The Use of Integrated Multichannel Records in Learning Studies in Higher Education: A Systematic Review of the Last 10 Years
Abstract
:1. Introduction
- What is the general state of scientific research on the use of multichannel records in learning studies in higher education?
- How have these technologies been used over the last 10 years in higher education?
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Methodological Quality Assessment
- -
- The objective of the research is clearly specified;
- -
- Addresses the use of integrated multichannel records in learning studies;
- -
- The results are useful for the research community;
- -
- The authors’ conclusions are supported by the data;
- -
- Recommendations are made for future research.
2.4. Selection of Studies
2.5. Data Extraction and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Montenegro-Rueda, M.; Fernández-Cerero, J.; Fernández-Batanero, J.M.; López-Meneses, E. Impact of the implementation of ChatGPT in education: A systematic review. Computers 2023, 12, 153. [Google Scholar] [CrossRef]
- Jamil, N.; Belkacem, A.N.; Lakas, A. On enhancing students’ cognitive abilities in online learning using brain activity and eye movements. Educ. Inf. Technol. 2023, 28, 4363–4397. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Varón, D.; Bellido-García, I.; Gupta, B.B. Análisis del estrés, atención, interés y conexión emocional en la enseñanza superior presencial y online: Un estudio neurotecnológico. Comun. Rev. Científica Iberoam. Comun. Educ. 2023, 76, 21–34. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, W.; Guo, X.; Lin, X.; Wu, C.; Zhu, T. Impacts of color coding on programming learning in multimedia learning: Moving toward a multimodal methodology. Front. Psychol. 2021, 12, 773328. [Google Scholar] [CrossRef] [PubMed]
- Pi, Z.; Zhang, Y.; Zhou, W.; Xu, K.; Chen, Y.; Yang, J.; Zhao, Q. Learning by explaining to oneself and a peer enhances learners’ theta and alpha oscillations while watching video lectures. Br. J. Educ. Technol. 2021, 52, 659–679. [Google Scholar] [CrossRef]
- Darvishi, A.; Khosravi, H.; Sadiq, S.; Weber, B. Neurophysiological measurements in higher education: A systematic literature review. Int. J. Artif. Intell. Educ. 2022, 32, 413–453. [Google Scholar] [CrossRef]
- Jamil, N.; Belkacem, A.N.; Ouhbi, S.; Guger, C. Cognitive and affective brain–computer interfaces for improving learning strategies and enhancing student capabilities: A systematic literature review. IEEE Access 2021, 9, 134122–134147. [Google Scholar] [CrossRef]
- Weber, B.; Fischer, T.; Riedl, R. Brain and automatic nervous system activity measurement in software engineering: A systematic literature revier. J. Syst. Softw. 2021, 178, 110946. [Google Scholar] [CrossRef]
- Alemdag, E.; Cagiltay, K. A systematic review of eye tracking research on multimedia learning. Comput. Educ. 2018, 125, 413–428. [Google Scholar] [CrossRef]
- Jarodzka, H.; Skuballa, I.; Gruber, H. Eye-tracking in educational practice: Investigating visual perception underlying teaching and learning in the classroom. Educ. Psychol. Rev. 2021, 33, 1–10. [Google Scholar] [CrossRef]
- Cuesta-Cambra, U.; Niño-González, J.I.; Rodríguez-Terceño, J.M. El procesamiento cognitivo en una app educativa con electroencefalograma y Eye Tracking. Comunicar 2017, 52, 41–50. [Google Scholar] [CrossRef]
- González-Diez, I.; Varela, C.; Sáiz-Manzanares, M.C. Use of Eye-Tracking Methodology for Learning in College Students: Systematic Review of Underlying Cognitive Processes. In Lecture Notes in Networks and Systems (LNNS); García Bringas, P., Pérez García, H., Martínez de Pisón, F.J., Martínez Álvarez, F., Troncoso Lora, A., Herrero, A., Calvo Rolle, J.L., Quintián, H., Corchado, E., Eds.; Springer: Cham, Switzerland, 2023; Volume 748, pp. 1–15. [Google Scholar] [CrossRef]
- Francisti, J.; Balogh, Z.; Reichel, J.; Magdin, M.; Koprda, Š.; Molnár, G. Application experiences using IoT devices in education. Appl. Sci. 2020, 10, 7286. [Google Scholar] [CrossRef]
