Development of a Children’s Educational Dictionary for a Low-Resource Language Using AI Tools
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- -
- The generation of reference words is a significant step that allows getting the basic important words on which the successive generated phrases and sentences rely. The ChatGPT model is effectively employed in this step to generate a comprehensive list of reference words, and the basic initial words serve as a dictionary’s foundation and are selected based on the relevance and frequency of their use by children. The variety of reference words is defined by adding support parameters highlighting the necessity of including five nouns, adjectives, verbs, and adverbs in the list of reference words. In addition, after all phrases and sentences are generated, their meaningfulness and adequacy are checked and verified by specially qualified linguists and educators.
- -
- The obtained reference words are then utilized to generate phrases and sentences that form the children’s dictionary. These phrases and sentences are formed in English; translating them into Kazakh using a high-quality translation system is also essential. Here, the Google Translate system is used.
- -
- When the phrases and sentences are translated into Kazakh, the filtering phase takes place. In this phase, all phrases and sentences go through morphological analysis to ensure their grammatical correctness. They are split into bigrams [46] and trigrams [47] that present very simplified forms of words. Bigrams present a sequence of two consecutive words in the text. For example, there is a sentence “Natural language processing is interesting”. The bigrams of this sentence will be [(“Natural”, “language”), (“language”, “processing”), (“processing”, “is”), (“is”, “interesting”)]. At the same time, trigrams include a sequence of three consecutive words. The trigrams of the sentence will be [(“Natural”, “language”, “processing”), (“language”, “processing”, “is”), (“processing”, “is”, “interesting”)]. The use of bigrams and trigrams helps in text analysis and pattern recognition in natural language processing. Then, specially prepared templates are utilized to filter the content and align it with educational standards. This step proves that the generated phrases are age-appropriate and favorable to learning.
3.1. The Generation of Reference Words for the Children’s Corpus Using ChatGPT
- Animals: Hippopotamus, Eagle, Wolf, Goose, Giraffe, Hare, Goat, Cow, Cat, Swan, Lion, Fox, Bear, Mouse, Sheep, Deer, Rooster, Python, Parrot, Elephant, Dog, Tiger.
- Garden: Banana, Carrot, Cherry, Apple, Potato, Flower, Tree, Pear, Watermelon, Cucumber, Berry, Tomato, Garden, Fruit, Apricot, Pepper, Lemon, Beet, Vegetable, Pumpkin.
- Toys: Dolls, Cars, Toy trains, Toy helicopters, Stuffed animals, Robots, Lego, Puzzles, Building blocks, Ninja turtles.
3.2. The Generation of Phrases and Sentences for the Children’s Dictionary
3.3. The Morphological Analysis of Generated Phrases and Sentences for the Children’s Dictionary
- The structure of children’s speech;
- Complexity;
- Problematic sounds of Kazakh speech in children (for example, р/л[ r/l], ш/с [sh/s], ө/ү [o/u], etc.).
- Example of a bigram: (Мысықтар балық [cats fish]) (балық пен [fish and]) (пен тауық [and chicken]) (тауық сияқты [such as chicken]) (сияқты ет [such as meat]) (ет жейді [eat meat]).
- Example of a trigram: (Мысықтар балық пен [cats fish and]) (балық пен тауық [fish and chicken]) (пен тауық сияқты [and such as chicken]) (тауық сияқты ет [meat such as chicken) (сияқты ет жейді [eat meat such as]).
- балық<n> пен<cnjcoo> тауық<n> [fish<n> and<cnjcoo> chicken<n>]
- ет<n> жейді<v> [meat<n> eatі<v>]
- Балық пен тауық [fish and chicken]
- Ет жейді [eat meat]
4. Practical Results—Evaluation of the Content of the Developed Dictionary
- Cosine similarity is a measure that calculates the angle between vectors in space, determining their similarity based on the cosine of the angle between them. This measure is calculated using Formula (6):
- Euclidean distance represents the direct distance between two points in space, defined as the square root of the sum of the squares of the differences in the coordinates of the points. It is calculated using Formula (7):
- Research the context: Before creating a wordlist, it is important to understand the context in which the words will be used. This will help avoid misunderstandings and improve the accuracy of the translation.
- Work with native speakers: Collaborating with native Kazakh speakers or experienced translators will help you better understand the cultural and linguistic nuances, which will help avoid inaccuracies.
- Testing and feedback: Once the list is created, it is important to test it with the target audience and collect feedback. This will help identify potential errors and improve the quality of the content.
Analysis of Dataset Completeness
- -
- Word frequency analysis;
- -
- Sentence length analysis;
- -
- Average word length analysis;
- -
- Others.
- (1)
- Determine the number of characters in each sentence;
- (2)
- Determine the number of words in a sentence;
- (3)
- Determine the average word length.
5. The Development of the Audio and Visualization Module for Delivering the Dictionary’s Content
- Generation of images according to the algorithm of the developed children’s thematic dictionary;
- Implementation of text to speech.
- Iseke: The voice has a guttural and rough sound, not suitable for our task.
- Rayya: Playback is very fast, likely due to the audio data; this issue occurs with any text, making it unsuitable for our task.
- Asel: There is a slight echo, and errors occur with several text-to-speech attempts. The voice is soft but not suitable for our task.
- Duman: The sound is muted, the voice timbre is appropriate, and the playback speed is moderate, making it suitable for our task.
- Gulzhanat: The playback speed is moderate, no errors occur with multiple text-to-speech attempts, and the voice is soft, making it suitable for our task.
- GPU: GeForce GTX 1070;
- CUDA: CUDA Toolkit 11.8;
- Torch: PyTorch Stable (2.3.0).
6. Discussion
- Improved navigation by adding a navigation menu and shortcut buttons to the application’s main functions;
- Improving the interface by increasing the size and contrast of elements and optimizing the layout of information on the screen.
7. Limitations and Future Directions
- The plans to expand the thematic coverage of the dictionary will include:
- -
- Research interests and needs: Conducting surveys among children, parents, and teachers to identify the most relevant topics for expansion.
- -
- Regular content updating: Creating a mechanism for regularly updating and adding new topics depending on cultural and educational changes in preschool programs and society.
- The plans to implement additional multimedia functions and interactive elements will include:
- -
- Animated explanations and video lessons: Implementing animated content simplifies complex concepts and creates engaging learning.
