New Predictive Models for the Computation of Reinforced Concrete Columns Shear Strength
Abstract
:1. Introduction
2. Crucial Behavior Parameters
3. Dataset Collection
4. Machine Learning Algorithms
- ➢
- Linear Regression (LRegr): The simplest regression model in ML is called linear regression, and it assumes that the relationship between the input and output variables is best described by a straight line (linear function). This method is used as a base numerical technique, and it is compared to the more advanced ML algorithms.
- ➢
- Nonlinear Regression (NLRegr): In nonlinear regression, Ruckstuhl (2016) [33] states that functions with nonlinear parameters are utilized. Such a function was frequently drawn from theory. Markou et al. (2024) [29] proposed POLYRG-HYT with advanced predictive features; thus, it is adopted herein for the needs of the numerical analysis.
- ➢
- Extreme Gradient Boosting (XGBoost): The XGBoost algorithm was proposed by Chen and Guestrin (2016) [34] in order to accelerate the GBM algorithm, which is currently highly difficult to implement owing to its sequential model training. XGBoost uses numerous strategies for surpassing GBM in speed. For example, the randomization technique is used to reduce overfitting and increase training speed. A compressed column-based structure is also used to store data to reduce the cost of sorting which is the most time-consuming part of tree learning. For the needs of this research work, the XGBoost-HYT-CV is adopted as presented by Markou et al. (2024) [29].
- Maximum number of XGBoost rounds ∈ [10, 20, …, 1000];
- Maximum tree depth ∈ [1,7,15];
- Learning rate eta ∈ [0.05, 0.2, 0.5];
- Colsample_bytree ∈ [0.5, 1];
- Subsample ∈ [0.5, 1].
5. Investigation of the Proposed and Existent Formulae
5.1. Proposed Predictive Models
5.2. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Organization of Seismic Planning and Protection (OASP). Regulation of Interventions (KAN.EPE.), 2nd ed.; OASP: Athens, Greece, 2014. [Google Scholar]
- Berry, M.; Parrish, M.; Eberhard, M. PEER Structural Performance Database User’s Manual (Version 1.0); PEER Center, University of California: Berkeley, CA, USA, 2004. [Google Scholar]
- Aschheim, M.; Moehle, J.P. Shear Strength and Deformability of RC Bridge Columns Subjected to Inelastic Cyclic Displacements; Report No. PEER 1992/02; California Department of Transportation: Sacramento, CA, USA, 1992. [Google Scholar]
- Priestley, M.J.N.; Verma, R.; Xiao, Y. Seismic shear strength of reinforced concrete columns. J. Struct. Eng. 1994, 120, 2310–2319. [Google Scholar] [CrossRef]
- Lynn, A.C.; Moehle, J.P. Seismic Evaluation of Existing Reinforced Concrete Building Columns. Master’s Thesis, University of California, Berkeley, CA, USA, 2001. [Google Scholar]
- Elwood, K.J.; Moehle, J.P. Drift capacity of reinforced concrete columns with light transverse reinforcement. Earthq. Spectra 2005, 21, 71–89. [Google Scholar] [CrossRef]
- Sezen, H.; Moehle, J.P. Shear strength model for lightly reinforced concrete columns. J. Struct. Eng. 2004, 130, 1692–1703. [Google Scholar] [CrossRef]
- Sasani, M. Shear strength and deformation capacity models for RC columns. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Markou, G.; Bakas, N.P. Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis. Comput. Concr. 2021, 28, 433–447. [Google Scholar]
- Nguyen, T.A.; Pham, N.M.; Vo, T.C.; Nguyen, D.D. Assessment of shear strength models of reinforced concrete columns. Eng. Technol. Appl. Sci. Res. 2022, 12, 9440–9444. [Google Scholar] [CrossRef]
- EN 1998-3:2005; Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- Jiang, J.; Cui, Y.; Han, Z. Experimental study and analysis-oriented model of PET FRP confined ECC cylinders under monotonic axial compression. Eng. Struct. 2023, 280, 115610. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI). Building Code Requirements for Structural Concrete (ACI Committee 318); ACI: Farmington Hills, MI, USA, 2011. [Google Scholar]
- GB 50010–2010; Code for Design of Concrete Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). Architecture and Building Press of China: Beijing, China, 2010.