- Sáiz-Manzanares, M.C.; Marticorena-Sánchez, R.; Martín-Antón, L.J.; González-Díez, I.; Carbonero-Martín, M.Á. Using Eye Tracking Technology to Analyse Cognitive Load in Multichannel Activities in University Students. Int. J. Hum.-Comput. Interact. 2023, 2023, 1–19. [Google Scholar] [CrossRef]
- Gui, Q.; Ruiz-Blondet, M.V.; Laszlo, S.; Jin, Z. A survey on brain biometrics. ACM Comput. Surv. 2019, 51, 1–38. [Google Scholar] [CrossRef]
- Tandle, A.L.; Joshi, M.S.; Dharmadhikari, A.S.; Jaizwall, S.W. Mental state and emotion detection from musically stimulated EEG. Brain Inf. 2018, 5, 14. [Google Scholar] [CrossRef]
- Kim, H.; Chae, Y.; Kim, S.; Im, C.H. Development of a Computer-Aided Education System Inspired by Face-to-Face Learning by Incorporating EEG-Based Neurofeedback Into Online Video Lectures. IEEE Trans. Learn. Technol. 2022, 16, 78–91. [Google Scholar] [CrossRef]
- Ramírez-Moreno, M.A.; Díaz-Padilla, M.; Valenzuela-Gómez, K.D.; Vargas-Martínez, A.; Tudón-Martínez, J.C.; Morales-Menendez, R.; Ramírez-Mendoza, R.A.; Pérez-Henríquez, B.L.; Lozoya-Santos, J.J. Eeg-based tool for prediction of university students’ cognitive performance in the classroom. Brain Sci. 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Ko, L.W.; Komarov, O.; Hairston, W.D.; Jung, T.P.; Lin, C.T. Sustained attention in real classroom settings: An EEG study. Front. Hum. Neurosci. 2017, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L. A tale of two classes: Tourism students’ cognitive loads and learning outcomes in face-to-face and online classes. J. Hosp. Leis. Sport Tour. Educ. 2021, 29, 100342. [Google Scholar] [CrossRef]
- Dahlstrom-Hakki, I.; Asbell-Clarke, J.; Rowe, E. Showing is knowing: The potential and challenges of using neurocognitive measures of implicit learning in the classroom. Mind Brain Educ. 2019, 13, 30–40. [Google Scholar] [CrossRef]
- Örün, Ö.; Akbulut, Y. Effect of multitasking, physical environment and electroencephalography use on cognitive load and retention. Comput. Hum. Behav. 2019, 92, 216–229. [Google Scholar] [CrossRef]
- Lin, F.R.; Kao, C.M. Mental effort detection using EEG data in E-learning contexts. Comput. Educ. 2018, 122, 63–79. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Multisubject “learning” for mental workload classification using concurrent EEG, fNIRS, and physiological measures. Front. Hum. Neurosci. 2017, 11, 389. [Google Scholar] [CrossRef]
- Zhou, T.; Cha, J.S.; Gonzalez, G.; Wachs, J.P.; Sundaram, C.P.; Yu, D. Multimodal physiological signals for workload prediction in robot-assisted surgery. ACM Trans. Hum.-Robot. Interact. 2020, 9, 1–26. [Google Scholar] [CrossRef]
- Xia, K.; Duch, W.; Sun, Y.; Xu, K.; Fang, W.; Luo, H.; Zhang, Y.; Sang, D.; Xu, X.; Wang, F.; et al. Privacy-preserving brain–computer interfaces: A systematic review. IEEE Trans. Comput. Soc. Syst. 2022, 10, 2312–2324. [Google Scholar] [CrossRef]
- Khademi, Z.; Ebrahimi, F.; Kordy, H.M. A review of critical challenges in MI-BCI: From conventional to deep learning methods. J. Neurosci. Methods 2023, 383, 109736. [Google Scholar] [CrossRef] [PubMed]
- Bolinski, F.; Etzelmüller, A.; De Witte, N.A.; van Beurden, C.; Debard, G.; Bonroy, B.; Cuijpers, P.; Riper, H.; Kleiboer, A. Physiological and self-reported arousal in virtual reality versus face-to-face emotional activation and cognitive restructuring in university students: A crossover experimental study using wearable monitoring. Behav. Res. Ther. 2021, 142, 103877. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xu, M.; Xiao, X.; Xu, F.; Ming, D. Detection of dynamic changes of electrodermal activity to predict the classroom performance of college students. Cogn. Neurodynam. 2023, 18, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, P.; Raes, A.; Morton, J.; Bombeke, K.; Van Acker, B.B.; Larmuseau, C.; Depaepe, F.; Van den Noortgate, W. Towards measuring cognitive load through multimodal physiological data. Cogn. Tech. Work 2021, 23, 567–585. [Google Scholar] [CrossRef]