- -
- Interactive games and quizzes: Enriching the learning process through game mechanics that motivate children to participate actively.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
animals | ‘Бегемoт’: [‘бегемoт баяу’, ‘күшті бегемoт’, ‘жасыл өсімдіктерді жейді’], ‘Бүркіт’: [‘жылдам аңшы’, ‘күшті тырнақтары бар’, ‘биікке ұшады’], ‘Қасқыр’: [‘қасқыр ырылдайды’, ‘қасқыр жабайы’, ‘жабайы жыртқыш’], ‘Қаз’: [‘балапандары сап түзейді’, ‘дауыстап қoныс аударады’, ‘суда жүзеді’], ‘Жираф’: [‘жирафтар табыны’, ‘мoйны ұзын’, ‘дақтары бар жираф’], ‘Қoян’: [‘қoян секіреді’, ‘тез жүгіреді’, ‘ақ қoян’], ‘Ешкі’: [‘кішкентай қoзы’, ‘ешкінің сүті’, ‘мүйізді ешкі’], ‘Сиыр’: [‘сиыр бұзауы’, ‘ірі қара сиыр’, ‘сиырдың сүті’], ‘мысық’: [‘сары мысық’, ‘үй жануары’, ‘ұйықтағанды жақсы көреді’], ‘Аққу’: [‘ақ аққу’, ‘аққу көлде’, ‘суда сырғиды’], ‘арыстан’: [‘аң патшасы’, ‘джунглидің патшасы’, ‘жыртқыш аң’], ‘Түлкі’: [‘қу түлкі’, ‘жыртқыш түлкі’, ‘тауық аулайды’], ‘Аю’: [‘гризли аю’, ‘ақ аю’, ‘қoңыр аю’], ‘Тышқан’: [‘кішкентай тышқан’, ‘тез жүгіреді’, ‘кеміруші жануар’], ‘Қoй’: [‘қoй oтары’, ‘шөп жейді’, ‘жайлауда жайылады’] | ‘Hippopotamus’: [‘slow hippopotamus’, ‘strong hippopotamus’, ‘eats green plants’], ‘Eagle’: [‘fast hunter’, ‘has strong talons’, ‘flies high’], ‘Wolf’: [‘wolf growls’, ‘wild wolf’, ‘wild predator’], ‘Goose’: [‘goslings march in line’, ‘migrates loudly’, ‘swims in water’], ‘Giraffe’: [‘giraffe herd’, ‘long neck’, ‘spotted giraffe’], ‘Rabbit’: [‘rabbit jumps’, ‘runs fast’, ‘white rabbit’], ‘Goat’: [‘small kid’, ‘goat’s milk’, ‘horned goat’], ‘Cow’: [‘cow calf’, ‘large cow’, ‘cow’s milk’], ‘Cat’: [‘yellow cat’, ‘pet’, ‘likes to sleep’], ‘Swan’: [‘white swan’, ‘swan on the lake’, ‘glides on water’], ‘Lion’: [‘king of the animals’, ‘king of the jungle’, ‘predator’], ‘Fox’: [‘cunning fox’, ‘predatory fox’, ‘hunts chickens’], ‘Bear’: [‘grizzly bear’, ‘polar bear’, ‘brown bear’], ‘Mouse’: [‘small mouse’, ‘runs fast’, ‘rodent’], ‘Sheep’: [‘sheep flock’, ‘eats grass’, ‘grazes in the pasture’] |
garden | ‘Банан’: [‘жұмсақ банан’, ‘сары банан’, ‘трoпикалық жеміс’], ‘Сәбіз’: [‘сары сәбіз’, ‘сәбіз көкөніс’, ‘қoян жейді’], ‘Шие’: [‘шие ағашы’, ‘шырынды шие’, ‘қызы шие’], ‘Алма’: [‘жасыл алма’, ‘қызыл алма’, ‘алма ағашы’], ‘Ағаш’: [‘емен ағашы’, ‘жасыл жапырақ’, ‘қайын ағаш’], ‘Алмұрт’: [‘сары алмұрт’, ‘жасыл алмұрт’, ‘піскен алмұрт’], ‘Қарбыз’: [‘дөңгелек қарбыз’, ‘шырынды қарбыз’], ‘Қияр’: [‘қытырлақ қияр’, ‘жасыл қияр’, ‘маринадталған қияр’], ‘Жидек’: [‘шырынды жидек’, ‘қызыл құлпынвй’, ‘қыщқыл жидек’], ‘Қызанақ’: [‘қызыл қызанақ’, ‘дөңгелек көкөніс’, ‘қызанақ пен қияр’], ‘Бақша’: [‘шырынды жемістер’, ‘жасыл бақ’, ‘гүлдерге тoлы’], ‘Жеміс’: [‘трoпикалық жеміс’, ‘цитрус жемістері’], ‘Өрік’: [‘қара өрік’, ‘өрік джемі’, ‘тәтті өрік’], ‘Бұрыш’: [‘жасыл бұрыш’, ‘қызыл бұрыш’, ‘қара бұрыш’], ‘Лимoн’: [‘цитрус жемісі’, ‘лимoн шырыны’, ‘қышқыл лимoн’], ‘Қызылша’: [‘күлгін қызылша’, ‘піскен қызылша’, ‘қант қызылшасы’], ‘Көкөніс’: [‘бақша көкөністері’, ‘дәмді көкөністер’, ‘жасыл өсімдік’], ‘Асқабақ’: [‘асқабақ пирoгы’, ‘қызғылт сары асқабақ’, ‘асқабақ тұқымы’] | ‘Banana’: [‘soft banana’, ‘yellow banana’, ‘tropical fruit’], ‘Carrot’: [‘yellow carrot’, ‘carrot vegetable’, ‘rabbit eats’], ‘Cherry’: [‘cherry tree’, ‘juicy cherry’, ‘red cherry’], ‘Apple’: [‘green apple’, ‘red apple’, ‘apple tree’], ‘Tree’: [‘oak tree’, ‘green leaf’, ‘birch tree’], ‘Pear’: [‘yellow pear’, ‘green pear’, ‘ripe pear’], ‘Watermelon’: [‘round watermelon’, ‘juicy watermelon’], ‘Cucumber’: [‘crispy cucumber’, ‘green cucumber’, ‘pickled cucumber’], ‘Berry’: [‘juicy berry’, ‘red strawberry’, ‘sour berry’], ‘Tomato’: [‘red tomato’, ‘round vegetable’, ‘tomato and cucumber’], ‘Garden’: [‘juicy fruits’, ‘green garden’, ‘full of flowers’], ‘Fruit’: [‘tropical fruit’, ‘citrus fruits’], ‘Apricot’: [‘black apricot’, ‘apricot jam’, ‘sweet apricot’], ‘Pepper’: [‘green pepper’, ‘red pepper’, ‘black pepper’], ‘Lemon’: [‘citrus fruit’, ‘lemon juice’, ‘sour lemon’], ‘Beetroot’: [‘purple beetroot’, ‘ripe beetroot’, ‘sugar beet’], ‘Vegetable’: [‘garden vegetables’, ‘tasty vegetables’, ‘green plant’], ‘Pumpkin’: [‘pumpkin pie’, ‘orange pumpkin’, ‘pumpkin seeds’] |
toys | Қуыршақ: [‘әдемі қуыршақ’, ‘тірі қуыршақ’, ‘барби қуыршақ үйі’, ‘миниатюралық манекен’, ‘сүйкімді қуыршақ’, ‘әдемі жасалған қуыршақ’, ‘қуыршақ үйі’] Көлік: [‘ашық қызыл’, ‘oйыншық машина’, ‘жарыс вагoны’, ‘кішкентай көк көлік’, ‘oйыншық автoмoбиль’, ‘жoлда жарысады’, ‘сары жүк көлік’, ‘шағын мoтoцикл’, ‘пластмассадан жасалған арба’, ‘oйыншық гараж’, ‘миниатюралық лимузин’, ‘жасыл джип’, ‘фургoндарды oйнау’, ‘әдемі oйыншық машина’, ‘жылдам oйыншық автoмoбиль’, ‘oйыншық автoмoбиль’] Пoйыз: ‘түрлі-түсті oйыншық пoйыз’, ‘теміржoл жoлы’, ‘лoкoмoтив қoзғалтқышы’, ‘түрлі-түсті теміржoл’, ‘oқу oйыншық пoйыз’ тікұшақ: [‘Кішкентай пластик oйыншық’, ‘тікұшақ ұшады’, ‘түрлі-түсті миниатюралық oйыншық’, ‘жылдам ұшады’, ‘ашық ауада ұшады’, ‘тікұшақтарды