- Yu, B.; Liu, S.; Li, B. Probabilistic calibration for shear strength models of reinforced concrete columns. J. Struct. Eng. 2019, 145, 04019026. [Google Scholar] [CrossRef]
- Ma, C.; Deng, Z.; Chang, X.; Zhou, L.; Pan, K.-M.; Zeng, J.-J. Shear capacity model of rectangular RC columns based on Bayesian update. Structures 2024, 61, 106096. [Google Scholar] [CrossRef]
- Coşgun, C. Machine learning for the prediction of evaluation of existing reinforced concrete structures performance against earthquakes. Structures 2023, 48, 1994–2003. [Google Scholar] [CrossRef]
- Kazemi, F.; Asgarkhani, N.; Jankowski, R. Machine learning-based seismic response and performance assessment of reinforced concrete buildings. Arch. Civ. Mech. Eng. 2023, 23, 94. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, X.; Li, Y.; He, D.; Du, X. Rapid seismic damage state assessment of RC frames using machine learning methods. J. Build. Eng. 2023, 65, 105797. [Google Scholar] [CrossRef]
- Phan, V.-T.; Tran, V.-L.; Nguyen, V.-Q.; Nguyen, D.-D. Machine learning models for predicting shear strength and identifying failure modes of rectangular RC columns. Buildings 2022, 12, 1493. [Google Scholar] [CrossRef]
- ASCE/SEI 41-13; Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE): Reston, VA, USA, 2014.
- Pardalopoulos, S.J.; Thermou, G.E.; Pantazopoulou, S.J. Preliminary seismic assessment method for identifying RC structural failures. Comput. Methods Earthq Eng. 2013, 2, 111–128. [Google Scholar]
- Tran, C.T.N.; Li, B. Shear strength model for reinforced concrete columns with low transverse reinforcement ratios. Adv. Struct. Eng. 2014, 17, 1373–1385. [Google Scholar] [CrossRef]
- Aval, S.B.; Ketabdari, H.; Gharebaghi, S.A. Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming. Structures 2017, 12, 13–23. [Google Scholar] [CrossRef]
- Pardalopoulos, S.J.; Thermou, G.E.; Pantazopoulou, S.J. Rapid preliminary seismic assessment methodology for non-conforming reinforced concrete buildings. In Proceedings of the ECCOMAS Thematic Conference—COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference Programme, Corfu, Greece, 25–28 May 2011. [Google Scholar]
- Ioannou, A.; Pantazopoulou, S.J.; Georgiou, A.; Illampas, R. Limit states behaviour (or failure) of reinforced concrete columns. In Proceedings of the Hellenic Concrete Conference, Athens, Greece, 29–31 March 2018. [Google Scholar]
- Tureyen, A.K.; Robert, J.F. Concrete shear strength: Another perspective. ACI Struct. J. 2003, 100, 609–615. [Google Scholar] [CrossRef]
- Kim, C.-G.; Park, H.-G.; Eom, T.-S. Cyclic load test and shear strength degradation model for columns with limited ductility tie details. J. Struct. Eng. 2019, 145, 04018249. [Google Scholar] [CrossRef]
