Reputation-Based Leader Selection Consensus Algorithm with Rewards for Blockchain Technology
Abstract
:1. Introduction
- We introduce a resilient consensus algorithm for the leader selection in the consortium blockchain using the reputation values of the nodes and the vote-based method.
- Security analysis is carried out to evaluate the proposed consensus algorithm’s resilience against the malicious activities of network nodes.
- Hyperledger Fabric v2.1 is used for performance evaluation. The results were computed and compared in terms of throughput, latency, CPU usage, and bandwidth communication consumption with currently recognized consensus algorithms.
2. Literature Review
3. Proposed Consensus Algorithm
3.1. Computing Reputation Value of Node
3.2. Node Classification
3.3. Leader Selection
Algorithm 1: Leader based consensus algorithm | |||||||||||
Output: Select a node for appending a block | |||||||||||
1: | START: Election process starts | ||||||||||
2: | RVavg = n1 + n2 + n3 + …… + ni/n; | ||||||||||
3: | For (k = 1; k <= Tn; k++) | ||||||||||
4: | ki = ki − RVavg; | ||||||||||
5: | ki = (ki)2; | ||||||||||
6: | S = S + ki; | ||||||||||
7: | V = S/n; | ||||||||||
8: | End For | ||||||||||
9: | For (k = 1; k <= Tn; k++) | ||||||||||
10: | If (RVki >= V) | ||||||||||
11: | CG ← ki | ||||||||||
12: | Else | ||||||||||
13: | If (RVki < V && RVki >= RVavg) | ||||||||||
14: | FG ← ki | ||||||||||
15: | End If | ||||||||||
16: | End If | ||||||||||
17: | End For | ||||||||||
18: | Nodes of FG cast vote | ||||||||||
19: | If (votes of X > all other nodes) | ||||||||||
20: | If (IDX matched) | ||||||||||
21: | timer.start(); | ||||||||||
22: | While (timer.Elapsed.Totalseconds < Xseconds) | ||||||||||
23: | If (BPT < PST) | ||||||||||
24: | X appends block and get reward | ||||||||||
25: | TBX = TBX + 1; | ||||||||||
26: | Else | ||||||||||
27: | TBX = TBX − 1; | ||||||||||
28: | End If | ||||||||||
29: | End Loop | ||||||||||
30: | RVX = TBX + TS; | ||||||||||
31: | End If | ||||||||||
32: | Else | ||||||||||
33: | If (votes of X = = Y) | ||||||||||
34: | If (RVX = = RVY) | ||||||||||
35: | If (XIJT > YIJT) | ||||||||||
36: | If (IDX matched) | ||||||||||
37: | timer.start(); | ||||||||||
38: | While (timer.Elapsed.Totalseconds < Xseconds) | ||||||||||
39: | If (BPT < RPT) | ||||||||||
40: | X appends block and get reward | ||||||||||
41: | TBX = TBX + 1; | ||||||||||
42: | Else | ||||||||||
43: | TBX = TBX − 1; | ||||||||||
44: | End If | ||||||||||
45: | End Loop | ||||||||||
46: | RVX = TBX + TSX; | ||||||||||
47: | End If | ||||||||||
48: | Else | ||||||||||
49: | If (IDY matched) | ||||||||||
50: | timer.start(); | ||||||||||
51: | While (timer.Elapsed.Totalseconds | ||||||||||
52: | If (BPT < RPT) | ||||||||||
53: | Y appends block and get reward | ||||||||||
54: | TBY = TBY + 1; | ||||||||||
55: | Else | ||||||||||
56: | TBY = TBY − 1; | ||||||||||
57: | End If | ||||||||||
58: | End Loop | ||||||||||
59: | RVY = TBY + TSY; | ||||||||||
60: | End If | ||||||||||
61: | End If | ||||||||||
62: | End If | ||||||||||
63: | End If | ||||||||||
64: | End If | ||||||||||
65: | Timer.stop(); | ||||||||||
66: | Update RV values of the all nodes | ||||||||||
67: | Election Process Re-starts |
4. Security Analysis
4.1. Resistance Against a Correct Node Becomes Inactive
4.2. Secure Against Invalid or Malicious Node Participation
