Optimizing Natural Image Quality Evaluators for Quality Measurement in CT Scan Denoising
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Dataset
2.2. Denoising CNN
2.3. Full Reference Image Quality Evaluators
2.4. Blind/No Reference Evaluators
2.5. Natural Image Quality Evaluator (NIQE)
2.6. Performance Indicators
3. Results
3.1. CNN Trainings
3.2. Improvement Scores of the Full Reference Evaluators
3.3. Average Improvement Scores on NIQE
3.4. Quantitative Analysis of Improvement Scores on NIQE
3.5. Detailed Quantitative Observation on [16 × 16] Patch
4. Discussion
4.1. Average NIQE Scoring on the New Dataset
4.2. Qualitative Analysis of the New Dataset
4.3. Overall NIQE Performance Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef]
- Aberle, D.R.; Abtin, F.; Brown, K. Computed Tomography Screening for Lung Cancer: Has It Finally Arrived? Implications of the National Lung Screening Trial. J. Clin. Oncol. 2013, 31, 1002–1008. [Google Scholar] [CrossRef]
- Zeng, D.; Huang, J.; Huang, H.; Bian, Z.; Niu, S.; Zhang, Z.; Feng, Q.; Chen, W.; Ma, J. Spectral CT Image Restoration via an Average Image-Induced Nonlocal Means Filter. IEEE Trans. Biomed. Eng. 2016, 63, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
- Schaap, M.; Schilham, A.M.R.; Zuidervelt, K.J.; Prokop, M.; Vonken, E.; Niessen, W.J. Fast Noise Reduction in Computed Tomography for Improved 3-D Visualization. IEEE Trans. Med. Imaging 2008, 27, 1120–1129. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, R.; Tran, Y.; Zheng, J.; Nguyen, H.; Chai, R. Image Recovery from Synthetic Noise Artifacts in CT Scans Using Modified U-Net. Sensors 2022, 22, 7031. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, R.; Tran, Y.; Nguyen, H.; Zheng, J.; Chai, R. Implementing Natural Image Quality Evaluator for Performance Indicator on Noise Artefacts Recovery in CT Scan. In Proceedings of the 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; p. 4. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Appina, B. A ‘Complete Blind’ No-Reference Stereoscopic Image Quality Assessment Algorithm. In Proceedings of the 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020. [Google Scholar]
- Zhang, L.; Zhang, L.; Bovik, A.C. A Feature-Enriched Completely Blind Image Quality Evaluator. IEEE Trans. Image Process 2015, 24, 2579–2591. [Google Scholar] [CrossRef] [PubMed]
- Rubel, A.; Ieremeiev, O.; Lukin, V.; Fastowicz, J.; Okarma, K. Combined No-Reference Image Quality Metrics for Visual Quality Assessment Optimized for Remote Sensing Images. Appl. Sci. 2022, 12, 1986. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Teng, X.; Chen, D. LPMsDE: Multi-Scale Denoising and Enhancement Method Based on Laplacian Pyramid Framework for Forward-Looking Sonar Image. IEEE Access 2023, 11, 132942–132954. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Zhang, Y.; Guo, J.; Wu, Y. A Noise-Robust Blind Deblurring Algorithm with Wavelet-Enhanced Diffusion Model for Optical Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 16236–16254. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, H.; Ma, Z.; Xu, Y.; Tang, R.; Sun, J. Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration. IEEE Trans. Multimed. 2021, 23, 3877–3891. [Google Scholar] [CrossRef]
- Harron, N.A.; Osman, N.F.; Sulaiman, S.N.; Karim, N.K.; Ismail, A.P.; Soh, Z.H.C. An Image Denoising Model using Deep Learning for Digital Breast Tomosynthesis Images. In Proceedings of the 13th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 23 July 2022. [Google Scholar]
- Dhore, S.; Abin, D. Chest X-ray Segmentation Using Watershed and Super Pixel Segmentation Technique. In Proceedings of the 2021 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 25–27 June 2021. [Google Scholar]
