A Systematic Review and Comparative Analysis Approach to Boom Gate Access Using Plate Number Recognition
Abstract
:1. Introduction
- Systematically review articles published between 2020 and 2024 on the use of YOLO for license plate recognition.
- Identify obstacles, limitations, and gaps in the literature on using YOLO for license plate number recognition.
- Perform a comparative analysis of YOLO versions for license plate detection: a key contribution lies in the experimental comparison of four recent versions of YOLO (versions 5, 7, 8, and 9) for the specific task of license plate number detection. This analysis aims to determine the most efficient YOLO version, offering practical insights for real-world applications.
- Application of YOLO object detection to boom gate access.
2. Related Work: A Systematic Review Approach
Review of Selected Articles
3. YOLO Network Architecture
4. Inception of YOLO Versions
4.1. YOLOv5 Architecture
4.2. YOLOv7 Architecture
4.3. YOLOv8 Architecture
4.4. YOLOV9 Architecture
4.5. Table of Comparison
5. Experiments: YOLOV5, YOLOV7, YOLOV8 and YOLOV9
5.1. Proposed Model
5.2. Data for Training and Validation
5.3. Data Preprocessing
5.4. YOLOv5 Experiment: Training and Validation
5.5. YOLOv7 Experiment: Training and Validation
5.6. YOLOv8 Experiment: Training and Validation
5.7. YOLOv9 Experiment: Training and Validation
6. Results and Discussions
6.1. Results: YOLOv5 Model
6.2. Results: YOLOv7 Model
6.3. Results: YOLOv8 Model
6.4. Result: YOLOv9
7. Comparative Analysis of Results
8. Testing
9. Working Application: Boom Gate Access
10. Conclusions
Limitations of the Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Challa, N. Artificial Intelligence for Object Detection and its Metadata. Int. J. Artif. Intell. Mach. Learn. (IJAIML) 2023, 2, 121–133. [Google Scholar] [CrossRef]
- Mirzaei, B.; Nezamabadi-Pour, H.; Raoof, A.; Derakhshani, R. Small Object Detection and Tracking: A Comprehensive Review. Sensors 2023, 23, 6887. [Google Scholar] [CrossRef] [PubMed]
- Charroud, A.; El Moutaouakil, K.; Palade, V.; Yahyaouy, A.; Onyekpe, U.; Eyo, E.U. Localization and Mapping for Self-Driving Vehicles: A Survey. Machines 2024, 12, 118. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, W. Tools, techniques, datasets and application areas for object detection in an image: A review. Multimed. Tools Appl. 2022, 81, 38297–38351. [Google Scholar] [CrossRef]
- Kanjee, R. The Remarkable Impact of Object Detection in Artificial Intelligence and Computer Vision. 2023. Available online: https://www.linkedin.com/pulse/remarkable-impact-object-detection-artificial-computer-ritesh-kanjee (accessed on 19 June 2024).
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Chen, Y.; Li, L.; Li, W.; Guo, Q.; Du, Z.; Xu, Z. AI Computing Systems: An Application Driven Perspective; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Viswanatha, V.; Chandana, R.K.; Ramachandra, A.C. Iot based smart mirror using raspberry pi 4 and yolo algorithm: A novel framework for interactive display. Indian J. Sci. Technol. 2022, 15, 2011–2020. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef]
- Vishwakarma, N. Real-Time Object Detection with SSDs: Single Shot MultiBox Detectors. 2023. Available online: https://www.analyticsvidhya.com/blog/2023/11/real-time-object-detection-with-ssds-single-shot-multibox-detectors/ (accessed on 19 June 2024).