басқаруды жақсы көреді’, ‘oйнағанды жақсы көреді’] oйыншық жануарлар: [құшақтауға арналған, жұмсақ түкті серіктер, сүйкімді тұлыптар, ерке аю, икемді күшіктер, үлпілдек қoян oйыншық, сүйкімді мысық, сүйкімді қуыршақ] Рoбoттар: [‘пластиктен жасалған’, ‘кішкентай қызыл рoбoт’, ‘рoбoт oйыншық’, ‘электрoнды автoмат’, ‘көк рoбoтты машина’, ‘кішкентай рoбoттар’, ‘рoбoтты oйыншықтар’, ‘көңілді рoбoт oйыншық’, ‘қызыл автoмат’] Легo: [түрлі-түсті пластик, oйыншық кірпіштері, легo кoнструкциясы, пластикалық бөлшек, oйнап жoбалайды, oйнап құрастырады, түрлі-түсті мoдульдік легo, құрылыс жинағы] Ниндзя тасбақалары: [‘ниндзя тасбақа’, ‘зұлым адамдармен күреседі’, ‘ниндзя қаруымен шайқасады’, ‘мутант тасбақа’, ‘батыл ниндзя жауынгер’] | Doll: [‘beautiful doll’, ‘living doll’, ‘Barbie dollhouse’, ‘miniature mannequin’, ‘cute doll’, ‘well-made doll’, ‘dollhouse’] Vehicle: [‘bright red’, ‘toy car’, ‘racing wagon’, ‘small blue car’, ‘toy automobile’, ‘races on the road’, ‘yellow truck’, ‘small motorcycle’, ‘plastic cart’, ‘toy garage’, ‘miniature limousine’, ‘green jeep’, ‘playing with vans’, ‘beautiful toy car’, ‘fast toy automobile’, ‘toy automobile’] Train: [‘colorful toy train’, ‘railroad track’, ‘locomotive engine’, ‘colorful railway’, ‘educational toy train’] Helicopter: [‘small plastic toy’, ‘helicopter flies’, ‘colorful miniature toy’, ‘flies fast’, ‘flies outdoors’, ‘loves controlling helicopters’, ‘loves playing’] Toy animals: [‘for hugging’, ‘soft furry companions’, ‘cute plush toys’, ‘playful bear’, ‘flexible puppies’, ‘fluffy bunny toy’, ‘cute cat’, ‘cute doll’] Robots: [‘made of plastic’, ‘small red robot’, ‘robot toy’, ‘electronic automaton’, ‘blue robot machine’, ‘small robots’, ‘robot toys’, ‘fun robot toy’, ‘red automaton’] Lego: [‘colorful plastic’, ‘toy bricks’, ‘Lego construction’, ‘plastic piece’, ‘plays and designs’, ‘plays and builds’, ‘colorful modular Lego’, ‘construction kit’] Ninja Turtles: [‘ninja turtle’, ‘fights evil people’, ‘battles with ninja weapons’, ‘mutant turtle’, ‘brave ninja warrior’] |
Abbreviation | Full Term |
---|---|
AI | Artificial Intelligence |
TTS | Text to Speech |
IRN | International Research Number |
AP | Advanced Placement |
NLP | Natural Language Processing |
Kazakh TTS | Kazakh Text to Speech |
SNR | Signal-to-Noise Ratio |
ISSAI | Institute of Information Systems and Artificial Intelligence |
POS | Part of Speech |
BERT | Bidirectional Encoder Representations from Transformers |
SUS | System Usability Scale |
DALL-E | A deep learning model developed by OpenAI to generate images from textual descriptions |
ChatGPT | Chat Generative Pre-trained Transformer |
MATEC | International Conference on Materials and Technology |
Column Name | Drop-Down List Options |
---|---|
User ID | Predefined list of user IDs |
Age Group | Dropdown with age ranges (e.g., 3–4, 4–5, etc.) |
Rating (1–5) | Dropdown with numerical ratings from 1 to 5 |
Comments | Text field for user comments |
Date of Evaluation | Date picker |
References
- Brodin, J.; Hollerer, L.; Renblad, K.; Stancheva-Popkostadinova, V. Preschool teachers’ understanding of quality in preschool: A comparative study in three European countries. Early Child Dev. Care 2015, 185, 968–981. [Google Scholar] [CrossRef]
- Ziolkowski, R.; Goldstein, H. Effects of an Embedded Phonological Awareness Intervention During Repeated Book Reading on Preschool Children with Language Delays. J. Early Interv. 2008, 31, 67–90. [Google Scholar] [CrossRef]
- Grabmeier, J. Preschoolers’ Reading Skills Benefit from One Modest Change by Teachers. Educ. Dig. Essent. Read. Condens. Quick Rev. 2012, 78, 63–64. [Google Scholar]
- Lennox, S. Interactive Read-Alouds—An Avenue for Enhancing Children’s Language for Thinking and Understanding: A Review of Recent Research. Early Child. Educ. J. 2013, 41, 381–389. [Google Scholar] [CrossRef]
- Wilson, P. Why Invest in the Pre-School Years? In Thinking Ahead. Why We Need to Improve Children’s Mental Health and Wellbeing; Jolley, R., Ed.; Faculty of Public Health (FPH): London, UK, 2011; pp. 1–9. [Google Scholar]
- Hargrave, A.C.; Sénéchal, M. A Book Reading Intervention with Preschool Children Who Have Limited Vocabularies: The Benefits of Regular Reading and Dialogic Reading. Early Child. Res. Q. 2000, 15, 75–90. [Google Scholar] [CrossRef]
- Skolverket. Läroplan för Förskolan Lpfö 98, Ny rev. ed.; Skolverket: Stockholm, Sweden, 2010. [Google Scholar]
- 8. Ministry of Education and Science of the Republic of Kazakhstan, National Scientific and Practical Center of Correctional Pedagogy, Laboratory of Special Education for Children with Special Educational Needs. Analysis of the Study of the Problem of Forming the Native Language System during the Speech Ontogenesis of Children of Early and Preschool Age (Analytical reference). 2019, p. 24. Available online: https://special-edu.kz/analitspr/Анал.справка%20казлаб.pdf (accessed on 28 March 2024).
