Enhanced Collaborative Filtering: Combining Autoencoder and Opposite User Inference to Solve Sparsity and Gray Sheep Issues
Abstract
:1. Introduction
2. Related Works
3. Research Aim
- Propose a new model based on an AE and an augmented rating matrix to improve CF performance.
- Evaluate the model’s accuracy using established performance metrics, ensuring its robustness across various evaluation criteria.
- Demonstrate the effectiveness of the proposed method through experiments on the publicly available MovieLens 100K dataset.
- Address critical challenges in collaborative filtering, such as “data sparsity” and the “gray sheep” problem.
4. Methodology
4.1. Problem Definition
4.2. Overview of Autoencoders
- Encoding
- Decoding
- Configurable Parameters
4.3. Architecture of the Study
5. Experiment
5.1. Implementation Details
5.2. Evaluation Protocol
5.3. Baseline Models
6. Results
7. Discussion
- Autoencoders can capture complex non-linear relationships in the data.
- The augmentation rating matrix through the incorporation of virtual users derived from the opposing ratings given by real users provides more data to the AE, allowing it to better understand the complexities of user–item interactions and thus make more accurate predictions.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benfield, J.A.; Szlemko, W.J. Internet-based data collection: Promises and realities. J. Res. Pract. 2006, 2, D1. [Google Scholar]
- Kent, M.; Huynh, N.K.; Schiavon, S.; Selkowitz, S. Using support vector machine to detect desk illuminance sensor blockage for closed-loop daylight harvesting. Energy Build. 2022, 274, 112443. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, Z.; Li, P.; Chang, Y. Multi-Graph Convolutional Network for Fine-Grained and Personalized POI Recommendation. Electronics 2022, 11, 2966. [Google Scholar] [CrossRef]
- Khusro, S.; Ali, Z.; Ullah, I. Recommender Systems: Issues, Challenges, and Research Opportunities. In Information Science and Applications (ICISA) 2016; Kim, K.J., Joukov, N., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2016; Volume 376, pp. 1179–1189. [Google Scholar]
- Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems: Techniques, Applications, and Challenges. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.; Springer: New York, NY, USA, 2022; pp. 1–35. [Google Scholar] [CrossRef]
- Pawlicka, A.; Pawlicki, M.; Kozik, R.; Choraś, R.S. A Systematic Review of Recommender Systems and Their Applications in Cybersecurity. Sensors 2021, 21, 5248. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, M.; Bentahar, J.; Bakhtiyari, K.; Hanachi, C. New Insights Towards Developing Recommender Systems. Comput. J. 2018, 61, 319–348. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L.; Shapira, B. Introduction to Recommender Systems Handbook; Springer: Boston, MA, USA, 2010. [Google Scholar]
- Roy, D.; Dutta, M. A systematic review and research perspective on recommender systems. J. Big Data 2022, 9, 59. [Google Scholar] [CrossRef]
- Chalkiadakis, G.; Ziogas, I.; Koutsmanis, M.; Streviniotis, E.; Panagiotakis, C.; Papadakis, H. A Novel Hybrid Recommender System for the Tourism Domain. Algorithms 2023, 16, 215. [Google Scholar] [CrossRef]
- Altulyan, M.; Yao, L.; Wang, X.; Huang, C.; Kanhere, S.S.; Sheng, Q.Z. A Survey on Recommender Systems for Internet of Things: Techniques, Applications and Future Directions. Comput. J. 2022, 65, 2098–2132. [Google Scholar] [CrossRef]
- Yu, M.; Quan, T.; Peng, Q.; Yu, X.; Liu, L. A model-based collaborate filtering algorithm based on stacked AutoEncoder. Neural Comput. Appl. 2022, 34, 2503–2511. [Google Scholar] [CrossRef]
- Tegene, A.; Liu, Q.; Gan, Y.; Dai, T.; Leka, H.; Ayenew, M. Deep Learning and Embedding Based Latent Factor Model for Collaborative Recommender Systems. Appl. Sci. 2023, 13, 726. [Google Scholar] [CrossRef]