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2017, arXiv:1708.02002. [Google Scholar]
- Rawat, A.S.; Devrani, H.; Yaduvanshi, A.; Bohra, M.; Kumar, I.; Singh, T. Surveillance System using Moving Vehicle Number Plate Recognition. In Proceedings of the 2023 2nd International Conference on Edge Computing and Applications (ICECAA), Namakkal, India, 19–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 940–945. [Google Scholar]
- Dias, A.; Almeida, A.M.D.; Fernandes, D.S.; Fernandes, J.; Fernandes, S.; Aswale, S. Automatic Two Wheeler License Plate Recognition Using Deep Learning Techniques. In Proceedings of the 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 1–3 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Pandiaraja, P.; Abisheck, S.; Mohan, A.; Ramanikanth, M. Survey on Traffic Violation Prediction using Deep Learning Based on Helmets with Number Plate Recognition. In Proceedings of the 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 11–12 March 2024; IEEE: Piscataway, NJ, USA; pp. 234–239. [Google Scholar]
- Patil, S.S.; Patil, S.H.; Pawar, A.M.; Bewoor, M.S.; Kadam, A.K.; Patkar, U.C.; Wadare, K.; Sharma, S. Vehicle Number Plate Detection using YoloV8 and EasyOCR. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; IEEE: Piscataway, NJ, USA; 2023; pp. 1–4. [Google Scholar]
- Alharbi, F.; Alshahrani, R.; Zakariah, M.; Aldweesh, A.; Alghamdi, A.A. YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security. Comput. Mater. Contin. 2023, 77, 3689–3722. [Google Scholar] [CrossRef]
- Shyaa, T.A.; Hashim, A.A. Superior Use of YOLOv8 to Enhance Car License Plates Detection Speed and Accuracy. Rev. D’Intelligence Artif. 2024, 38, 139–145. [Google Scholar] [CrossRef]
- Neupane, D.; Bhattarai, A.; Aryal, S.; Bouadjenek, M.R.; Seok, U.; Seok, J. Shine: A deep learning-based accessible parking management system. Expert Syst. Appl. 2024, 238, 122205. [Google Scholar] [CrossRef]
- Jamtsho, Y.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese license plate localization using YOLO. ICT Express 2020, 6, 121–124. [Google Scholar] [CrossRef]
- Khan, I.R.; Ali, S.T.A.; Siddiq, A.; Shim, S.O. Multi-string missing characters restoration for automatic license plate recognition system. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 835–843. [Google Scholar] [CrossRef]
- Salemdeeb, M.; Erturk, S. Multi-national and multi-language license plate detection using convolutional neural networks. Eng. Technol. Appl. Sci. Res. 2020, 10, 5979–5985. [Google Scholar] [CrossRef]
- Wang, L.; Cao, C.; Zou, B.; Ye, J.; Zhang, J. License Plate Recognition via Attention Mechanism. CMC-Comput. Mater. Contin. 2023, 75, 1801–1814. [Google Scholar] [CrossRef]
- Al-Batat, R.; Angelopoulou, A.; Premkumar, S.; Hemanth, J.; Kapetanios, E. An end-to-end automated license plate recognition system using YOLO based vehicle and license plate detection with vehicle classification. Sensors 2022, 22, 9477. [Google Scholar] [CrossRef]
- Lin, C.J.; Chuang, C.C.; Lin, H.Y. Edge-ai-based real-time automated license plate recognition system. Appl. Sci. 2022, 12, 1445. [Google Scholar] [CrossRef]
- Lina, Y.; Shaokun, L. A Single-Stage Deep Learning-based Approach for Real-Time License Plate Recognition in Smart Parking System. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 1142–1150. [Google Scholar]
- Nguyen, H. A High-Performance Approach for Irregular License Plate Recognition in Unconstrained Scenarios. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 339–346. [Google Scholar] [CrossRef]
- Koylu, C.; Zhao, C.; Shao, W. Deep neural networks and kernel density estimation for detecting human activity patterns from geo-tagged images: A case study of birdwatching on flickr. ISPRS Int. J.-Geo-Inf. 2019, 8, 45. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Shetty, S. Application of convolutional neural network for image classification on Pascal VOC challenge 2012 dataset. arXiv 2016, arXiv:1607.03785. [Google Scholar]
- Hussain, M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Parupalli, S.; Akhsitha, S.; Naval, D.; Kasam, P.; Yavagiri, S. Performance evaluation of YOLOv2 and modified YOLOv2 using face mask detection. Multimed. Tools Appl. 2023, 83, 30167–30180. [Google Scholar] [CrossRef]
- Tsang, S. Review: YOLOv3-You Only Look Once (Object Detection). 2019. Available online: https://towardsdatascience.com/review-yolov3-you-only-look-once-object-detection-eab75d7a1ba6 (accessed on 20 June 2024).
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Poznanski, J.; Yu, L.; Rai, P.; Ferriday, R.; et al. Ultralytics/yolov5: v3. 0. Zenodo 2020. Available online: https://ui.adsabs.harvard.edu/abs/2020zndo...4154370J/abstract (accessed on 22 June 2024).
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A Full-Scale Reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- YOLOv8: A New State-of-the-Art Computer Vision Model. Available online: https://yolov8.com/ (accessed on 23 June 2024).
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Ultralytics. YOLOv5. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 23 June 2024).
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. You only learn one representation: Unified network for multiple tasks. arXiv 2021, arXiv:2105.04206. [Google Scholar]
- Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests 2021, 12, 217. [Google Scholar] [CrossRef]
- Vijayakumar, A.; Vairavasundaram, S. YOLO-based Object Detection Models: A Review and its Applications. Multimed Tools Appl. 2014, 83, 83535–83574. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13733–13742. [Google Scholar]
- Boesch, G. A Guide to YOLOv8 in 2024. 2024. Available online: https://viso.ai/deep-learning/yolov8-guide (accessed on 23 June 2024).