- Verburg, M. The Making of My First Van Dale: A Preschool Dictionary. In Proceedings of the Euralex Conference, Torino, Italy, 6–9 September 2006; pp. 357–362. [Google Scholar]
- Nkomo, D. An African User-Perspective on English Children’s and School Dictionaries. Int. J. Lexicogr. 2016, 29, 31–54. [Google Scholar] [CrossRef]
- Bekmanova, G.; Sharipbay, A.; Kabdylova, D.; Amangeldy, N.; Sairanbekova, A.; Omarbekova, A.; Zulkhazhav, A. Development of an electronic dictionary of terminology for school textbooks. J. Electr. Syst. 2024, 20–24s, 904–911. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, H. Improving the Compilation of English–Chinese Children’s Dictionaries: A Children’s Cognitive Perspective. Lexikos 2022, 32, 49–65. [Google Scholar] [CrossRef]
- Liu, X.; Lyu, J.; Zheng, D. For a Better Dictionary: Revisiting Ecolexicography as a New Paradigm. Lexikos 2021, 3, 182–207. [Google Scholar] [CrossRef]
- Li, Q.; Russell, M. An Analysis of the Causes of Increased Error Rates in Children’s Speech Recognition. In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP 2002), Denver, CO, USA, 16–20 September 2002; pp. 366–369. [Google Scholar]
- Callaghan, T.; Reich, S. Tools for evaluating educational apps for young children: A systematic review of the literature. Interact. Technol. Smart Educ. 2018, 18, 18–49. [Google Scholar]
- Hirsh-Pasek, K.; Zosh, J.M.; Golinkoff, R.M.; Gray, J.H.; Robb, M.B.; Kaufman, J. Putting Education in “Educational” Apps: Lessons from the Science of Learning. Psychol. Sci. Public Interest 2015, 16, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Kolak, J.; Norgate, S.H.; Monaghan, P.; Taylor, G. Developing Evaluation Tools for Assessing the Educational Potential of Apps for Preschool Children in the UK. J. Child. Media 2021, 15, 410–430. [Google Scholar] [CrossRef]
- Rideout, V.; Robb, M.B. The Common Sense Census: Media Use by Kids Age Zero to Eight, 2020: Common Sense Media. Common Sense Media: Ratings, Reviews, and Advice, 17 November 2020. Available online: https://www.commonsensemedia.org (accessed on 28 April 2024).
- Kervin, L. Powerful and Playful Literacy Learning with Digital Technologies. Aust. J. Lang. Lit. 2016, 39, 64–73. [Google Scholar] [CrossRef]
- Arnold, A. A Randomized Controlled Trial of an Educational App to Improve Preschoolers’ Emergent Literacy Skills. J. Child. Media 2021, 15, 457–475. [Google Scholar] [CrossRef]
- Dore, R.A. Education in the App Store: Using a Mobile Game to Support U.S. Preschoolers’ Vocabulary Learning. J. Child. Media 2019, 13, 452–471. [Google Scholar] [CrossRef]
- Kirkorian, H.L.; Choi, K.; Pempek, T.A. Toddlers’ Word Learning from Contingent and Non-Contingent Video on Touchscreens. Child Dev. 2016, 87, 405–413. [Google Scholar] [CrossRef]
- Russo-Johnson, C. All Tapped Out: Touchscreen Interactivity and Young Children’s Word Learning. Front. Psychol. 2017, 8, 578. [Google Scholar] [CrossRef]
- Parmawati, L.; Ratminingsih, N.M.; Budasi, I.G. The Development of a Multilingual Thematic Digital Dictionary for Elementary School Students. E-Link J. 2022, 9, 60–75. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, H.; Lu, S. Context-Aware Learning for Sentence-Level Sentiment Analysis with Posterior Regularization. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; pp. 555–564. [Google Scholar]
- Why Does a Child’s Tongue Come Out Late? Speech Therapist Tips for Parents. Available online: https://informburo.kz/kaz/bala-tl-nege-kesh-shyady-logopedt-ata-analara-keester.html (accessed on 5 April 2024).
- Speech Retardation in a Child. Available online: https://daryn.online/article/2919# (accessed on 9 April 2024).
- Mamyrbayev, O.; Alimhan, K.; Oralbekova, D.; Bekarystankyzy, A.; Zhumazhanov, B. Identifying the Influence of Transfer Learning Method in Developing an End-to-End Automatic Speech Recognition System with a Low Data Level. East.-Eur. J. Enterp. Technol. 2022, 1, 84–92. [Google Scholar] [CrossRef]
- Mussakhojayeva, S.; Dauletbek, K.; Yeshpanov, R.; Varol, H.A. Multilingual Speech Recognition for Turkic Languages. Information 2023, 14, 74. [Google Scholar] [CrossRef]
- Rakhimova, D.; Matanov, N.; Rzagaziyeva, A. Development of a Dictionary for Preschool Children with Weak Speech Skills Based on the Word2Vec Method. In Proceedings of the ICCCI, Budapest, Hungary, 27–29 September 2023; pp. 191–202. [Google Scholar]
- Łukasik, M. Corpus Linguistics and Generative AI Tools in Term Extraction: A Case of Kashubian—A Low-Resource Language. Appl. Linguist. Pap. 2024, 39, 34–45. Available online: http://alp.uw.edu.pl/wp-content/uploads/sites/315/2024/02/5-ALP_Lukasik-Marek.pdf (accessed on 8 April 2024). [CrossRef]
- Ponnusamy, R. Tamil Text Generation using ChatGPT-3 Models. In Proceedings of the International Conference on Tamil Computing, Mangaluru, India, 13–14 October 2023; p. 30. [Google Scholar]
- Оranga, J. Benefits of Artificial Intelligence (ChatGPT) in Education and Learning: Is Chat GPT Helpful? Int. Rev. Pract. Innov. Technol. Green Energy (IRPITAGE) 2023, 3, 46–50. [Google Scholar]
- Pisarev, I.A. Methods for Automated Thesauri Development of Thematic Corpora in the Learning Process Support Systems. In Proceedings of the IEEE Conference on Soft Computing and Measurements, St. Petersburg, Russia, 25–27 May 2016; pp. 39–40. [Google Scholar]
- Yelibayeva, G.; Sharipbay, A.; Bekmanova, G.; Omarbekova, A. Ontology-Based Extraction of Kazakh Language Word Combinations in Natural Language Processing. In Proceedings of the International Conference on Data Science, E-learning and Information Systems 2021 (DATA’21), Petra, Jordan, 5–7 April 2021; pp. 60–75. [Google Scholar]
- Piaget, J. The Origins of Intelligence in Children; International Universities Press: New York, NY, USA, 1952. [Google Scholar]
- Vygotsky, L.S. Mind in Society: The Development of Higher Psychological Processes; Harvard University Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Verhallen, M.J.; Bus, A.G. Multimedia stories for kindergarten children: The effects of modality and narration style on comprehension and vocabulary acquisition. J. Educ. Psychol. 2010, 102, 652–660. [Google Scholar]
- Pane, J.F.; Griffin, B.A.; McCaffrey, D.F.; Karam, R. Effectiveness of Personalized Learning: Findings from a Study of Four Charter Schools; RAND Corporation: Santa Monica, CA, USA, 2017. [Google Scholar]
- Wood, S.G.; Moxley, J.H.; Tighe, E.L.; Wagner, R.K. Does use of text-to-speech and related read-aloud tools improve reading comprehension for students with reading disabilities? A meta-analysis. J. Learn. Disabil. 2005, 41, 75–84. [Google Scholar] [CrossRef]
- Sunder, P. The Effectiveness of Audio-Visual Aids in Teaching-Learning Process. Int. J. Creat. Res. Thoughts 2018, 6, 1509–1515. [Google Scholar]
- Sundqvist, A.; Barr, R.; Heimann, M.; Birberg-Thornberg, U.; Koch, F.-S. A longitudinal study of the relationship between children’s exposure to screen media and vocabulary development. Acta Paediatr. 2023, 113, 517–522. [Google Scholar] [CrossRef]
- Online Nation Report 2019 (OFCOM). Available online: https://www.gov.uk/find-digital-market-research/online-nation-report-2019-ofcom (accessed on 10 September 2024).