- Pankaj, D.; Govind, D.; Narayanankutty, K.A. Edge Preserved Herringbone Artifact Removal from MRI Using Two-Stage Variational Mode Decomposition. In Proceedings of the 2019 National Conference on Communications (NCC), Bangalore, India, 20–23 February 2019. [Google Scholar]
- Outtas, M.; Zhang, L.; Deforges, O.; Hammidouche, W.; Sriri, A.; Cavaro-Menard, C. A study on the usability of opinion-unaware no-reference natural image quality metrics in the context of medical images. In Proceedings of the International Symposium on Signal, Image, Video and Communications (ISIVC), Tunis, Tunisia, 21–23 November 2016. [Google Scholar]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Chen, B.; Holmes, D.R.I.; Duan, X.; Yu, Z.; Yu, L.; Leng, S.; Fletcher, J.G. Low Dose CT Image and Projection Data (LDCT-and-Projection-data) (Version 4) [Data set]. Cancer Imaging Arch. 2020. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005. [Google Scholar]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, F.; Fan, H.; Zhang, C. Brief review of image denoising techniques. Vis. Comput. Ind. Biomed. Art 2019, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015. [Google Scholar]
- Damera-Venkata, N.; Kite, T.D.; Geisler, W.S.; Evans, B.L.; Bovik, A.C. Image Quality Assessment Based on a Degradation Model. IEEE Trans. Image Process 2000, 9, 636–650. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, X.; Wang, W.; Xue, W. Edge Strength Similarity for Image Quality Assessment. IEEE Signal Process. Lett. 2013, 20, 319–322. [Google Scholar] [CrossRef]
- Varga, D. Saliency-Guided Local Full-Reference Image Quality Assessment. Signals 2022, 3, 483–496. [Google Scholar] [CrossRef]
- Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003. [Google Scholar]
- Pu, Y.; Wang, W.; Xu, Q. Image Change Detection Based on the Minimum Mean Square Error. In Proceedings of the Fifth International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012. [Google Scholar]
- Abdusalomov, A.B.; Nasimov, R.; Nasimova, N.; Muminov, B.; Whangbo, T.K. Evaluating Synthetic Medical Images Using Artificial Intelligence with the GAN Algorithm. Sensors 2023, 23, 3440. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, J.; You, J. Peak signal-to-noise ratio revisited: Is simple beautiful? In Proceedings of the Fourth International Workshop on Quality of Multimedia Experience, Melbourne, Australia, 5–7 July 2012. [Google Scholar]
- Kushwaha, S.; Amuthachenthiru, K.; Geetha, K.; Narasimharao, J.; Kumar, D.; Gadde, S.S. Development of Advanced Noise Filtering Techniques for Medical Image Enhancement. In Proceedings of the 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 11–12 March 2024. [Google Scholar]
- Deepa, B.; Sumithra, M.G. Comparative analysis of noise removal techniques in MRI brain images. In Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015. [Google Scholar]
- Taassori, M.; Vizvari, B. Enhancing Medical Image Denoising: A Hybrid Approach Incorporating Adaptive Kalman Filter and Non-Local Means with Latin Square Optimization. Electronics 2024, 13, 2640. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Venkatanath, N.; Praneeth, D.; Chandrasekhar, M.; Channappayya, S.; Medasani, S.S. Blind image quality evaluation using perception based features. In Proceedings of the 21st National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015. [Google Scholar]
- Zamani, M.; Azar, F.T. No Reference Image Quality Assessment Based on DCT and SOM Clustering. IEEE Access 2024, 12, 47258–47270. [Google Scholar] [CrossRef]
- Athar, S.; Wang, Z. A Comprehensive Performance Evaluation of Image Quality Assessment Algorithms. IEEE Access 2019, 7, 140030. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Dang, M.; Liu, J.; Xiang, R.; Tian, Y.; Luo, N. True wide convolutional neural network for image denoising. Inf. Sci. 2022, 610, 171–184. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Gurrola-Ramos, J.; Dalmau, O.; Alarcon, T.E. A Residual Dense U-Net Neural Network for Image Denoising. IEEE Access 2021, 9, 31742–31754. [Google Scholar] [CrossRef]