- Jimenez-Molina, A.; Retamal, C.; Lira, H. Using psychophysiological sensors to assess mental workload during web browsing. Sensors 2018, 18, 458. [Google Scholar] [CrossRef] [PubMed]
- Sáiz-Manzanares, M.C.; Rodríguez-Díez, J.J.; Marticorena, R.; Zaparaín, M.J.; Cerezo, R. Lifelong Learning from Sustainable Education: An Analysis with Eye Tracking and Data Mining Techniques. Sustainability 2020, 12, 1970. [Google Scholar] [CrossRef]
- Sáiz-Manzanares, M.C.; Payo-Hernanz, R.; Zaparaín-Yáñez, M.J.; Andres-López, G.; Marticorena-Sánchez, R.; Calvo-Rodríguez, A.; Martín, C.; Rodríguez-Arribas, S. Eye-tracking Technology and Data-mining Techniques used for a Behavioral Analysis of Adults engaged in Learning Processes. J. Vis. Exp. 2021, 172, e62103. [Google Scholar] [CrossRef]
- Gemein, L.A.; Schirrmeister, R.T.; Chrabąszcz, P.; Wilson, D.; Boedecker, J.; Schulze-Bonhage, A.; Hutter, F.; Ball, T. Machine-learning-based diagnostics of EEG pathology. NeuroImage 2020, 220, 117021. [Google Scholar] [CrossRef] [PubMed]
- Sáiz-Manzanares, M.C.; Marticorena, R.; Arnáiz González, Á. Improvements for therapeutic intervention from the use of web applications and machine learning techniques in different affectations in children aged 0–6 years. Int. J. Environ. Res. Public Health 2022, 19, 6558. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, J.; Zhang, L.; Wei, Q. Motion imagery-BCI based on EEG and eye movement data fusion. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Maslova, O.; Komarova, Y.; Shusharina, N.; Kolsanov, A.; Zakharov, A.; Garina, E.; Pyatin, V. Non-invasive EEG-based BCI spellers from the beginning to today: A mini-review. Front. Hum. Neurosci. 2023, 17, 1216648. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Chiu, T.K.; Li, X. A scoping review of BCIs for learning regulation in mainstream educational contexts. Behav. Inf. Technol. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
- Hallett, M.; de Haan, W.; Deco, G.; Dengler, R.; Di Iorio, R.; Gallea, C.; Gerloff, C.; Grefkes, C.; Helmich, R.C.; Kringelbach, M.L.; et al. Human brain connectivity: Clinical applications for clinical neurophysiology. Clin. Neurophysiol. 2020, 131, 1621–1651. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, B. Review on portable EEG technology in educational research. Comput. Hum. Behav. 2018, 81, 340–349. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.; Rutjes, A.W.; Reitsma, J.B.; Bossuyt, P.M.; Kleijnen, J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med. Res. Methodol. 2003, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Munn, Z. JBI Manual of Evidence Synthesis; Joanna Briggs Institute: Adelaide, Australia, 2020. [Google Scholar]
- Munn, Z.; Tufanaru, C.; Aromataris, E. JBI’s systematic reviews: Data extraction and synthesis. AJN Am. J. Nurs. 2014, 114, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Cheng, M.; Xue, X.; Zhu, S. Effects of lecture video types on student learning: An analysis of eye-tracking and electroencephalography data. In Advances in Intelligent, Interactive Systems and Applications, Proceedings of the 3rd International Conference on Intelligent, Interactive Systems and Applications (IISA2018), HongKong, China, 29–30 June 2018; Xhafa, F., Patnaik, S., Tavana, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 498–505. [Google Scholar] [CrossRef]
- Lim, C.; Barragan, J.A.; Farrow, J.M.; Wachs, J.P.; Sundaram, C.P.; Yu, D. Physiological Metrics of Surgical Difficulty and Multi-Task Requirement during Robotic Surgery Skills. Sensors 2023, 23, 4354. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Lin, Y.; Guo, R.; Gao, X.; Zhang, S. ERP and Pupillometry Synchronization Analysis on Rapid Serial Visual Presentation of Words, Numbers, Pictures. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Role of subjective and objective measures of cognitive processing during learning in explaining the spatial contiguity effect. Learn. Instr. 2019, 61, 23–34. [Google Scholar] [CrossRef]