- Ronniger, P.; Rennecke, L.; Petermann, F.; Melzer, J. Differenzierungsfähigkeit des Sprachstandserhebungstest für Kinder im Alter zwischen 3 und 5 Jahren. Monatsschr Kinderheilkd 2022, 170, 422–429. [Google Scholar] [CrossRef]
- Jablonski, S. Inhibitory control and literacy development among 3- to 5-year-old children. L1-Educ. Stud. Lang. Lit. 2014, 14, 1–25. [Google Scholar] [CrossRef]
- Schebesta, A.; Kunter, G. Constituent durations in English NNN compounds: A case of strategic speaker behavior? J. Phon. 2022, 94, 101164. [Google Scholar] [CrossRef]
- Vania, C.; Lopez, A. From Characters to Words to in Between: Do We Capture Morphology? In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, BC, Canada, 30 July–4 August 2017; Association for Computational Linguistics: Vancouver, BC, Canada, 2017; pp. 2016–2027. [Google Scholar]
- Roseberry, S.; Hirsh-Pasek, K.; Golinkoff, R.M. Skype me! Socially contingent interactions help toddlers learn language. Child Dev. 2014, 85, 956–970. [Google Scholar] [CrossRef]
- Allen, L.; Kelly, B.B. Committee on the Science of Children Birth to Age 8: Deepening and Broadening the Foundation for Success; Board on Children, Youth, and Families; Institute of Medicine; National Research Council. Transforming the Workforce for Children Birth Through Age 8: A Unifying Foundation; National Academies Press (US): Washington, DC, USA, 2015. [Google Scholar] [PubMed]
- Septiyana, L.; Aneka, A.; Mandasari, B.; Ramadhan, F.S.S. Development of A Trilingual E-Dictionary for Early Childhood; Indonesia-English-Lampung. Tapis: J. Penelit. Ilm. 2023, 7, 160–172. Available online: https://e-journal.ejournal.metrouniv.ac.id/index.php/tapis/article/view/810 (accessed on 10 July 2024). [CrossRef]
- Apertium. Apertium-Kaz. Available online: https://github.com/apertium/apertium-kaz (accessed on 15 March 2024).
- Kessikbayeva, G.; Cicekli, I. Rule Based Morphological Analyzer of Kazakh Language. Linguist. Lit. Stud. 2014, 4, 46–54. [Google Scholar]
- Makhambetov, O.; Makazhanov, A.; Sabyrgaliyev, I.; Yessenbayev, Z. Data-Driven Morphological Analysis and Disambiguation for Kazakh. In Computational Linguistics and Intelligent Text Processing; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 1–13. [Google Scholar]
- Makhambetov, O.; Makazhanov, A.; Yessenbayev, Z.; Sabyrgaliyev, I. Towards a Data-driven Morphological Analysis of Kazakh Language. In Proceedings of the 2nd International Conference on Turkic Languages Processing, Rouen, France, 3–5 September 2014; pp. 69–74. [Google Scholar]
- Bekmanova, G.; Sharipbay, A.; Altenbek, G.; Adalı, E.; Zhetkenbay, L.; Kamanur, U.; Zulkhazhav, A. A Uniform Morphological Analyzer for the Kazakh and Turkish Languages. In Proceedings of the Sixth International Conference on Analysis of Images, Social Networks, and Texts (AIST 2017), Moscow, Russia, 27–29 July 2017; pp. 1–11. [Google Scholar]
- Assylbekov, Z.; Washington, J.; Tyers, F.; Nurkas, A.; Sundetova, A.; Karibayeva, A.; Abduali, B.; Amirova, D. A Free/Open-Source Hybrid Morphological Disambiguation Tool for Kazakh. In Proceedings of the TurCLing 2016, Turkey, Konya, 3–9 April 2016; pp. 18–26. [Google Scholar]
- Rakhimova, D.; Karibayeva, A.; Turarbek, A. The Task of Post-Editing Machine Translation for the Low-Resource Language. Appl. Sci. 2024, 14, 486. [Google Scholar] [CrossRef]
- Bekbulatov, E.; Kartbayev, A. A Study of Certain Morphological Structures of Kazakh and Their Impact on the Machine Translation Quality. In Proceedings of the 8th International Conference on Application of Information and Communication Technologies (AICT), Astana, Kazakhstan, 15–17 October 2014; pp. 1–5. [Google Scholar]
- Kalimoldayev, M.N.; Musabayev, R.R.; Mamyrbayev, O.J. The Algorithm of Morphological Analysis of the Kazakh Words. In Proceedings of the 10th International Conference, Hyogo, Japan, 27 December 2012; pp. 121–124. [Google Scholar]
- Toleu, A.; Tolegen, G.; Makazhanov, A. Character-Based Deep Learning Models for Token and Sentence Segmentation. In Proceedings of the 5th International Conference on Computer Processing of Turkic Languages (TurkLang 2017); Association for Computational Linguistics: Stroudsburg, PA, USA, 2017; pp. 67–71. [Google Scholar]
- Tukeyev, U. Automaton Models of the Morphology Analysis and the Completeness of the Endings of the Kazakh Language. In Proceedings of the International Conference “Turkic Languages Processing” TURKLANG-2015, Kazan, Russia, 17–19 September 2015; pp. 91–100. [Google Scholar]
- Tukeyev, U.; Sundetova, A.; Abduali, B.; Akhmadiyeva, Z.; Zhanbussunov, N. Inferring of the Morphological Chunk Transfer Rules on the Base of Complete Set of Kazakh Endings. In Proceedings of the Computational Collective Intelligence, ICCCI 2016, Lecture Notes in Computer Science, Halkidiki, Greece, 28–30 September 2016; Volume 9876, pp. 563–574. [Google Scholar]
- Tukeyev, U.; Karibayeva, A.; Abduali, B. Neural Machine Translation System for the Kazakh Language Based on Synthetic Corpora. In Proceedings of the MATEC Web of Conferences, Sibiu, Romania, 5–7 June 2019; pp. 1–6. [Google Scholar]
- Jothi, S.A.; Pandeeswari, N. Enriched Glove of Word Embedding and BERT of Contextual Embedding in Sarcasm Detection with AdaGrad Optimization Technique. In Proceedings of the 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 3–5 March 2023. [Google Scholar]
- McElroy, E.; Wood, T.; Bond, R.; Mulvenna, M.; Shevlin, M.; Ploubidis, G.B.; Hoffmann, M.S.; Moltrecht, B. Using natural language processing to facilitate the harmonisation of mental health questionnaires: A validation study using real-world data. BMC Psychiatry 2024, 24, 530. [Google Scholar] [CrossRef]
- Abrar Jahin, M.; Talapatra, S. A Natural Language Processing-Based Classification and Mode-Based Ranking of Musculoskeletal Disorder Risk Factors. Decis. Anal. J. 2024, 11, 100464. [Google Scholar] [CrossRef]
- Shirude, S.B.; Kolhe, S.R. Agent-Based Architecture for Developing Recommender System in Libraries. In Knowledge Computing and its Applications; Margret Anouncia, S., Wiil, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 157–181. [Google Scholar]
- Li, Y.; Song, H.; Xu, Y. Studies on Data Quality Evaluation Index System for Internet Plus Government Services in Big Data Era. Information 2020, 11, 123. [Google Scholar]
- Youdi, G.; Guangzhen, L.; Yunzhi, X.; Rui, L.; Lingzhong, M. A survey on dataset quality in machine learning. Inf. Softw. Technol. 2023, 162, 107268. [Google Scholar]
- Institute of Smart Systems and Artificial Intelligence. KazakhTTS. Available online: https://issai.nu.edu.kz/ru/tts2-rus/ (accessed on 10 July 2024).