- Kumar, S.; Kurmi, Y. CNN-based denoising system for the image quality enhancement. Multimed. Tools Appl. 2022, 81, 20147–20174. [Google Scholar] [CrossRef]
CNN | Average Improvement Scores | ||
---|---|---|---|
MSE | PSNR | SSIM | |
U-Net | −36,869.51 | 10.04 | 0.0108 |
Seg-Net | −36,536.65 | 9.62 | 0.0108 |
DeConv-Net | −36,477.61 | 9.55 | 0.0108 |
DU-Net | −37,217.25 | 10.59 | 0.0111 |
[Patch]−Contrast | Average NIQE Scoring | |||
---|---|---|---|---|
U-Net | Seg-Net | DeConv-Net | DU-Net | |
[8 × 8]−0.2 | −1.44 | −1.51 | −1.53 | −1.57 |
[8 × 8]−0.4 | −2.15 | −2.25 | −2.26 | −2.22 |
[8 × 8]−0.6 | −2.67 | −2.78 | −2.76 | −2.69 |
[8 × 8]−0.8 | −6.03 | −6.39 | −6.14 | −6.06 |
[16 × 16]−0.2 | −0.90 | −0.68 | −0.74 | −1.12 |
[16 × 16]−0.4 | −1.89 | −1.77 | −1.81 | −2.03 |
[16 × 16]−0.6 | −3.68 | −3.72 | −3.74 | −3.79 |
[16 × 16]−0.8 | −8.17 | −8.40 | −8.32 | −8.18 |
[32 × 32]−0.2 | 0.37 | 0.58 | 0.49 | 0.17 |
[32 × 32]−0.4 | −0.61 | −0.29 | −0.39 | −0.73 |
[32 × 32]−0.6 | −2.97 | −2.82 | −2.90 | −3.03 |
[32 × 32]−0.8 | −11.99 | −11.77 | −11.98 | −11.69 |
[64 × 64]−0.2 | −0.69 | −0.74 | −0.77 | −0.90 |
[64 × 64]−0.4 | −2.34 | −2.32 | −2.34 | −2.45 |
[64 × 64]−0.6 | −9.30 | −9.32 | −9.42 | −9.40 |
[64 × 64]−0.8 | −41.42 | −41.84 | −42.04 | −41.66 |
[128 × 128]−0.2 | −20.91 | −21.32 | −21.32 | −21.28 |
[128 × 128]−0.4 | −30.26 | −30.80 | −30.82 | −30.43 |
[128 × 128]−0.6 | −57.32 | −57.86 | −57.90 | −57.49 |
[128 × 128]−0.8 | −115.38 | −116.93 | −117.10 | −116.57 |
[16 × 32]−0.2 | −0.23 | 0.02 | −0.08 | −0.54 |
[16 × 32]−0.4 | −1.41 | −1.22 | −1.30 | −1.66 |
[16 × 32]−0.6 | −3.19 | −3.10 | −3.17 | −3.32 |
[16 × 32]−0.8 | −10.57 | −11.18 | −11.25 | −10.94 |
[32 × 16]−0.2 | 0.37 | 0.58 | 0.49 | 0.17 |
[32 × 16]−0.4 | −1.12 | −0.83 | −0.90 | −1.18 |
[32 × 16]−0.6 | −2.70 | −2.38 | −2.43 | −2.66 |
[32 × 16]−0.8 | −6.36 | −6.41 | −6.11 | −6.34 |
[Patch]−Contrast | Number of Improved Testing Images | |||
---|---|---|---|---|
U-Net | Seg-Net | DeConv-Net | DU-Net | |
[8 × 8]−0.2 | 651 | 651 | 651 | 652 |
[16 × 16]−0.2 | 450 | 426 | 446 | 489 |
[16 × 16]−0.4 | 626 | 625 | 632 | 635 |
[16 × 16]−0.6 | 648 | 653 | 645 | 645 |
[32 × 32]−0.4 | 362 | 324 | 348 | 391 |
[32 × 32]−0.6 | 447 | 445 | 452 | 467 |
[64 × 64]−0.2 | 381 | 396 | 401 | 411 |
[64 × 64]−0.4 | 422 | 436 | 436 | 439 |
[16 × 32]−0.2 | 359 | 314 | 330 | 387 |
[16 × 32]−0.4 | 511 | 504 | 523 | 567 |
[16 × 32]−0.6 | 571 | 568 | 579 | 591 |
[32 × 16]−0.4 | 461 | 439 | 434 | 471 |
[Patch]−Contrast | Number of Testing Images−Best Score on DU-Net |
---|---|
[8 × 8]−0.2 | 384 |
[16 × 16]−0.4 | 526 |
[16 × 16]−0.6 | 339 |
[16 × 32]−0.6 | 376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawan, R.; Tran, Y.; Zheng, J.; Nguyen, H.; Chai, R. Optimizing Natural Image Quality Evaluators for Quality Measurement in CT Scan Denoising. Computers 2025, 14, 18. https://doi.org/10.3390/computers14010018
Gunawan R, Tran Y, Zheng J, Nguyen H, Chai R. Optimizing Natural Image Quality Evaluators for Quality Measurement in CT Scan Denoising. Computers. 2025; 14(1):18. https://doi.org/10.3390/computers14010018
Chicago/Turabian StyleGunawan, Rudy, Yvonne Tran, Jinchuan Zheng, Hung Nguyen, and Rifai Chai. 2025. "Optimizing Natural Image Quality Evaluators for Quality Measurement in CT Scan Denoising" Computers 14, no. 1: 18. https://doi.org/10.3390/computers14010018
APA StyleGunawan, R., Tran, Y., Zheng, J., Nguyen, H., & Chai, R. (2025). Optimizing Natural Image Quality Evaluators for Quality Measurement in CT Scan Denoising. Computers, 14(1), 18. https://doi.org/10.3390/computers14010018