- Khaledian, N.; Mardukhi, F. CFMT: A collaborative filtering approach based on the nonnegative matrix factorization technique and trust relationships. J. Ambient Intell. Humaniz. Comput. 2022, 13, 2667–2683. [Google Scholar] [CrossRef]
- Ferreira, D.; Silva, S.; Abelha, A.; Machado, J. Recommendation System Using Autoencoders. Appl. Sci. 2020, 10, 5510. [Google Scholar] [CrossRef]
- Mohbey, K.K.; Meena, G.; Kumar, S.; Lokesh, K. A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets. New Gener. Comput. 2024, 42, 89–107. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Siddique, M.F.; Ahmad, Z.; Ullah, N.; Kim, J. A Hybrid Deep Learning Approach: Integrating Short-Time Fourier Transform and Continuous Wavelet Transform for Improved Pipeline Leak Detection. Sensors 2023, 23, 8079. [Google Scholar] [CrossRef]
- Siddique, M.F.; Ahmad, Z.; Kim, J.-M. Pipeline leak diagnosis based on leak-augmented scalograms and deep learning. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2225577. [Google Scholar] [CrossRef]
- Siddique, M.F.; Ahmad, Z.; Ullah, N.; Ullah, S.; Kim, J.-M. Pipeline Leak Detection: A Comprehensive Deep Learning Model Using CWT Image Analysis and an Optimized DBN-GA-LSSVM Framework. Sensors 2024, 24, 4009. [Google Scholar] [CrossRef]
- Haghighi, P.S.; Seton, O.; Nasraoui, O. An Explainable Autoencoder for Collaborative Filtering Recommendation. arXiv 2020, arXiv:2001.04344. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Satapathy, R.; Wang, S.; Cambria, E. Recent Developments in Recommender Systems: A Survey [Review Article]. IEEE Comput. Intell. Mag. 2024, 19, 78–95. [Google Scholar] [CrossRef]
- Abdulrahman, R.; Viktor, H. Personalised Recommendation Systems and the Impact of COVID-19: Perspectives, Opportunities and Challenges. In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Virtual Event, 2–4 November 2020; SCITEPRESS-Science and Technology Publications: Budapest, Hungary, 2020; pp. 295–301. [Google Scholar] [CrossRef]
- Passi, R.; Jain, S.; Singh, P.K. Hybrid Approach for Recommendation System. In Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, Pune, India, 15–16 December 2017; Kulkarni, A.J., Satapathy, S.C., Kang, T., Kashan, A.H., Eds.; Advances in Intelligent Systems and Computing. Springer: Singapore, 2019; Volume 828, pp. 117–128. [Google Scholar] [CrossRef]
- Fazziki, A.E.; Alami, Y.E.M.E.; Elhassouni, J.; Aissaoui, O.E.; Benbrahim, M. Employing opposite ratings users in a new approach to collaborative filtering. Indones. J. Electr. Eng. Comput. Sci. 2022, 25, 450. [Google Scholar] [CrossRef]
- Aziz, R.A.; Lestari, S.; Fitria, F.; Arianto, F. Imputation missing value to overcome sparsity problems. TELKOMNIKA Telecommun. Comput. Electron. Control 2024, 22, 949. [Google Scholar] [CrossRef]
- Huang, J.; Jia, Z.; Zuo, P. Improved collaborative filtering personalized recommendation algorithm based on k-means clustering and weighted similarity on the reduced item space. Math. Model. Control 2023, 3, 39–49. [Google Scholar] [CrossRef]
- Bathla, G.; Aggarwal, H.; Rani, R. AutoTrustRec: Recommender System with Social Trust and Deep Learning using AutoEncoder. Multimed. Tools Appl. 2020, 79, 20845–20860. [Google Scholar] [CrossRef]
- Pan, Y.; He, F.; Yu, H. Learning social representations with deep autoencoder for recommender system. World Wide Web 2020, 23, 2259–2279. [Google Scholar] [CrossRef]
- Rajput, I.S.; Tewari, A.S.; Tiwari, A.K. An autoencoder-based deep learning model for solving the sparsity issues of Multi-Criteria Recommender System. Procedia Comput. Sci. 2024, 235, 414–425. [Google Scholar] [CrossRef]
- Hiriyannaiah, S.; Siddesh, G.M.; Srinivasa, K.G. DeepLSGR: Neural collaborative filtering for recommendation systems in smart community. Multimed. Tools Appl. 2023, 82, 8709–8728. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, J. Recommendation System Based on Deep Sentiment Analysis and Matrix Factorization. IEEE Access 2023, 11, 16994–17001. [Google Scholar] [CrossRef]