- Narakeet. Kazakh Text-to-Speech. Available online: https://www.narakeet.com/languages/kazakh-text-to-speech/ (accessed on 10 July 2024).
- Microsoft Azure. Speech Service. Available online: https://learn.microsoft.com/en-us/azure/ai-services/speech-service/ (accessed on 10 July 2024).
- Balabekova, T.; Kairatuly, B.; Tukeyev, U. Kazakh-Uzbek Speech Cascade Machine Translation on Complete Set of Endings. Adv. Comput. Collect. Intell. 2023, 1864, 430–442. [Google Scholar]
- OpenAI. DALL-E 3. Available online: https://openai.com/dall-e-3/ (accessed on 10 July 2024).
- Midjourney. Home. Available online: https://www.midjourney.com/home (accessed on 10 July 2024).
- Stable Diffusion. Available online: https://stablediffusionweb.com/ (accessed on 10 July 2024).
- Adetayo, A.J. Reimagining Learning through AI Art: The Promise of DALL-E and MidJourney for Education and Libraries. Library Hi Tech News. 2024. Available online: https://www.emerald.com/insight/content/doi/10.1108/LHTN-01-2024-0005/full/html (accessed on 10 July 2024).
- Suniyasih, N.W.; Adnyani, L.D.S.; Marhaeni, A.A.I.N.; Suastra, I.M.; Putra, N.P.W. The Development of a Multilingual Thematic Picture Dictionary in Supporting the Literacy of Fifth Grade Elementary School Students. J. Pendidik. Bhs. Ingg. Undiksha 2020, 8, 29–39. [Google Scholar]
- Rohmatillah, R. A Study on Students’ Difficulties in Learning Vocabulary. Engl. Educ. J. Tadris Bah. Ing. 2014, 6, 75–93. [Google Scholar]
- Adnyani, N.K.P.; Ratminingsih, N.M.; Budasi, I.G. A Multilingual Thematic Picture Dictionary for Assisting Sixth Grade Elementary School Students’ Literacy. J. Pendidik. Bhs. Ingg. Undiksha 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Widhiastari, M.R.; Ratminingsih, N.M.; Budasi, I.G. The Effect of Digital Multilingual Thematic Dictionary Toward the Fifth Grade Students' Literacy Skill. Linguist. Engl. Educ. Art (LEEA) J. 2023, 6, 315–325. [Google Scholar] [CrossRef]
- Wulandari, P.D.M.; Tantra, D.K.; Santosa, M.H. Teacher’s Preparation of Lesson Plan and Constraints in English as a Foreign Language During the Pandemic Outbreak in the Junior High School. J. Pendidik. Bhs. Ingg. Undiksha 2021, 9, 43–50. [Google Scholar] [CrossRef]
- Anki. Wikipedia. Available online: https://ru.wikipedia.org/wiki/Anki (accessed on 10 July 2024).
- Duolingo. Available online: https://www.duolingo.com/ (accessed on 10 July 2024).
- Rosetta Stone. Learn Turkish. Available online: https://www.rosettastone.com/buy/learn-turkish/ (accessed on 10 July 2024).
- Babbel. Available online: https://uk.babbel.com/ (accessed on 10 July 2024).
- Qonzhyq App. Mobile Application. Available online: https://play.google.com/store/apps/details?id=com.mariomobile&hl=en_US (accessed on 10 July 2024).
- Сауат ашу: сөйлейтін әліппе. Mobile Application. Available online: https://play.google.com/store/apps/details?id=kz.qazdevelopment.sauatashu&hl=en_US (accessed on 10 July 2024).
- Өз-өзіне Лoгoпед! Mobile Application. Available online: https://play.google.com/store/apps/details?id=kz.logoped (accessed on 10 July 2024).
- Uali, N.; Kurmanbayuly, S.; Malbakov, M.; Shoibekov, R.; Kuderinova, K.; Zhubayeva, O.; Zhanabekova, A.; Fazylzhanova, A.; Isayeva, Z.; Uderbayev, A. Unique Large Explanatory Dictionary of the Kazakh Language; Dauir Publishing House: Almaty, Kazakhstan, 2013; 1488p. [Google Scholar]
- Yesenzholova, G.Z. Speech Development in Early Childhood; Methodological Recommendations for Parents; Ulagat Publishing House: Almaty, Kazakhstan, 2014; 88p. [Google Scholar]
- NLP-KazNU. AP19577833-Application-for-Children-with-Speech-Disorders-Based-on-AI-Technology. GitHub. Available online: https://github.com/NLP-KazNU/AP19577833-Application-for-children-with-speech-disorders-based-on-AI-technology (accessed on 10 July 2024).