- Mutlu-Bayraktar, D.; Ozel, P.; Altindis, F.; Yilmaz, B. Relationship between objective and subjective cognitive load measurements in multimedia learning. Interact. Learn. Environ. 2023, 31, 1322–1334. [Google Scholar] [CrossRef]
- Qian, L.; Ge, X.; Feng, Z.; Wang, S.; Yuan, J.; Pan, Y.; Shi, H.; Xu, J.; Sun, Y. Brain Network Reorganization During Visual Search Task Revealed by a Network Analysis of Fixation-Related Potential. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Slevitch, L.; Chandrasekera, T.; Mejia-Puig, L.; Korneva, K.; Akosa, J.S. Virtual Reality images’ impact on cognition and affect in hotel promotions: Application of self-reported and psycho-physiological measures. J. Hosp. Tour. Manag. 2022, 53, 176–187. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S. Understanding Reading Comprehension in Multi-display Presenting System: Visual Distribution and Cognitive Effect. In Communications in Computer and Information Science; Stephanidis, C., Ed.; Springer: Cham, Switzerland, 2017; Volume 714, pp. 207–214. [Google Scholar] [CrossRef]
Topic | Search Terms |
---|---|
Eye tracking | “eye tracking” OR “eye-tracking” OR “seguimiento ocular” |
Galvanic skin response | “GSR” OR “respuesta galvánica de la piel” OR “galvanic skin response” OR “actividad electrodérmica” OR “electrodermal activity” OR “conductancia de la piel” OR “skin conductance” |
Electroencephalogram | “EEG” OR “electroencefalograma” OR “electroencephalogram” OR “electroencefalografía” OR “electroencephalography” |
Higher education | “educación superior” OR “higher education” OR “college student*” OR “college” OR “university” |
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Publication period | Published between 2013 and the present (November 2023) | Published before 2013 |
Population | Higher education students | Population other than higher education students |
Methodology | Use of at least two neurotechnological instruments to extract data | Use of other instruments or just one neurotechnological device |
Research topic | Educational context | Fields other than education |
Authors/Year | Country | N | Women (%) | Age (M, SD/Range) (Years) |
---|---|---|---|---|
Cao et al. (2019) [46] | China | 62 | 59.7% | - |
Juárez-Varón et al. (2023) [3] | Spain | 20 | 50% | 22–25 |
Lim et al. (2023) [47] | United States of America (USA) | 10 | 20% | 25 (1.2) |
Liu et al. (2021) [4] | China | 42 | 38.1% | 20.81 (1.13) |
Luo et al. (2023) [48] | China | 20 | 50% | 19–24 |
Makransky et al. (2019) [49] | Denmark | 78 | 60.3% | 23.59 (3.46) 19–45 |
Mutlu-Bayraktar et al. (2023) [50] | Turkey | 20 | 50% | 20.5 (3.45) 19–34 |
Quian et al. (2023) [51] | China | 70 | 50% | 22.4 (2.3) |
Slevitch et al. (2022) [52] | USA | 60 | 80% | - |
Zhang and Liu (2017) [53] | China | 34 | 50% | - |
Authors/Year | General Objective | Biometric Techniques Used | Cognitive Processes Analyzed | Main Conclusion |
---|---|---|---|---|
Cao et al. (2019) [46] | Examining the effect of different lecture video types on student learning | Eye tracking EEG | Attention Cognitive load | The presence of teachers influences student concentration and attention, and perceived satisfaction is related to student learning |
Juárez-Varón et al. (2023) [3] | Record and analyze the effect of relevant variables in the learning process in in-person and online contexts | Eye tracking GSR EEG | Attention Interest Stress Engagement | Less effectiveness of online learning compared to in-person learning in terms of brain signals |
Lim et al. (2023) [47] | Understand how multitasking requirements contribute to the prediction of cognitive load in robot-assisted surgery under different task difficulties | Eye tracking EEG Heart Rate Variability (HVR) | Cognitive load | EEG and eye tracking measures differ in different multitasking difficulties and requirements, but HRV only provides significant differences in multitasking requirements |