- Markou, G.; Bakas, N.P.; Chatzichristofis, S.A.; Papadrakakis, M. General framework of high-performance machine learning algorithms: Application in structural mechanics. Comput. Mech. 2024, 73, 705–729. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bakas, N.P.; Langousis, A.; Nicolaou, M.; Chatzichristofis, S.A. A gradient-free neural network framework based on universal approximation theorem. arXiv 2019, arXiv:1909.13563. [Google Scholar]
- Gravett, Z.D.; Mourlas, C.; Taljaard, V.L.; Bakas, P.N.; Markou, G.; Papadrakakis, M. New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs. Soil Dyn. Earthq. Eng. 2021, 144, 106656. [Google Scholar] [CrossRef]
- Ruckstuhl, A. Introduction to Nonlinear Regression; IDP Institut für Datenanalyse und Prozessdesign, ZHAW: Zurich, Switzerland, 2016. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hariri-Ardebili, M. Risk, reliability, resilience (R3) and beyond in dam engineering: A state-of-the-art review. Int. J. Disaster Risk Reduct. 2018, 31, 806–831. [Google Scholar] [CrossRef]
References | Description of Models |
---|---|
EN1998-3, 2005 [11] | |
Pardalopoulos et al. (2013) [22] | |
ASCE/SEI 41-13 (2014) [21] |
Reference | Test | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (%) | (%) | (MPa) | (MPa) | (MPa) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
() | |||||||||||||||
1 | Lynn et al. (1996) | 3SLH18 | 1473.0 | 457.0 | 2946.0 | 38.1 | 9.5 | 457.0 | 0.1 | 3.0 | 331.0 | 400.0 | 25.6 | 503.0 | 270.0 |
2 | Lynn et al. (1996) | 3CMD12 | 1473.0 | 457.0 | 2946.0 | 38.1 | 9.5 | 305.0 | 0.2 | 3.0 | 331.0 | 400.0 | 27.7 | 1512.0 | 355.0 |
3 | Lynn et al. (1996) | 3CMH18 | 1473.0 | 457.0 | 2946.0 | 38.1 | 9.5 | 457.0 | 0.1 | 3.0 | 331.0 | 400.0 | 27.7 | 1512.0 | 328.0 |
4 | Henkhaus et al., 2013 | B1 | 736.5 | 457.0 | 1473.0 | 35.0 | 9.5 | 457.0 | 0.1 | 1.5 | 455.0 | 490.0 | 20.0 | 1545.5 | 565.5 |
5 | Henkhaus et al., 2013 | B2 | 736.5 | 457.0 | 1473.0 | 35.0 | 6.4 | 203.0 | 0.1 | 1.5 | 455.0 | 455.0 | 19.3 | 1531.7 | 317.2 |
6 | Henkhaus et al., 2013 | B3 | 736.5 | 457.0 | 1473.0 | 35.0 | 9.5 | 457.0 | 0.1 | 1.5 | 455.0 | 490.0 | 22.1 | 969.3 | 562.3 |
7 | Henkhaus et al., 2013 | B4 | 736.5 | 457.0 | 1473.0 | 35.0 | 9.5 | 457.0 | 0.1 | 2.5 | 441.0 | 490.0 | 24.1 | 2164.3 | 771.2 |
8 | Henkhaus et al., 2013 | B5 | 736.5 | 457.0 | 1473.0 | 35.0 | 9.5 | 457.0 | 0.1 | 2.5 | 441.0 | 490.0 | 23.4 | 2248.1 | 699.4 |
9 | Henkhaus et al., 2013 | B6 | 1473.0 | 457.0 | 2946.0 | 35.0 | 9.5 | 305.0 | 0.2 | 2.5 | 490.0 | 469.0 | 27.6 | 634.1 | 334.2 |
10 | Henkhaus et al., 2013 | B7 | 1473.0 | 457.0 | 2946.0 | 35.0 | 9.5 | 305.0 | 0.2 | 2.5 | 490.0 | 469.0 | 28.3 | 650.1 | 331.7 |
