc. 2023, 80, 3714–3718. [Google Scholar] [CrossRef] [PubMed]
- Boulila, W.; Alzahem, A.; Almoudi, A.; Afifi, M.; Alturki, I.; Driss, M. A Deep Learning-based Approach for Real-time Facemask Detection. In Proceedings of the 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; pp. 1478–1481. [Google Scholar]
- Teboulbi, S.; Messaoud, S.; Hajjaji, M.A.; Mtibaa, A. Real-Time Implementation of AI-Based Face Mask Detection and Social Distancing Measuring System for COVID-19 Prevention. Sci. Program. 2021, 2021, 8340779. [Google Scholar] [CrossRef]
- Walia, I.S.; Kumar, D.; Sharma, K.; Hemanth, J.D.; Popescu, D.E. An integrated approach for monitoring social distancing and face mask detection using stacked Resnet-50 and YOLOv5. Electronics 2021, 10, 2996. [Google Scholar] [CrossRef]
- Sethi, S.; Kathuria, M.; Kaushik, T. Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread. J. Biomed. Inform. 2021, 120, 103848. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, N.; Sobotka, M. Mask Detection and Classification in Thermal Face Images. IEEE Access 2023, 11, 43349–43359. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, M. RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control of the COVID-19 Pandemic. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 832–837. [Google Scholar]
- Canada. P. H. A. of Canada: Government of Canada. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/covid-19-mask-fit-properly.html (accessed on 6 April 2022).
- Nieto-Rodriguez, A.; Mucientes, M.; Brea, V.M. System for medical mask detection in the Operating Room Through Facial Attributes. In Pattern Recognition and Image Analysis, Proceedings of the 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, 17–19 June 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9117, pp. 138–145. [Google Scholar]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Eccv2008. 2008. Available online: https://inria.hal.science/inria-00321923/document (accessed on 1 September 2022).
- Rowley, H.A.; Member, S.; Baluja, S.; Kanade, T. Neural Network-Based Face Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 23–38. [Google Scholar] [CrossRef]
- Frischholz, R. Bao Face Database at the Face Detection Homepage. 2012. Available online: https://facedetection.com/ (accessed on 1 August 2022).
- Ejaz, M.S.; Islam, M.R.; Sifatullah, M.; Sarker, A. Implementation of Principal Component Analysis on Masked and Non-masked Face Recognition. In Proceedings of the 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; Volume 2019, pp. 1–5. [Google Scholar]
- ORL (Our Database of Faces). Available online: https://paperswithcode.com/dataset/orl (accessed on 2 January 2022).
- Ge, S.; Li, J.; Ye, Q.; Luo, Z. Detecting masked faces in the wild with LLE-CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 426–434. [Google Scholar]
- Putro, M.D.; Jo, K.H. Fast Face-CPU: A Real-time Fast Face Detector on CPU Using Deep Learning. In Proceedings of the 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 55–60. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A face detection benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 5525–5533. [Google Scholar]
- Wang, Z.; Huang, B.; Wang, G.; Yi, P.; Jiang, K. Masked Face Recognition Dataset and Application. IEEE Trans. Biom. Behav. Identity Sci. 2023, 5, 298–304. [Google Scholar] [CrossRef]
- Jain, V.; Learned-Miller, E. Fddb: A Benchmark for Face Detection in Unconstrained Settings; UMass Amherst Technical Report; University of Massachusetts: Amherst, MA, USA, 2010. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Meas. J. Int. Meas. Confed. 2021, 167, 108288. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Medical Mask Dataset: Humans in the Loop. Available online: https://humansintheloop.org/resources/datasets/medical-mask-dataset/ (accessed on 18 February 2022).
- Larxel. Face Mask Detection Dataset. Available online: https://www.kaggle.com/datasets/andrewmvd/face-mask-detection (accessed on 2 January 2022).
- Cabani, A.; Hammoudi, K.; Benhabiles, H.; Melkemi, M. MaskedFace-Net—A dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health 2021, 19, 100144. [Google Scholar] [CrossRef] [PubMed]
- Face Mask Detection. Available online: https://www.kaggle.com/andrewmvd/face-mask-detection (accessed on 2 January 2022).
- Zereen, A.N.; Corraya, S.; Dailey, M.N.; Ekpanyapong, M. Two-Stage Facial Mask Detection Model for Indoor Environments; Springer: Singapore, 2021; Volume 1309. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Shrestha, H.; Megha, S.; Chakraborty, S.; Mazzara, M.; Kotorov, I. Face Mask Recognition Based on Two-Stage Detector; LNNS; Springer Nature: Cham, Switzerland, 2023; Volume 715. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. LNCS 8693-Microsoft COCO: Common Objects in Context. In Computer Vision–ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Custom Mask Community Dataset. Available online: https://github.com/prajnasb/observations (accessed on 2 January 2022).