Liu et al. (2021) [4] | Determine the effect of color coding on learning programming in multimedia learning | Eye tracking EEG | Cognitive load Cognitive processing | There are benefits to using color coding when learning programming during multimedia learning |
Luo et al. (2023) [48] | Investigate the fusion methods between EEG and eye tracking in Rapid Serial Visual Presentations (RSVPs) | Eye tracking EEG | Recognition Cognitive load | The higher complexity of pictures (words and numbers vs. pictures) required a higher level of cognitive process |
Makransky et al. (2019) [49] | Investigate the potential of combining subjective and objective measures of learning processes in multimedia learning | Eye tracking EEG | Cognitive load Cognitive processing | Subjective and objective measures of cognitive load can provide different information to test the theoretical mechanisms involved in multimedia learning |
Mutlu-Bayraktar et al. (2023) [50] | Compare subjective and objective cognitive load measurements in a multimedia learning environment | Eye tracking EEG | Cognitive load | A relationship was found between fixations and EEG frequency bands, but not between self-reported measures and biometric measures |
Quian et al. (2023) [51] | Investigate brain interaction patterns during the visual search process | Eye tracking EEG | Visual search (perception) | Potential gender differences in visual search tasks |
Slevitch et al. (2022) [52] | Provide more empirical evidence and investigate whether more immersive and engaging 360° virtual reality (VR) images would be more effective than static VR images in hotel promotions | Eye tracking Functional Near-Infrared Spectroscopy (fNIR) GSR HRV | Cognitive load Affective responses Attitudinal and behavioral intention responses | Differences in arousal reflect greater immersion and engagement in 360° VR images, but no differences were found using self-report measures, except in the temporal dimension of cognitive load |
Zhang and Liu (2017) [53] | Investigate students’ reading comprehension and changes in cognitive load with a multi-screen presentation system | Eye tracking EEG | Reading comprehension Cognitive load | The multi-screen presentation system has a positive effect on comprehension and attention levels. The text-only and text-image formats attracted more attention and took more time than the image-only format in both presentations |
EEG | 9 | |||
GSR | 2 | 2 | ||
HRV | 2 | 1 | 1 | |
fNRI | 1 | 0 | 1 | 1 |
Eye tracking | EEG | GSR | HRV |
Cognitive Processes | Attention | Cognitive Load |
---|---|---|
Cognitive load | 1 | - |
Stress | 1 | |
Interest | 1 | |
Engagement | 1 | |
Cognitive processing | 1 | |
Recognition | 1 | |
Visual search | - | - |
Reading comprehension | 1 | |
Affective responses | 1 | |
Attitudinal and behavioral intention responses | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Díez, I.; Varela, C.; Sáiz-Manzanares, M.C. The Use of Integrated Multichannel Records in Learning Studies in Higher Education: A Systematic Review of the Last 10 Years. Computers 2024, 13, 96. https://doi.org/10.3390/computers13040096
González-Díez I, Varela C, Sáiz-Manzanares MC. The Use of Integrated Multichannel Records in Learning Studies in Higher Education: A Systematic Review of the Last 10 Years. Computers. 2024; 13(4):96. https://doi.org/10.3390/computers13040096
Chicago/Turabian StyleGonzález-Díez, Irene, Carmen Varela, and María Consuelo Sáiz-Manzanares. 2024. "The Use of Integrated Multichannel Records in Learning Studies in Higher Education: A Systematic Review of the Last 10 Years" Computers 13, no. 4: 96. https://doi.org/10.3390/computers13040096
APA StyleGonzález-Díez, I., Varela, C., & Sáiz-Manzanares, M. C. (2024). The Use of Integrated Multichannel Records in Learning Studies in Higher Education: A Systematic Review of the Last 10 Years. Computers, 13(4), 96. https://doi.org/10.3390/computers13040096