11 | Henkhaus et al., 2013 | B8 | 1473.0 | 457.0 | 2946.0 | 35.0 | 9.5 | 305.0 | 0.1 | 2.5 | 490.0 | 469.0 | 29.0 | 666.2 | 336.7 |
12 | Zhou et al., 1987 | 104-08 | 160.0 | 160.0 | 320.0 | 12.5 | 5.0 | 40.0 | 0.7 | 2.2 | 341.0 | 559.0 | 19.8 | 406.0 | 82.7 |
13 | Zhou et al., 1987 | 114-08 | 160.0 | 160.0 | 320.0 | 12.5 | 5.0 | 40.0 | 0.7 | 2.2 | 341.0 | 559.0 | 28.8 | 406.0 | 91.3 |
14 | Kim et al., 2018 | SBd2 | 1200.0 | 400.0 | 1200.0 | 40.0 | 12.7 | 165.0 | 0.4 | 2.5 | 571.0 | 500.0 | 32.0 | 870.4 | 340.2 |
15 | Kim et al., 2018 | SBd4 | 1200.0 | 400.0 | 1200.0 | 40.0 | 12.7 | 82.0 | 0.8 | 2.5 | 571.0 | 500.0 | 32.0 | 870.4 | 326.9 |
16 | Kim et al., 2018 | SCd2 | 1200.0 | 400.0 | 1200.0 | 40.0 | 12.7 | 165.0 | 0.4 | 2.5 | 571.0 | 500.0 | 32.0 | 870.4 | 325.4 |
17 | Kim et al., 2018 | SDd2 | 1200.0 | 400.0 | 1200.0 | 40.0 | 12.7 | 165.0 | 0.4 | 2.5 | 571.0 | 500.0 | 32.0 | 512.0 | 319.0 |
18 | Kim et al., 2018 | SDd4 | 1200.0 | 400.0 | 1200.0 | 40.0 | 12.7 | 82.0 | 0.8 | 2.5 | 571.0 | 500.0 | 32.0 | 870.4 | 326.9 |
19 | Kim et al., 2018 | RFd2 | 1200.0 | 250.0 | 1200.0 | 40.0 | 9.5 | 105.0 | 0.8 | 2.4 | 566.0 | 530.0 | 32.0 | 870.4 | 220.2 |
20 | Nagasaka 1982 | HPRC10-63 | 300.0 | 200.0 | 600.0 | 12.0 | 5.5 | 35.0 | 0.7 | 1.3 | 371.0 | 344.0 | 21.0 | 146.9 | 86.9 |
21 | Arakawa et al., 1989 | OA2 | 225.0 | 180.0 | 450.0 | 10.0 | 4.0 | 64.3 | 0.2 | 3.1 | 340.0 | 249.0 | 31.8 | 189.6 | 130.6 |
22 | Arakawa et al., 1989 | OA5 | 225.0 | 180.0 | 450.0 | 10.0 | 4.0 | 64.3 | 0.2 | 3.1 | 340.0 | 249.0 | 33.0 | 475.8 | 134.0 |
23 | Umehara and Jirsa 1982 | CUS | 455.0 | 410.0 | 910.0 | 25.0 | 6.0 | 89.0 | 0.3 | 3.0 | 441.0 | 414.0 | 34.9 | 533.2 | 322.7 |
24 | Umehara and Jirsa 1982 | CUW | 455.0 | 230.0 | 910.0 | 25.0 | 6.0 | 56.0 | 0.3 | 3.0 | 441.0 | 414.0 | 34.9 | 533.2 | 255.3 |
25 | Umehara and Jirsa 1982 | 2CUS | 410.0 | 410.0 | 230.0 | 25.0 | 6.0 | 89.0 | 0.3 | 3.0 | 441.0 | 414.0 | 42.0 | 1069.4 | 409.4 |
26 | Bet et al., 1985 | 1_1 | 305.0 | 305.0 | 305.0 | 25.0 | 6.0 | 210.0 | 0.2 | 2.4 | 462.0 | 414.0 | 29.9 | 289.3 | 213.6 |
27 | Aboutaha et al., 1999 | SC3 | 457.2 | 457.2 | 914.4 | 38.0 | 9.5 | 406.4 | 0.1 | 1.9 | 434.0 | 400.0 | 21.9 | 0.0 | 407.0 |
28 | Aboutaha et al., 1999 | SC9 | 914.4 | 914.4 | 457.2 | 38.0 | 9.5 | 406.4 | 0.1 | 1.9 | 434.0 | 400.0 | 16.0 | 0.0 | 604.5 |
29 | Sokoli and Ghannoum (2016) | CS-60 | 457.2 | 457.2 | 457.2 | 38.1 | 16.0 | 140.0 | 1.5 | 4.7 | 464.0 | 472.0 | 26.4 | 290.0 | 779.6 |
30 | Sokoli and Ghannoum (2016) | CS-100 | 457.2 | 457.2 | 457.2 | 38.1 | 10.0 | 114.0 | 0.7 | 2.9 | 700.0 | 820.0 | 32.0 | 1806.0 | 734.6 |
31 | Lynn et al. (1996) | 2CLH18 | 457.0 | 457.0 | 457.0 | 38.1 | 9.5 | 457.0 | 0.1 | 2.0 | 331.0 | 400.0 | 33.1 | 503.0 | 240.8 |