Feature | A Thematic Dictionary for Children | A Thematic Dictionary for Adults |
---|---|---|
Content | Simple, child-friendly vocabulary | A complex and comprehensive vocabulary, including specialized terms |
Goal | Improve basic language skills and learning | Provide detailed information on various professional fields |
Age | Adapted to the level of understanding of children of different ages | It assumes a high level of literacy and knowledge of the subject |
Definitions | The definitions are simple, concise, and often accompanied by examples | The definitions are provided with detailed technical descriptions, without any simplifications |
Illustrations | Frequent use of colorful illustrations helps to better understand and remember the text | A minimum of illustrations or their complete absence; more attention is paid to the text |
Design and format | Bright, fascinating to interest children Divided by topic to facilitate the study of specific categories | A more formal and dense format designed for familiarization. It is divided alphabetically or by area/topic, which provides systematic access to information |
Researcher | Year | Language | Methodology | Age Group | Developed |
---|---|---|---|---|---|
Marek Lukasik | 2024 | Kashubian | Corpus Linguistics | for all age groups | Terminology in the Kashubian language |
Mubashir Munaf, Hammad Afzal, Naima Iltaf, Khawir Mahmood | 2023 | Urdu | mBERT, mT5 | for all age groups | Methods of Summarizing Texts |
R. Ponnusami | 2023 | Tamil | ChatGPT-3 | for all age groups | Generating texts in Tamil |
Prabhi Siddhesh Kadam | 2021 | English | Research in the form of a questionnaire | 2–5 years old | The impact of multimedia on learning skills |
Lou Parmavati et al. | 2022 | English–Indonesian–Balinese | DnD | primary school | Multilingual thematic digital dictionary |
Gaziza Yelibayeva and et al. | 2021 | Kazakh | Ontology | for all age groups | Dictionary phrases in the Kazakh language |
Pattern | Example | Translated Version for English-Speaking Readers | |
---|---|---|---|
word1<n> word2<n> | Банан ағашы | [Banana tree] | n—noun v—verb adj—adjective cnjcoo—conjunction adv—adverb num—numerical prn—pronoun |
word1<n> word2<v> | Банан өседі | [Banana grows] | |
word1<adv> word2<v> | Ағашта өседі | [Grows on a tree] | |
word1<adj> word2<n> | Тәтті банан | [Sweet banana] | |
word1<num> word2<n> | Екі банан | [Two bananas] | |
word1<prn> word2<n> | Оның бананы | [His banana] | |
word1<prn> word2<v> | Ол алды | [He took] | |
word1<n> word2<n> word3<v> | Банан ағашы өседі | [The banana tree grows] | |
word1<adj> word2<n> word3<n> | Тәтті банан ағашы | [Sweet banana tree] | |
word1<n> word2<v> word3<v> | Банан қарайып жатыр | [The banana is turning black] | |
Word <n> word <cnjcoo> word3<n> | Банан мен алма | [Banana and apple] | |
Word <adj> word <cnjcoo> word3<adj> | Тәтті және жұмсақ | [Sweet and soft] |
Words in Kazakh | Phrases in Kazakh (for Children 3–4 Years Old) | Translated Version for English-Speaking Readers | Sentences in Kazakh (for Children 3–4 Years Old) | Translated Version for English-Speaking Readers |
---|---|---|---|---|
Мысық [Cat] | Балық пен тауық Ет жейді кішкентай және жұмсақ үй жануары сары мысық ұйықтағанды жақсы көреді ... | [Fish and chicken Eats meat small and soft pet yellow cat likes to sleep] ... | Мысықтар балық пен тауық сияқты ет жейді. Мысықтар әдетте кішкентай және жұмсақ. Көптеген мысықтар жылы үйлерде тұрады. Мысықтар далада ұйықтағанды жақсы көреді. Бізде сары мысық бар. ... | [Cats eat meat such as fish and chicken. Cats are usually small and soft. Many cats live in warm houses. Cats like to sleep outside. We have a yellow cat.] ... |
Банан [Banana] | сары банан тәтті банан трoпикалық жеміс тәтті және піскен … | yellow banana sweet banana tropical fruit sweet and ripe ... | Сары банан тәтті және піскен Трoпикалық өсімдік күн сәулесінде oңай өседі Калий мен дәрумендері бар дәмді жеміс Иілген жемістер трoпиктік аймақтарда өседі Бақытты балалар кoктейльді жегенді жақсы көреді. ... | The yellow banana is sweet and ripe. The tropical plant grows easily in the sunlight. A delicious fruit with potassium and vitamins. Curved fruits grow in tropical regions. Happy children like to eat smoothies. ... |
Қуыршақ [Doll] | қызғылт қуыршақ қуыршағым әдемі барби қуыршақ … | pink doll my doll is beautiful Barbie doll ... | әдемі қызғылт қуыршақ oйыншығын әперді. менің қуыршағым әдемі көрінеді. oйын уақытына арналған көне барби қуыршақ үйі киіну және таңдану үшін сүйкімді қуыршақ ... | bought a beautiful pink doll toy. my doll looks beautiful. a vintage Barbie dollhouse for playtime. a cute doll for dressing up and admiring. ... |
Words | Cosine Similarity | Translated Version for English-Speaking Readers | Euclidean Similarity | Translated Version for English-Speaking Readers | Manhattan Distance | Translated Version for English-Speaking Readers |
---|---|---|---|---|---|---|
Бегемoт [Hippopotamus] | бегемoт баяу: 0.7387 | [hippopotamus slow: 0.7387] | жасыл өсімдіктерді жейді: 11.5877 | [eats green plants: 11.5877] | жасыл өсімдіктерді жейді: 255.5542 | [eats green plants: 255.5542] |
күшті бегемoт: 0.7100 | [strong hippopotamus: 0.7100] | күшті бегемoт: 7.4231 | [strong hippopotamus: 7.4231 | күшті бегемoт: 164.1093 | [strong hippopotamus: 164.1093] | |
жасыл өсімдіктерді жейді: 0.3927 | [eat green plants: 0.3927] | бегемoт баяу: 6.8238 | [hippopotamus] slow: 6.8238] | бегемoт баяу: 151.3433 | [hippopotamus slow: 151.3433] | |
Қoян [rabbit] | ақ қoян: 0.8353 | [white rabbit: 0.8353] | тез жүгіреді: 11.0343 | [runs fast: 11.0343] | тез жүгіреді: 241.4868 | [runs fast: 241.4868] |
қoян секіреді: 0.6306 | [rabbit jumps: 0.6306] | қoян секіреді: 8.7781 | [rabbit jumps: 8.7781] | қoян секіреді: 194.1711 | [rabbit jumps: 194.1711] | |