- Davy, M.K.; Banda, P.J.; Hamweendo, A. Automatic vehicle number plate recognition system. Phys. Astron Int. J. 2023, 7, 69–72. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, G.; Gao, S.; Du, S.; Kim, E.; Shen, T. Advancing architectural heritage: Precision decoding of East Asian timber structures from Tang dynasty to traditional Japan. Herit. Sci. 2024, 12, 219. [Google Scholar] [CrossRef]
- Chien, C.T.; Ju, R.Y.; Chou, K.Y.; Chiang, J.S. YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images. arXiv 2024, arXiv:2403.11249. [Google Scholar] [CrossRef]
- What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector. arXiv 2024, arXiv:2409.07813.
- Car License Plate Detection. 2020. Available online: https://www.kaggle.com/datasets/andrewmvd/car-plate-detection (accessed on 2 March 2024).
- Pavithra, M.; Karthikesh, P.S.; Jahnavi, B.; Navyalokesh, M.; Krishna, K.L. Implementation of Enhanced Security System using Roboflow. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), Noida, India, 14–15 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved Yolo network for free-angle remote sensing target detection. Remote Sens. 2021, 13, 2171. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Xie, W. YOLO-compact: An efficient YOLO network for single category real-time object detection. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1931–1936. [Google Scholar]
- Aqaileh, T.; Alkhateeb, F. Automatic Jordanian License Plate Detection and Recognition System Using Deep Learning Techniques. J. Imaging 2023, 9, 201. [Google Scholar] [CrossRef]
- Batra, P.; Hussain, I.; Ahad, M.A.; Casalino, G.; Alam, M.A.; Khalique, A.; Hassan, S.I. A novel memory and time-efficient ALPR system based on YOLOv5. Sensors 2022, 22, 5283. [Google Scholar] [CrossRef]
- Huang, L.; Huang, W. RD-YOLO: An effective and efficient object detector for roadside perception system. Sensors 2022, 22, 8097. [Google Scholar] [CrossRef]
- Sun, X.; Ren, X.; Ma, S.; Wei, B.; Li, W.; Wang, H. Training Simplification and Model Simplification for Deep Learning: A Minimal Effort Back Propagation Method. IEEE Trans. Knowl. Data Eng. 2017, 32, 374–387. [Google Scholar] [CrossRef]
- Narkhede, S. Understanding Confusion Matrix–Towards Data Science. Medium, 9 May 2018. Available online: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 (accessed on 20 June 2024).
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering into the black box of artificial intelligence: Evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A review of evaluation metrics in machine learning algorithms. In Proceedings of the Computer Science On-Line Conference; Springer: Berlin/Heidelberg, Germany, 2023; pp. 15–25. [Google Scholar]
- Biswas, S.; Riba, P.; Lladós, J.; Pal, U. Beyond document object detection: Instance-level segmentation of complex layouts. Int. J. Doc. Anal. Recognit. (IJDAR) 2021, 24, 269–281. [Google Scholar] [CrossRef]
- Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 237–242. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
Model | Architecture | Speed | Accuracy | Training Time |
---|---|---|---|---|
YOLO [10] | One-stage detector | Fast | High | Faster |
FasterR-CNN [11] | Two-stage detector | Slower | High | Slower |
SSD [12] | One-stage detector | Moderate | Moderately | Data |
RetinaNet [13] | One-stage detector | Slow | High | Moderate |
Year | Number of Documents |
---|---|
2024 | 606 |
2023 | 1549 |
2022 | 1079 |
2021 | 619 |
2020 | 423 |
Model | Methods Used | Application |
---|---|---|
YOLO-based Models | YOLOv3, YOLOv4, YOLOv5, YOLOv8; real-time object detection models widely used for license plate detection because of their speed and accuracy [17,19,21,28]. | Traffic flow monitoring [19,21], crime prevention: assists in detecting stolen vehicles and monitoring traffic violations [18,19]. |
Convolutional Neural network (CNN) | CNN for feature extractions [17,21,28]. | ALPR systems used in toll systems, smart parking, and vehicle identification [15,27]. |
Transfer Learning | Pre-trained models applied for fine-tuning models with limited regional datasets [20,22]. | Regional ALPR system: used to adapt ALPR models for specific regions with distinct license plate formats [21,22]. |
Optical Character Recognition (OCR) | OCR integrated to recognize characters from detected license plates, improving accuracy in environments with varying lighting conditions and image quality [15,17,28]. | Toll collection, traffic law enforcement [15,17,28]. |