32 | Lynn et al. (1996) | 3CLH18 | 457.0 | 457.0 | 457.0 | 38.1 | 9.5 | 457.0 | 0.1 | 3.0 | 331.0 | 400.0 | 25.6 | 503.0 | 277.0 |
33 | Lynn et al. (1996) | 2SLH18 | 457.0 | 457.0 | 457.0 | 38.1 | 9.5 | 457.0 | 0.1 | 2.0 | 331.0 | 400.0 | 33.1 | 503.0 | 229.0 |
34 | Lynn et al. (1996) (lap splice) | 2CMH18 | 457.0 | 457.0 | 457.0 | 38.1 | 9.5 | 457.0 | 0.1 | 3.0 | 331.0 | 400.0 | 25.7 | 1512.0 | 306.0 |
35 | Lynn et al. (1996) (lap splice) | 3SMD12 | 457.0 | 457.0 | 457.0 | 38.1 | 9.5 | 305.0 | 0.2 | 3.0 | 331.0 | 400.0 | 25.7 | 1512.0 | 367.0 |
36 | Matchulat et al., 2005 | Sp.1 | 457.0 | 457.0 | 457.0 | 39.7 | 9.5 | 460.0 | 0.3 | 2.5 | 441.3 | 372.3 | 20.7 | 2159.5 | 414.0 |
37 | Matchulat et al., 2005 | Sp.2 | 457.0 | 457.0 | 457.0 | 39.7 | 9.5 | 460.0 | 0.3 | 2.5 | 441.3 | 372.3 | 23.4 | 1663.0 | 363.2 |
38 | Sezen and Moehle 2002 | Specimen 1 | 457.0 | 457.0 | 457.0 | 65.1 | 9.5 | 304.8 | 0.2 | 2.5 | 434.4 | 476.0 | 21.1 | 665.4 | 302.5 |
39 | Sezen and Moehle 2002 | Specimen 2 | 457.0 | 457.0 | 457.0 | 65.1 | 9.5 | 304.8 | 0.2 | 2.5 | 434.4 | 476.0 | 21.1 | 2666.1 | 301.0 |
40 | Sezen and Moehle 2002 | Specimen 4 | 457.0 | 457.0 | 457.0 | 65.1 | 9.5 | 304.8 | 0.2 | 2.5 | 434.4 | 47.0 | 21.8 | 664.7 | 294.6 |
41 | Wight and Sozen 1973 | 40.033a(East) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 34.7 | 188.2 | 98.8 |
42 | Wight and Sozen 1973 | 40.033a(west) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 34.7 | 188.2 | 101.3 |
43 | Wight and Sozen 1973 | 40.048.(East) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 89.0 | 0.5 | 2.5 | 496.0 | 345.0 | 26.1 | 177.9 | 104.6 |
44 | Wight and Sozen 1973 | 40.048(West) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 89.0 | 0.5 | 2.5 | 496.0 | 345.0 | 26.1 | 177.9 | 98.5 |
45 | Wight and Sozen 1973 | 40.033(East) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 33.6 | 177.6 | 94.2 |
46 | Wight and Sozen 1973 | 40.033(West) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 33.6 | 177.6 | 104.9 |
47 | Wight and Sozen 1973 | 25.033(East) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 33.6 | 110.6 | 87.9 |
48 | Wight and Sozen 1973 | 25.033(West) | 152.0 | 152.0 | 305.0 | 32.0 | 6.3 | 127.0 | 0.3 | 2.5 | 496.0 | 345.0 | 33.6 | 110.6 | 93.3 |
49 | Wight and Sozen 1973 | 40.067(East) | 876.0 | 152.0 | 305.0 | 32.0 | 19.0 | 64.0 | 0.7 | 2.5 | 496.0 | 345.0 | 33.4 | 178.1 | 93.1 |
50 | Wight and Sozen 1973 | 40.067(West) | 876.0 | 152.0 | 305.0 | 32.0 | 19.0 | 64.0 | 0.7 | 2.5 | 496.0 | 345.0 | 33.4 | 178.1 | 99.4 |
51 | Wight and Sozen 1973 | 40.147(East) | 875.0 | 152.0 | 305.0 | 32.0 | 19.0 | 64.0 | 1.5 | 2.5 | 496.0 | 317.0 | 33.5 | 178.6 | 119.8 |
52 | Wight and Sozen 1973 | 40.147(West) | 875.0 | 152.0 | 305.0 | 32.0 | 19.0 | 64.0 | 1.5 | 2.5 | 496.0 | 317.0 | 33.5 | 178.6 | 114.7 |