- Choi, S.-M.; Lee, D.; Jang, K.; Park, C.; Lee, S. Improving Data Sparsity in Recommender Systems Using Matrix Regeneration with Item Features. Mathematics 2023, 11, 292. [Google Scholar] [CrossRef]
- Muhammad, D.; Chiroma, H.; Lamir, M.; Gital, A.; Musa, K.; Mustapha, A.; Lawal Abdulrahman, M.; Mohammed, D. An Ensemble Clustering Recommender Model Base on SVD Algorithms. Int. J. Eng. Res. Technol. 2023, 12, 197–204. [Google Scholar]
- Barathy, R.; Chitra, P. Applying Matrix Factorization In Collaborative Filtering Recommender Systems. In Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 635–639. [Google Scholar] [CrossRef]
- Srivastava, A.; Bala, P.K.; Kumar, B. New perspectives on gray sheep behavior in E-commerce recommendations. J. Retail. Consum. Serv. 2020, 53, 101764. [Google Scholar] [CrossRef]
- Kaur, B.; Rani, S. Are the customers receiving exact recommendations from the e-commerce companies? Towards the identification of gray sheep users using personality parameters. Int. J. Perform. Eng. 2023, 19, 425. [Google Scholar]
- Nguyen, L.V.; Vo, Q.-T.; Nguyen, T.-H. Adaptive KNN-Based Extended Collaborative Filtering Recommendation Services. Big Data Cogn. Comput. 2023, 7, 106. [Google Scholar] [CrossRef]
- Fazziki, A.; El, Y.; Alami, M.; Elhassouni, J.; Benbrahim, M. Enhancing Collaborative Filtering: Addressing Sparsity And Gray Sheep With Opposite User Inference. J. Theor. Appl. Inf. Technol. 2024, 102, 872–882. [Google Scholar]
- El Youbi El Idrissi, L.; Akharraz, I.; Ahaitouf, A. Personalized E-Learning Recommender System Based on Autoencoders. Appl. Syst. Innov. 2023, 6, 102. [Google Scholar] [CrossRef]
- Kulkarni, P.V.K.; Rai, S.R.; Sachdeo, R.S.; Kale, R.K. Personalised eLearning Recommendation System; IEEE DataPort; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Jindal, H.; Agarwal, S.; Sardana, N. PowKMeans: A Hybrid Approach for Gray Sheep Users Detection and Their Recommendations. Int. J. Inf. Technol. Web Eng. 2018, 13, 56–69. [Google Scholar] [CrossRef]
- Rashidi, R.; Khamforoosh, K.; Sheikhahmadi, A. An analytic approach to separate users by introducing new combinations of initial centers of clustering. Phys. Stat. Mech. Its Appl. 2020, 551, 124185. [Google Scholar] [CrossRef]
- Chetana, V.L.; Seetha, H. Handling Massive Sparse Data in Recommendation Systems. J. Inf. Knowl. Manag. 2024, 23, 2450021. [Google Scholar] [CrossRef]
- Yannam, V.R.; Kumar, J.; Babu, K.S.; Sahoo, B. Improving group recommendation using deep collaborative filtering approach. Int. J. Inf. Technol. 2023, 15, 1489–1497. [Google Scholar] [CrossRef]
- Ganesan, T.; Vellaiyan, P. An Enhanced Neural Network Collaborative Filtering (ENNCF) for Personalized Recommender System. In Proceedings of the International Conference on Recent Innovations in Computing, Tokyo, Japan, 16–18 March 2024; Singh, Y., Singh, P.K., Gonçalves, P.J.S., Kar, A.K., Eds.; Lecture Notes in Electrical Engineering. Springer Nature: Singapore, 2024; Volume 1194, pp. 183–195. [Google Scholar] [CrossRef]
- Zhang, Z. Personalized resource recommendation method of student online learning platform based on LSTM and collaborative filtering. J. Intell. Syst. 2024, 33, 20240017. [Google Scholar] [CrossRef]
- Gomede, E.; de Barros, R.M.; de Souza Mendes, L. Deep auto encoders to adaptive E-learning recommender system. Comput. Educ. Artif. Intell. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Su, Z.; Lin, Z.; Ai, J.; Li, H. Rating Prediction in Recommender Systems Based on User Behavior Probability and Complex Network Modeling. IEEE Access 2021, 9, 30739–30749. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, Y.; Li, Y.; Sun, X.; Li, B. Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation. Appl. Sci. 2022, 12, 12408. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Yu, X. The Recommendation Algorithm Based on Improved Conditional Variational Autoencoder and Constrained Probabilistic Matrix Factorization. Appl. Sci. 2023, 13, 12027. [Google Scholar] [CrossRef]