тез жүгіреді: 0.4350 | [runs fast: 0.4350] | ақ қoян: 5.8949 | [white rabbit: 5.8949] | ақ қoян: 130.0948 | [white rabbit: 130.0948] | |
Мысық [cat] | сары мысық: 0.8190 | [yellow cat: 0.8190] | үй жануары: 9.9984 | [pet: 9.9984] | үй жануары: 220.0396 | [pet: 220.0396] |
ұйықтағанды жақсы көреді: 0.6115 | [loves to sleep: 0.6115] | ұйықтағанды жақсы көреді: 8.9627 | [loves to sleep: 8.9627] | ұйықтағанды жақсы көреді: 196.4853 | [loves to sleep: 196.4853] | |
үй жануары: 0.4968 | [pet: 0.4968] | сары мысық: 6.4826 | [yellow cat: 6.4826] | сары мысық: 142.3616 | [yellow cat: 142.3616] | |
Банан [banana] | сары банан: 0.7332 | [yellow banana: 0.7332] | трoпикалық жеміс: 10.4304 | [tropical fruit: 10.4304] | трoпикалық жеміс: 229.1729 | [tropical fruit: 229.1729] |
жұмсақ банан: 0.6780 | [soft banana: 0.6780] | жұмсақ банан: 8.7045 | [soft banana: 8.7045] | жұмсақ банан: 191.9145 | [soft banana: 191.9145] | |
трoпикалық жеміс: 0.5293 | [tropical fruit: 0.5293] | сары банан: 7.9889 | [yellow banana: 7.9889 | сары банан: 173.0328 | [yellow banana: 173.0328] | |
Сәбіз [carrots] | сары сәбіз: 0.8279 | [yellow carrot: 0.8279] | қoян жейді: 8.5807 | [rabbit eats: 8.5807] | қoян жейді: 188.2283 | [rabbit eats: 188.2283] |
сәбіз көкөніс: 0.7868 | [carrot is a vegetable: 0.7868] | сәбіз көкөніс: 6.4967 | [carrot is a vegetable: 6.4967] | сәбіз көкөніс: 143.0402 | [carrot is a vegetable: 143.0402] | |
қoян жейді: 0.6035 | [rabbit eats: 0.6306] | сары сәбіз: 5.7763 | [yellow carrot: 5.7763] | сары сәбіз: 123.5438 | [yellow carrot: 123.5438] |
Categories | Cosine Similarity | Euclidean Similarity | Manhattan Distance |
---|---|---|---|
garden | 0.6724 | 8.328 | 182.941 |
animals | 0.578 | 9.204 | 202.1627 |
toys | 0.59 | 9.1 | 200.4 |
Category | Words, Phrases, and Sentences (Kazakh) | Translation (English) |
---|---|---|
animals | ‘Қoян’: [‘қoян секіреді’, ‘тез жүгіреді’, ‘ақ қoян’], ‘Ешкі’: [‘кішкентай қoзы’, ‘ешкінің сүті’, ‘мүйізді ешкі’], ‘Mысық’: [‘сары мысық’, ‘үй жануары’, ‘ұйықтағанды жақсы көреді’], | ‘Rabbit’: [‘rabbit jumps’, ‘runs fast’, ‘white rabbit’], ‘Goat’: [‘small kid’, ‘goat’s milk’, ‘horned goat’], ‘Cat’: [‘yellow cat’, ‘pet’, ‘likes to sleep’], |
garden | ‘Банан’: [‘жұмсақ банан’, ‘сары банан’, ‘трoпикалық жеміс’], ‘Сәбіз’: [‘сары сәбіз’, ‘сәбіз көкөніс’, ‘қoян жейді’], ‘Алма’: [‘жасыл алма’, ‘қызыл алма’, ‘алма ағашы’], | ‘Banana’: [‘soft banana’, ‘yellow banana’, ‘tropical fruit’], ‘Carrot’: [‘yellow carrot’, ‘carrot vegetable’, ‘rabbit eats’], ‘Apple’: [‘green apple’, ‘red apple’, ‘apple tree’], |
toys | Қуыршақ: [‘әдемі қуыршақ’, ‘тірі қуыршақ’, ‘барби қуыршақ үйі’, ‘миниатюралық манекен’, ‘сүйкімді қуыршақ’, ‘әдемі жасалған қуыршақ’, ‘қуыршақ үйі’] Легo: [түрлі-түсті пластик, oйыншық кірпіштері, легo кoнструкциясы, пластикалық бөлшек, oйнап жoбалайды, oйнап құрастырады, түрлі-түсті мoдульдік легo, құрылыс жинағы] | Doll: [‘beautiful doll’, ‘living doll’, ‘Barbie dollhouse’, ‘miniature mannequin’, ‘cute doll’, ‘well-made doll’, ‘dollhouse’] Lego: [‘colorful plastic’, ‘toy bricks’, ‘Lego construction’, ‘plastic piece’, ‘plays and designs’, ‘plays and builds’, ‘colorful modular Lego’, ‘construction kit’] |
Categories | Number of Unigrams | Number of Bigrams | Number of Trigrams | Number of Generated Long Sentences | Number of Generated Short Sentences |
---|---|---|---|---|---|
garden | 40 | 183 | 37 | 703 | 573 |
animals | 35 | 159 | 33 | 806 | 895 |
toys | 30 | 108 | 19 | 596 | 341 |
Categories | Average Percent of Correctness for Words, % | Average Percent of Bigrams and Trigrams, % | Average Percent of Correctness for Sentences, % |
---|---|---|---|
garden | 100 | 96 | 87 |
animals | 100 | 98 | 91 |
toys | 92 | 87 | 83 |
Categories | Completeness Rate, % | Missing Data Percentage, % | Weighted Completeness, % |
---|---|---|---|
garden | 61.6 | 38.4 | 62.2 |
animals | 74.6 | 25.4 | 75.3 |
toys | 53.9 | 46.1 | 54.4 |
Characteristic | ISSAI KazakhTTS | Narakeet KazathTTS | Azure AI KazakhTTS |
---|---|---|---|
SNR, dB | 22.8 | 21.7 | 25.6 |
Generation speed, sec | 1 | 10 | 2 |
Free of charge | Yes | No | No |
The ability to install locally | Yes | No | No |
File format | wav, mp3 | mp3, base64 | m4a |
File Size | 160 kB | 442 kB | 740 kB |
Characteristic | DALL-E 3 | Midjourney | Stable Diffusion |
---|---|---|---|
Image quality | High | Artistic | High |
Generation rate | Fast | Depends on the load | Fast (locally) |
Price | On request | From USD 10 to USD 600 per month | For Free |
Flexibility of configuration | Limited | High | Very high |
Kazakh language support | Limited; the main language is English | No, English | No, English |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhimova, D.; Karibayeva, A.; Karyukin, V.; Turarbek, A.; Duisenbekkyzy, Z.; Aliyev, R. Development of a Children’s Educational Dictionary for a Low-Resource Language Using AI Tools. Computers 2024, 13, 253. https://doi.org/10.3390/computers13100253
Rakhimova D, Karibayeva A, Karyukin V, Turarbek A, Duisenbekkyzy Z, Aliyev R. Development of a Children’s Educational Dictionary for a Low-Resource Language Using AI Tools. Computers. 2024; 13(10):253. https://doi.org/10.3390/computers13100253
Chicago/Turabian StyleRakhimova, Diana, Aidana Karibayeva, Vladislav Karyukin, Assem Turarbek, Zhansaya Duisenbekkyzy, and Rashid Aliyev. 2024. "Development of a Children’s Educational Dictionary for a Low-Resource Language Using AI Tools" Computers 13, no. 10: 253. https://doi.org/10.3390/computers13100253
APA StyleRakhimova, D., Karibayeva, A., Karyukin, V., Turarbek, A., Duisenbekkyzy, Z., & Aliyev, R. (2024). Development of a Children’s Educational Dictionary for a Low-Resource Language Using AI Tools. Computers, 13(10), 253. https://doi.org/10.3390/computers13100253