4.3. Robustness to a Situation When Two or More Valid Nodes Receive the Same Number of Votes
4.4. Resistance Against Impersonation Attack
4.5. Secure Against Sybil Attack
4.6. Resists to Denial of Service (DoS) Attack
5. Performance Analysis and Comparison
5.1. Throughput
5.2. Latency
5.3. Resource Consumption
5.4. Security Against Malicious Nodes
5.5. Computational Complexity During the Reputation Evaluation and the Voting Process
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hellani, H.; El Ghor, H.; Samhat, A.E.; Maroun, C. On BlockChain Technology: Overview of Bitcoin and Future Insights. In Proceedings of the IEEE International Multidisciplinary Conference on Engineering Technology, Beirut, Lebanon, 14–16 November 2018. [Google Scholar]
- Puneeth, P.; Parthasarathy, G. A Comprehensive Survey on PrivacySecurity and Scalability Solutions for Block Chain Technology. In Smart Intelligent Computing and Communication Technology; IOS Press: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Irannezhad, E. The Architectural Design Requirements of a Blockchain-Based Port Community System. Logistics 2020, 4, 30. [Google Scholar] [CrossRef]
- Arul, P.; Renuka, S. Blockchain technology using consensus mechanism for IoT-based ehealthcare system. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1055, 012106. [Google Scholar] [CrossRef]
- Saba, T.; Rehman, A.; Haseeb, K.; Bahaj, S.A.; Lloret, J. Trust-based decentralized blockchain system with machine learning using Internet of agriculture things. Comput. Electr. Eng. 2023, 108, 108674. [Google Scholar] [CrossRef]
- Subramani, J.; Maria, A.; Rajasekaran, A.S.; Lloret, J. Physically secure and privacy-preserving blockchain enabled authentication scheme for internet of drones. Secur. Priv. 2024, 7, e364. [Google Scholar] [CrossRef]
- Khan, R.; Mehmood, A.; Iqbal, Z.; Maple, C.; Epiphaniou, G. Security and Privacy in Connected Vehicle Cyber Physical System Using Zero Knowledge Succinct Non Interactive Argument of Knowledge over Blockchain. Appl. Sci. 2023, 13, 1959. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In Proceedings of the IEEE 6th International Congress on Big Data, Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar]
- Dhiman, T.; Gulyani, V.; Bhushan, B. Application, Classification and System Requirements of Blockchain Technology. In International Conference on Innovative Computing and Communication (ICICC); Shaheed Sukhdev College of Business Studies: New Delhi, India, 2020. [Google Scholar]
- Dabbagh, M.; Choo, K.K.R.; Beheshti, A.; Tahir, M.; Safa, N.S. A survey of empirical performance evaluation of permissioned blockchain platforms: Challenges and opportunities. Comput. Secur. 2021, 100, 102078. [Google Scholar] [CrossRef]
- Al-Saqqa, S.; Almajali, S. Blockchain Technology Consensus Algorithms and Applications: A Survey. Int. J. Interact. Mob. Technol. 2020, 14, 142–156. [Google Scholar] [CrossRef]
- Alsunaidi, S.J.; Alhaidari, F.A. A Survey of Consensus Algorithms for Blockchain Technology. In Proceedings of the International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019. [Google Scholar]
- Du, M.; Ma, X.; Zhang, Z.; Wang, X.; Chen, Q. A review on consensus algorithm of blockchain. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2567–2572. [Google Scholar]