- Chen, S.; Guo, W. Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics 2023, 11, 1777. [Google Scholar] [CrossRef]
- Harper, F.M.; Konstan, J.A. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 2016, 5, 1–19. [Google Scholar] [CrossRef]
Item1 | Item2 | Item3 | Item3 | Item4 | Item5 | |
---|---|---|---|---|---|---|
User1 | 2 | 4 | 2 | 1 | ||
User2 | 3 | 3 | 2 | 5 | ||
User3 | 5 | 1 | 3 | 5 | 4 | |
User4 | 1 | 5 | 2 | 3 |
Reference | Machine Learning Method | Approach | Metric | Data Source | Addressing Sparsity | Addressing Gray Sheep |
---|---|---|---|---|---|---|
[25] | User-based CF | CF | - MAE - RMSE | MovieLens 100K | Yes | Yes |
[26] | KNNI | CF | - RMSE | MovieLens 100K | Yes | No |
[27] | k-means | CF | - Sorting Accuracy - Precision - Recall - Novelty -Diversity | - MovieLens 100K - Netflix | Yes | No |
[28] | AE | CF | - MAE - RMSE | - Epinions - FilmTrust - Ciao | Yes | No |
[31] | - LSTM - GRU | CF | - MAE - RMSE - Accuracy | - Amazon Fine Food Reviews - OpinRank | Yes | No |
[32] | - LDA - BERT | CF | - MAE - F1-Score | - Amazon food - Amazon Clothing | Yes | No |
[37] | - Boosted decision tree - logistic regression - decision forest - two neural networks | CF | - Accuracy - Precision - F1-Score - Recall | - flavors_of_cacao | No | Yes |
[38] | - KNN | CF | - MAE - RMSE - MAP - NDCG | - MovieLens 100K - MovieLens-1 M | No | No |
[39] | - Association Rule (AR) - SVD - Funk SVD (FSVD) | CF | - MAE - RMSE | MovieLens 100K | Yes | Yes |
[40] | - AE - SVD - KNN - SVD++ - NMF | CF | - MAE - RMSE | dataset created by Kulkarni et al. [41] | Yes | No |
Present Approach | AE | CF | - MAE - RMSE | MovieLens 100K | Yes | Yes |
Activation | Relu |
---|---|
Batch size | 64 |
Loss Function | MSE |
Optimizer | Adam with a learning rate of 0.0001 |
Dataset | Users | Items | Ratings | Sparsity | Evaluation Scale |
---|---|---|---|---|---|
MovieLens 100K | 943 | 1682 | 100,000 | 6.30% | 1–5 |
Item1 | Item2 | Item3 | Item3 | Item4 | |
---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | |
1 | 2 | 3 | 4 | 5 |
Value of Batch Size | MAE | RMSE |
---|---|---|
32 | 0.3863 | 0.6151 |
64 | 0.3319 | 0.5440 |
128 | 0.4855 | 0.7523 |
Activation Function | MAE | RMSE |
---|---|---|
Tanh | 0.3059 | 0.6747 |
“Rectified Linear Unit (Relu)” | 0.1344 | 0.4762 |
Sigmoid | 0.2794 | 0.7002 |
“Scaled Exponential Linear Unit (Selu)” | 0.3288 | 0.5734 |
“Exponential Linear Unit (Elu)” | 0.2963 | 0.5064 |
Swish (or Silu) | 0.2368 | 0.4682 |
Mish | 0.2513 | 0.4679 |
Growing Cosine Unit (GCU) | 0.3280 | 0.7357 |
Optimizer Algorithm | MAE | RMSE |
---|---|---|
RMSprop | 0.1944 | 0.6083 |
SGD | 0.3293 | 0.8277 |
Adam | 0.1344 | 0.4762 |
Models | RMSE | MAE |
---|---|---|
Enriched_AR | 1.522 | 0.1344 |
Enriched_SVD | 0.7273 | 0.2608 |
Enriched_FSVD | 0.8869 | 1.0647 |
AE | 0.7315 | 0.2608 |
Enriched_AE | 0.4762 | 0.1344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Youbi El Idrissi, L.; Akharraz, I.; El Ouaazizi, A.; Ahaitouf, A. Enhanced Collaborative Filtering: Combining Autoencoder and Opposite User Inference to Solve Sparsity and Gray Sheep Issues. Computers 2024, 13, 275. https://doi.org/10.3390/computers13110275
El Youbi El Idrissi L, Akharraz I, El Ouaazizi A, Ahaitouf A. Enhanced Collaborative Filtering: Combining Autoencoder and Opposite User Inference to Solve Sparsity and Gray Sheep Issues. Computers. 2024; 13(11):275. https://doi.org/10.3390/computers13110275
Chicago/Turabian StyleEl Youbi El Idrissi, Lamyae, Ismail Akharraz, Aziza El Ouaazizi, and Abdelaziz Ahaitouf. 2024. "Enhanced Collaborative Filtering: Combining Autoencoder and Opposite User Inference to Solve Sparsity and Gray Sheep Issues" Computers 13, no. 11: 275. https://doi.org/10.3390/computers13110275
APA StyleEl Youbi El Idrissi, L., Akharraz, I., El Ouaazizi, A., & Ahaitouf, A. (2024). Enhanced Collaborative Filtering: Combining Autoencoder and Opposite User Inference to Solve Sparsity and Gray Sheep Issues. Computers, 13(11), 275. https://doi.org/10.3390/computers13110275