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. Proc. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [Google Scholar] [CrossRef]
- Chiang, D. Detect Faces and Determine Whether People Are Wearing Mask. 2020. Available online: https://github.com/AIZOOTech/FaceMaskDetection (accessed on 1 September 2022).
- Aldebaran 2.0.6.8 Documentation. Pepper-2D Cameras-Aldebaran 2.0.6.8 Documentation. Available online: http://doc.aldebaran.com/2-0/family/juliette_technical/video_juliette.html#d-camera-juliette (accessed on 18 April 2022).
- Lienhart, R.; Maydt, J. An extended set of Haar-like features for rapid object detection. IEEE Int. Conf. Image Process. 2002, 1, 900–903. [Google Scholar]
- Srinivas, M.; Bharath, R.; Rajalakshmi, P.; Mohan, C.K. Multi-level classification: A generic classification method for medical datasets. In Proceedings of the 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 262–267. [Google Scholar]
- Lohia, A.; Kadam, K.D.; Joshi, R.R.; Bongale, A.M. Bibliometric Analysis of One-stage and Two-stage Object Detection. Libr. Philos. Pract. 2021, 2021, 1–33. [Google Scholar]
- Deng, Z.; Cao, M.; Rai, L.; Gao, W. A two-stage classification method for borehole-wall images with support vector machine. PLoS ONE 2018, 13, e0199749. [Google Scholar] [CrossRef]
- Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1717–1724. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Hinton, G.; Osindero, S.; Yee-Whye, T. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 1554, 1527–1554. [Google Scholar] [CrossRef]
- Zhang, Z.; Sabuncu, M.R. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 8778–8788. [Google Scholar]
- SoftBank Robotics-Group. Downloads Softwares: Softbank Robotics. Available online: https://www.softbankrobotics.com/emea/en/support/pepper-naoqi-2-9/downloads-softwares (accessed on 13 March 2022).
- NAOqi APIs-Aldebaran 2.4.3.28-r2 Documentation. Aldebaran Documentation What’s New in Naoqi 2.4.3? Available online: http://doc.aldebaran.com/2-4/naoqi/index.html (accessed on 13 March 2022).
- ALVideoDevice-Aldebaran 2.1.4.13 Documentation. Aldebaran Documentation. Available online: http://doc.aldebaran.com/2-1/naoqi/vision/alvideodevice.html (accessed on 13 March 2022).
- Image Module-Pillow (PIL Fork) 9.0.1 Documentation. Image Module. Available online: https://pillow.readthedocs.io/en/stable/reference/Image.html (accessed on 13 March 2022).
Layers | Output Shape | Parameter Count |
---|---|---|
ResNet-50 | (None, 2048) | 23,587,712 |
Flatten_1 | (None, 2048) | 0 |
Dense_2 | (None, 512) | 1,049,088 |
Dropout_1 | (None, 512) | 0 |
Dense_3 | (None, 2) | 1026 |
Total parameters: 24,637,826 | ||
Trainable parameters:1,050,114 | ||
Trainable parameters:1,050,114 | ||
Non-trainable parameters: 23,587,712 |
Method | Classifier 1 | Classifier 2 |
---|---|---|
ResNet-50 | 95.31% | 85.26% |
Extended ResNet-50 | 97.66% | 95.79% |
Classifier 1 | Classifier 2 | |
---|---|---|
Accuracy | 91.27% | 86.27% |
Precision | 95.05% | 75.47% |
Recall | 94.12% | 97.56% |
F1 score | 94.58% | 85.11% |
Single Extended ResNet50 Classifier | Our Two-Step Extended ResNet50 Method (Classifier 1 and 2) | SRCNet | |
---|---|---|---|
Accuracy | 77.78% | 84.13% | 65.87% |
Precision | 76.32% | 82.23% | 65.95% |
Recall | 74.58% | 83.96% | 64.44% |
F1 score | 75.27% | 82.75% | 64.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Effati, M.; Tan, A.H.; Nejat, G. Robust Face Mask Detection by a Socially Assistive Robot Using Deep Learning. Computers 2024, 13, 7. https://doi.org/10.3390/computers13010007
Zhang Y, Effati M, Tan AH, Nejat G. Robust Face Mask Detection by a Socially Assistive Robot Using Deep Learning. Computers. 2024; 13(1):7. https://doi.org/10.3390/computers13010007
Chicago/Turabian StyleZhang, Yuan, Meysam Effati, Aaron Hao Tan, and Goldie Nejat. 2024. "Robust Face Mask Detection by a Socially Assistive Robot Using Deep Learning" Computers 13, no. 1: 7. https://doi.org/10.3390/computers13010007
APA StyleZhang, Y., Effati, M., Tan, A. H., & Nejat, G. (2024). Robust Face Mask Detection by a Socially Assistive Robot Using Deep Learning. Computers, 13(1), 7. https://doi.org/10.3390/computers13010007