- Chaudhry, N.; Yousaf, M. Consensus Algorithms in Blockchain: Comparative Analysis Challenges and Opportunities. In Proceedings of the 12th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21 December 2018; pp. 54–63. [Google Scholar]
- Nguyen, G.-T.; Kim, K. A Survey about Consensus AlgorithmsUsed in Blockchain. J. Inf. Process. Syst. 2018, 14, 101–128. [Google Scholar] [CrossRef]
- De Aguiar, E.J.; Faiçal, B.S.; Krishnamachari, B.; Ueyama, J. A Survey of Blockchain-Based Strategies for Healthcare. ACM Comput. Surv. 2020, 53, 27. [Google Scholar] [CrossRef]
- Kaur, S.; Chaturvedi, S.; Sharma, A.; Kar, J. A Research Survey on Applications of Consensus Protocols in Blockchain. Hindawi Secur. Commun. Netw. 2021, 2021, 6693731. [Google Scholar] [CrossRef]
- Xiong, H.; Chen, M.; Wu, C.; Zhao, Y.; Yi, W. Research on Progress of Blockchain Consensus Algorithm: A Review on Recent Progress of Blockchain Consenss Algorithms. Future Internet 2022, 14, 47. [Google Scholar] [CrossRef]
- Hussein, Z.; Salama, M.A.; El-Rahman, S.A. Evolution of blockchain consensus algorithms: A review on the latest milestones of blockchain consensus algorithms. Cybersecurity 2023, 6, 1–22. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, M.; Cheng, T. Research on PBFT consensus algorithm for grouping based on feature trust. Sci. Rep. 2022, 12, 12515. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Chen, Q.; Ma, X. MBFT: A New Consensus Algorithm for Consortium Blockchain. IEEE Access 2020, 8, 87665–87675. [Google Scholar] [CrossRef]
- Guo, H.; Li, W.; Nejad, M.; Shen, C.C. Proof-of-event recording system for autonomous vehicles: A blockchain-based solution. IEEE Access 2020, 8, 182776–182786. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.C.; Zhao, Q.X.; Abusorrah, A.; Bamasag, O.O. A performance-optimized consensus mechanism for consortium blockchains consisting of trust-varying nodes. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2147–2159. [Google Scholar] [CrossRef]
- Sarfaraz, A.; Chakrabortty, R.K.; Essam, D. Reputation Based Proof of Cooperation: An Efficient and Scalable Consensus Algorithm for Supply Chain Applications. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 7795–7811. [Google Scholar] [CrossRef]
- Yanhe, N.; Wen, Z.; Fang, J.; Tang, Y.; Li, Y. A derivative PBFT blockchain consensus algorithm with dual primary nodes based on separation of powers-DPNPBFT. IEEE Access 2022, 10, 76114–76124. [Google Scholar]
- Yu, J.; Kozhaya, D.; Decouchant, J.; Esteves-Verissimo, P. Repucoin: Your reputation is your power. IEEE Trans. Comput. 2019, 68, 1225–1237. [Google Scholar] [CrossRef]
- De Oliveira, M.T.; Reis, L.H.; Medeiros, D.S.; Carrano, R.C.; Olabarriaga, S.D.; Mattos, D.M. Blockchain reputation-based consensus: A scalable and resilient mechanism for distributed mistrusting applications. Comput. Networks 2020, 179, 107367. [Google Scholar] [CrossRef]
- Aluko, O.; Kolonin, A. Proof-of-Reputation: An Alternative Consensus Mechanism for Blockchain Systems. Int. J. Netw. Secur. Its Appl. 2021, 13, 23–40. [Google Scholar] [CrossRef]
- Uddin, M.; Muzammal, M.; Hameed, M.K.; Javed, I.T.; Alamri, B.; Crespi, N. CBCIoT: A consensus algorithm for blockchain-based IoT applications. Appl. Sci. 2021, 11, 11011. [Google Scholar] [CrossRef]