53 | Wight and Sozen 1973 | 40.092(East) | 875.0 | 152.0 | 305.0 | 32.0 | 19.0 | 102.0 | 0.9 | 2.5 | 496.0 | 317.0 | 33.5 | 178.6 | 115.9 |
54 | Wight and Sozen 1973 | 40.092(West) | 875.0 | 152.0 | 305.0 | 32.0 | 19.0 | 102.0 | 0.9 | 2.5 | 496.0 | 317.0 | 33.5 | 178.6 | 121.0 |
55 | Ohue et al., 1985 | 2D16RS | 400.0 | 200.0 | 200.0 | 11.0 | 16.0 | 50.0 | 0.6 | 2.0 | 369.0 | 316.0 | 32.0 | 183.0 | 110.6 |
56 | Ohue et al., 1985 | 4D13RS | 400.0 | 200.0 | 200.0 | 12.0 | 13.0 | 50.0 | 0.6 | 2.7 | 370.0 | 316.0 | 29.9 | 183.0 | 101.4 |
57 | Zhou et al., 1987 | 124-08 | 160.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 1.8 | 2.2 | 341.0 | 559.0 | 19.8 | 406.0 | 115.0 |
58 | Zhou et al., 1987 | 204-08 | 320.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 0.7 | 2.2 | 341.0 | 559.0 | 21.1 | 432.7 | 66.5 |
59 | Zhou et al., 1987 | 223-09 | 320.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 1.8 | 2.2 | 341.0 | 559.0 | 21.1 | 486.1 | 67.4 |
60 | Zhou et al., 1987 | 302-07 | 480.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 0.7 | 2.2 | 341.0 | 559.0 | 28.8 | 516.8 | 51.2 |
61 | Zhou et al., 1987 | 312-07 | 480.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 0.6 | 2.2 | 341.0 | 559.0 | 28.8 | 516.8 | 54.9 |
62 | Zhou et al., 1987 | 322-07 | 480.0 | 160.0 | 160.0 | 12.5 | 9.5 | 40.0 | 1.0 | 2.2 | 341.0 | 559.0 | 28.8 | 516.8 | 51.8 |
63 | Amitsu et al., 1991 | CB060C | 323.0 | 278.0 | 278.0 | 28.0 | 28.0 | 52.0 | 0.9 | 4.1 | 441.0 | 414.0 | 46.3 | 2633.6 | 505.6 |
64 | Xiao and Martirossyan 1998 | HC4-8L16-T6-0.1P | 508.0 | 254.0 | 254.0 | 13.0 | 15.9 | 51.0 | 1.6 | 2.5 | 510.0 | 449.0 | 86.0 | 532.6 | 267.6 |
65 | Xiao and Martirossyan 1998 | HC4-8L16-T6-0.2P | 508.0 | 254.0 | 254.0 | 13.0 | 15.9 | 51.0 | 1.6 | 2.5 | 510.0 | 510.0 | 86.0 | 1065.3 | 324.1 |
66 | Kim et al., 2018 | Sad2 | 1200.0 | 400.0 | 400.0 | 40.0 | 25.4 | 165.0 | 0.4 | 2.5 | 571.0 | 500.0 | 32.0 | 870.4 | 310.3 |
67 | Kim et al., 2018 | RGd2 | 1200.0 | 250.0 | 640.0 | 40.0 | 22.2 | 105.0 | 0.8 | 2.4 | 566.0 | 530.0 | 32.0 | 870.4 | 240.8 |
68 | Nagasaka 1982 | HPRC19-32 | 300.0 | 200.0 | 200.0 | 12.0 | 12.7 | 20.0 | 1.2 | 1.3 | 371.0 | 344.0 | 21.0 | 294.0 | 110.7 |
69 | Zhou et al., 1985 | No.806 | 80.0 | 80.0 | 80.0 | 10.0 | 6.0 | 80.0 | 0.4 | 1.8 | 336.0 | 341.0 | 32.3 | 124.0 | 31.6 |
70 | Zhou et al., 1985 | No. 1007 | 80.0 | 80.0 | 80.0 | 10.0 | 6.0 | 80.0 | 0.4 | 1.8 | 336.0 | 341.0 | 34.0 | 152.3 | 36.7 |
71 | Zhou et al., 1985 | No.1309 | 80.0 | 80.0 | 80.0 | 10.0 | 6.0 | 80.0 | 0.4 | 1.8 | 336.0 | 341.0 | 32.8 | 188.9 | 29.6 |
72 | Imai and Yamamoto 1986 | No 1 | 825.0 | 500.0 | 400.0 | 37.0 | 22.0 | 100.0 | 0.3 | 2.7 | 318.0 | 336.0 | 27.1 | 390.2 | 471.3 |