Blockchain Integration | Blockchain + YOLO: combines blockchain with YOLO to ensure secure data storage and management in ALPR systems [18,28]. | Data privacy and security: ensure secure transmission and storage of sensitive vehicle data for smart city and ITS applications [18,28]. |
Multi-Stage Detection Systems | YOLO with multiple stages: detects vehicles first, then license plates, followed by character recognition to enhance robustness [15,16]. | Urban parking management: effectively manages parking lots and enforces traffic regulations, including parking violations [15,16]. |
Helmet Detection and Traffic Violations | YOLO-based helmet detection: integrated helmet and license plate detection for monitoring compliance with helmet laws, especially in two-wheeler traffic [15,16]. | Helmet law enforcement: detects non-compliance with helmet laws and captures license plates for issuing fines [15,16]. |
Lightweight Models for Mobile Use | YOLOv8n and CNN for mobile: optimized versions of YOLO models used in mobile and resource-constrained devices for real-time license plate detection [19,28]. | Mobile ALPR: used in mobile apps to assist in vehicle monitoring, security patrols, and parking management [27,28]. |
Real-Time ALPR Systems | YOLO-based real-time detection: YOLO models (e.g., YOLOv8) enable real-time detection and recognition of vehicles moving at high speeds [17,19,27]. | Toll booth and parking enforcement: real-time license plate recognition helps in toll collection, reducing congestion, and monitoring parking [18,19,28]. |
Feature | YOLOv5 | YOLOv7 | YOLOv8 | YOLOv9 |
---|---|---|---|---|
Author | Ultralytics | Wang, Bochkovskiy, and Liao [38] | Various authors | Chien, Ju, and Cho [50] |
Year | 2020 | 2022 | 2023 | 2024 |
Speed | 140 fps | 150 fps | 160 fps | 180 fps |
Robustness | High | Higher than YOLOv5 | Higher than YOLOv7 | Highest among these |
Architectural Components | CSPDarknet backbone, PANet neck, YOLO layer head | Input, backbone feature extraction, RepConv prediction | Modified CSPDarknet53, C2f module, decoupled head | GELAN, PGI, reversible functions |
Key Enhancements | Efficient object detection | Faster and more accurate than YOLOv5 | Mosaic data augmentation, anchor-free detection | Addresses information bottleneck, enhanced efficiency |
Variants | Small (s), Medium (m), Large (l), Extra Large (x) | V7, tiny, V7-W6 | Nano (n), Small (s), Medium (m), Large (l), XL (x) | Nano (n), Small (s), Compact (c), Extended (e) Medium (m) |
Special Features | High accuracy and efficiency | Trainable bag-of-freebies | Task alignment score, Distributional Focal Loss (DFL) | Generalized Efficient Layer Aggregation Network (GELAN) |
YOLO Model | F1 Score | Recall | Precision | Accuracy | mAP @ 0.5 |
---|---|---|---|---|---|
YOLOv5 | 84% | 94% | 100% | 81% | 0.888 |
YOLOv7 | 81% | 93% | 100% | 82% | 0.804 |
YOLOv8 | 85% | 90% | 100% | 83% | 0.855 |
YOLOv9 | 70% | 94% | 100% | 73% | 0.705 |
Author | Model Used for Detection | Results Reported | Speed of Detection |
---|---|---|---|
Shaoqing Ren et al. [11] | Faster R-CNN | PASCAL VOC 2007: Precision 99%, Recall 99%, mAP 99.9% | 5fps (on GPU) |
Tsung-Yi Lin et al. [13] | RetinaNet | COCO test-dev AP 39.1% | 5fps (ResNet-101-FPN backbone) |
Mingxing Tan et al. [65] | EfficientDet | COCO test-dev AP 55.1% (EfficientDet-D7) | 4x–11x faster than previous detectors |
Kaiming He et al. [66] | Fast R-CNN | PASCAL VOC 2012: mAP 99.7% | 5fps (on GPU) |
Current study | YOLO v5, v7, v8, and v9 | 81%,82%, 83%, 73% accuracy | 140fps, 150fps, 160fps, 180fps on GPU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukola, A.C.; Owolawi, P.A.; Du, C.; Van Wyk, E. A Systematic Review and Comparative Analysis Approach to Boom Gate Access Using Plate Number Recognition. Computers 2024, 13, 286. https://doi.org/10.3390/computers13110286
Bukola AC, Owolawi PA, Du C, Van Wyk E. A Systematic Review and Comparative Analysis Approach to Boom Gate Access Using Plate Number Recognition. Computers. 2024; 13(11):286. https://doi.org/10.3390/computers13110286
Chicago/Turabian StyleBukola, Asaju Christine, Pius Adewale Owolawi, Chuling Du, and Etienne Van Wyk. 2024. "A Systematic Review and Comparative Analysis Approach to Boom Gate Access Using Plate Number Recognition" Computers 13, no. 11: 286. https://doi.org/10.3390/computers13110286
APA StyleBukola, A. C., Owolawi, P. A., Du, C., & Van Wyk, E. (2024). A Systematic Review and Comparative Analysis Approach to Boom Gate Access Using Plate Number Recognition. Computers, 13(11), 286. https://doi.org/10.3390/computers13110286