- Bashar, G.D.; Holmes, J.; Dagher, G.G. ACCORD: A scalable multileader consensus protocol for healthcare blockchain. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2990–3005. [Google Scholar] [CrossRef]
- Pang, Z.; Yao, Y.; Li, Q.; Zhang, X.; Zhang, J. Electronic health records sharing model based on blockchain with checkable state PBFT consensus algorithm. IEEE Access 2022, 10, 87803–87815. [Google Scholar] [CrossRef]
- Hu, Q.; Yan, B.; Han, Y.; Yu, J. An improved delegated proof of stake consensus algorithm. Procedia Comput. Sci. 2021, 187, 341–346. [Google Scholar] [CrossRef]
- Qushtom, H.; Mišić, J.; Mišić, V.B.; Chang, X. A Two-Stage PBFT Architecture With Trust and Reward Incentive Mechanism. IEEE Internet Things J. 2023, 10, 11440–11452. [Google Scholar] [CrossRef]
- Misic, J.; Misic, V.B.; Chang, X. Design of Proof-of-Stake PBFT Algorithm for IoT Environments. IEEE Trans. Veh. Technol. 2023, 72, 2497–2510. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, S.Q.; Wang, P.; Zhang, L.Y. BW-PBFT: Practical byzantine fault tolerance consensus algorithm based on credit bidirectionally waning. Peer-to-Peer Netw. Appl. 2023, 16, 2915–2928. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, R.; Liu, C.; Xu, C.; Wang, J. An improved PBFT consensus algorithm based on grouping and credit grading. Sci. Rep. 2023, 13, 13030. [Google Scholar] [CrossRef]
- Qin, H.; Cheng, Y.; Ma, X.; Li, F.; Abawajy, J. Weighted Byzantine Fault Tolerance consensus algorithm for enhancing consortium blockchain efficiency and security. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 8370–8379. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, X.; Cao, H.; Wang, Y. FP-BFT: A fast pipeline Byzantine consensus algorithm. IET Blockchain 2023, 3, 123–135. [Google Scholar] [CrossRef]
- Kapse, S.; Malik, L.; Kumar, S. Nthcmb: Design of an Efficient Novel Trust-Based Hybrid Consensus Model for Securing Blockchain Deployments. ASEAN Eng. J. 2024, 14, 83–90. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, J.; Fu, Y.; Huang, M.; Liu, L.; Li, Y. A scalable and trust-value-based consensus algorithm for internet of vehicles. Appl. Sci. 2023, 13, 10663. [Google Scholar] [CrossRef]
- Khan, R.; Mehmood, A.; Maple, C.; Curran, K.; Song, H.H. Performance analysis of blockchain-enabled security and privacy algorithms in connected and autonomous vehicles: A comprehensive review. IEEE Trans. Intell. Transp. Syst. 2023, 25, 4773–4784. [Google Scholar] [CrossRef]
- Hussain, M.; Mehmood, A.; Khan, M.A.; Lloret, J.; Maple, C. Performance Optimized Leader Selection Consensus Algorithm for Consortium Blockchain Using Trust Values of Nodes. In International Conference on Cooperative Design, Visualization and Engineering; Springer Nature: Cham, Switzerland, 2024; pp. 253–264. [Google Scholar]
- Ullah, R.; Mehmood, A.; Khan, M.A.; Maple, C.; Lloret, J. An optimal secure and reliable certificateless proxy signature for industrial internet of things. Peer-Peer Netw. Appl. 2024, 17, 2205–2220. [Google Scholar] [CrossRef]
Ref | Publication Year | Mechanism | Throughput | Latency | Computational Cost | Communication Cost | Security Analysis |
---|---|---|---|---|---|---|---|
[20] | May, 2022 |
| ✓ | ✓ | ✕ | ✓ | ✓ |
[21] | May, 2022 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[22] | Oct., 2021 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[23] | Sep., 2021 |
| ✓ | ✓ | ✓ | ✕ | ✕ |