73 | Ono et al., 1989 | CA025C | 300.0 | 200.0 | 200.0 | 19.0 | 9.5 | 70.0 | 0.8 | 2.1 | 361.0 | 426.0 | 25.8 | 265.2 | 130.0 |
74 | Ono et al., 1989 | CA060C | 300.0 | 200.0 | 200.0 | 19.0 | 9.5 | 70.0 | 0.8 | 2.1 | 361.0 | 426.0 | 25.8 | 635.7 | 133.8 |
MODEL | DATASET | R | MAPE | MAMPE | MAE | RMSE |
---|---|---|---|---|---|---|
POLYREG-HYT | Train | 0.99490 | 0.07903 | 0.05084 | 13.224 | 18.4979 |
LREGR | Train | 0.96821 | 0.19220 | 0.13054 | 33.9533 | 45.8741 |
XGBOOST-HYT-CV | Train | 0.99987 | 0.01225 | 0.00644 | 1.67587 | 2.92632 |
POLYREG-HYT | Test | 0.98448 | 0.17764 | 0.20863 | 38.9874 | 63.9059 |
LREGR | Test | 0.84845 | 0.42230 | 0.33075 | 61.8105 | 92.0577 |
XGBOOST-HYT-CV | Test | 0.97007 | 0.15299 | 0.16567 | 30.9598 | 46.2470 |
MODEL | DATASET | R | MAPE | MAMPE | MAE | RMSE |
---|---|---|---|---|---|---|
POLYREG-HYT | Train | 0.99647 | 0.06761 | 0.04623 | 12.0254 | 15.3862 |
LREGR | Train | 0.97552 | 0.16353 | 0.11609 | 30.1960 | 40.3127 |
XGBoost-HYT-CV | Train | 0.99989 | 0.00913 | 0.00495 | 1.28678 | 2.72715 |
POLYREG-HYT | Test | 0.95266 | 0.13873 | 0.16834 | 31.4586 | 52.3988 |
LREGR | Test | 0.87672 | 0.49074 | 0.30313 | 56.6489 | 85.0794 |
XGBoost-HYT-CV | Test | 0.99652 | 0.21500 | 0.19804 | 37.0085 | 59.0950 |
MODEL | DATASET | R | MAPE | MAMPE | MAE | RMSE |
---|---|---|---|---|---|---|
POLYREG-HYT | Train | 0.99001 | 0.08229 | 0.06268 | 16.3040 | 25.8498 |
LREGR | Train | 0.97806 | 0.14642 | 0.10738 | 27.9311 | 38.2091 |
XGBoost-HYT-CV | Train | 0.99988 | 0.00958 | 0.00532 | 1.38284 | 2.86823 |
POLYREG-HYT | Test | 0.99140 | 0.15463 | 0.14728 | 27.5236 | 36.1777 |
LREGR | Test | 0.92665 | 0.25136 | 0.23429 | 43.7839 | 62.0201 |
XGBoost-HYT-CV | Test | 0.99575 | 0.08957 | 0.06142 | 11.4780 | 17.5487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, A.I.; Galbraith, D.; Bakas, N.; Markou, G.; Bellos, J. New Predictive Models for the Computation of Reinforced Concrete Columns Shear Strength. Computers 2025, 14, 2. https://doi.org/10.3390/computers14010002
Ioannou AI, Galbraith D, Bakas N, Markou G, Bellos J. New Predictive Models for the Computation of Reinforced Concrete Columns Shear Strength. Computers. 2025; 14(1):2. https://doi.org/10.3390/computers14010002
Chicago/Turabian StyleIoannou, Anthos I., David Galbraith, Nikolaos Bakas, George Markou, and John Bellos. 2025. "New Predictive Models for the Computation of Reinforced Concrete Columns Shear Strength" Computers 14, no. 1: 2. https://doi.org/10.3390/computers14010002
APA StyleIoannou, A. I., Galbraith, D., Bakas, N., Markou, G., & Bellos, J. (2025). New Predictive Models for the Computation of Reinforced Concrete Columns Shear Strength. Computers, 14(1), 2. https://doi.org/10.3390/computers14010002