[24] | Apr., 2023 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[25] | July, 2022 |
| ✓ | ✕ | ✕ | ✓ | ✓ |
[26] | Feb., 2019 |
| ✓ | ✕ | ✕ | ✕ | ✓ |
[27] | Oct., 2020 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[28] | July, 2021 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[29] | Nov., 2021 |
| ✓ | ✓ | ✕ | ✕ | ✕ |
[30] | Aug., 2022 |
| ✕ | ✕ | ✕ | ✓ | ✓ |
[31] | Aug., 2022 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[32] | Jan., 2021 |
| ✕ | ✕ | ✕ | ✕ | ✓ |
[33] | July, 2023 |
| ✓ | ✓ | ✕ | ✕ | ✕ |
[34] | Feb., 2023 |
| ✓ | ✓ | ✕ | ✕ | ✕ |
[35] | Nov., 2023 |
| ✕ | ✓ | ✕ | ✓ | ✕ |
[36] | Aug., 2023 |
| ✓ | ✓ | ✕ | ✓ | ✕ |
[37] | Aug., 2022 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[38] | Apr., 2023 |
| ✓ | ✓ | ✕ | ✕ | ✓ |
[39] | May, 2024 |
| ✓ | ✓ | ✕ | ✕ | ✕ |
[40] | Sep.,2023 |
| ✓ | ✓ | ✕ | ✓ | ✓ |
[42] | Oct., 2024 |
| ✓ | ✓ | ✓ | ✓ | ✕ |
Proposed work |
| ✓ | ✓ | ✓ | ✓ | ✓ |
Notation | Description | Notation | Description |
---|---|---|---|
RV | Reputation Value | TB | Transaction block |
RVavg | Average of RVs | XIJT | Initial joining time of a node X |
S | Sum | YIJT | Initial joining time of a node Y |
V | Variance value | BPT | Current block processing time |
ki | Represents a node | RPT | Require processing time for a block |
RVki | Reputation value of a ki | TSX | Time spent by a node X in the network |
X | Node X | TSY | Time spent by a node Y in the network |
Y | Node Y | k | Variable |
IDX | Identity of a node X | STki | Number of successful transactions completed by ki |
IDY | Identity of a node Y | TSki | Time spent in the network by ki |
CG | Candidate group | UTki | Number of unsuccessful transactions tried by ki |
FG | Follower group | p | Number of malicious nodes |
Tn | Total number of nodes | Pr | Probability |
Features | Trust-Varying Algorithm | FP-BFT | Scalable and Trust-Based | Proposed Algorithm |
---|---|---|---|---|
Resistance to correct node becomes inactive | ✕ | ✕ | ✕ | ✓ |
Secure against invalid or malicious node participation | ✓ | ✓ | ✓ | ✓ |
Robust to when two or more nodes receive the same number of votes | ✕ | ✕ | ✕ | ✓ |
Impersonation attack | ✕ | ✓ | ✓ | ✓ |
Sybil attack | ✓ | ✕ | ✓ | ✓ |
DoS attack | ✓ | ✓ | ✓ | ✓ |
Parameter | Value |
---|---|
Network Area | 1600 m2 |
Number of Nodes | 230 |
Network | Hyperledger |
Block Size | 1 MB |
Simulation Time | 25 Min |
Network Traffic | Random |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Mehmood, A.; Khan, M.A.; Khan, R.; Lloret, J. Reputation-Based Leader Selection Consensus Algorithm with Rewards for Blockchain Technology. Computers 2025, 14, 20. https://doi.org/10.3390/computers14010020
Hussain M, Mehmood A, Khan MA, Khan R, Lloret J. Reputation-Based Leader Selection Consensus Algorithm with Rewards for Blockchain Technology. Computers. 2025; 14(1):20. https://doi.org/10.3390/computers14010020
Chicago/Turabian StyleHussain, Munir, Amjad Mehmood, Muhammad Altaf Khan, Rabia Khan, and Jaime Lloret. 2025. "Reputation-Based Leader Selection Consensus Algorithm with Rewards for Blockchain Technology" Computers 14, no. 1: 20. https://doi.org/10.3390/computers14010020
APA StyleHussain, M., Mehmood, A., Khan, M. A., Khan, R., & Lloret, J. (2025). Reputation-Based Leader Selection Consensus Algorithm with Rewards for Blockchain Technology. Computers, 14(1), 20. https://doi.org/10.3390/computers14010020