Computational Methods for Information Processing from Natural Language Complaint Processes—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review Method
2.1.1. Literature Review Guide by Kitchenham
2.1.2. PRISMA Statement
2.2. Research Questions
2.3. Database Search Criteria
Search Process
2.4. Screening and Filtering
2.4.1. Inclusion and Exclusion Criteria
2.4.2. Quality Assessment
2.4.3. Data Collection
2.4.4. Data Analysis
- Source of information.
- Technology of the method found in the article.
- Application domain.
- Number of documents processed by the method.
- Evaluation level of the computational method.
- Programming languages or frameworks used by the method.
2.4.5. Flow Chart of Screening and Filtering
3. Results
4. Discussion
4.1. Linguistic Methods
4.2. Statiscal Methods
4.3. Machine Learning (ML) Methods
4.4. Hybrid Methods
4.5. Syntesis of Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- del Gómez Torres, M.P.; Rojas Berrío, S.; Robayo Pinzón, Ó.J. Identificación de niveles de calidad en el servicio a partir de peticiones, quejas y reclamos, en entidades bancarias de Colombia 2007–2014. Libre Empresa 2015, 12, 11–26. [Google Scholar] [CrossRef]
- Ramírez Puentes, J.P.; Prada Vargas, C. Implementation of improvements in the process of requests, complaints, claims, suggestions and congratulations of a health sector organization in Colombia. In Proceedings of the 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogotá, Colombia, 29 September–1 October 2021; pp. 1–4. [Google Scholar]
- Chacón, E.Y.; Barajas, H.P.; Sanchez Mojica, K.Y. Efectividad de los PQRS como Canal de Comunicación entre los Estudiantes y la Fundación de Estudios Superiores Comfanorte FESC. Rev. Convicciones 2018, 3, 163–168. [Google Scholar]
- Campo Bedoya, M.A. Los Beneficios de la Tecnología Frente a la Interposición y/o Notificación de las Peticiones, Quejas, Reclamos y Solicitudes (PQRS), Una Vez se Expidió el Código de Procedimiento Administrativo y de lo Contencioso Administrativo (Ley 1437 De 2011). Specialization Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2017. [Google Scholar]
- Vásquez, A.C.; Huerta, H.V.; Quispe, J.P.; Huayna, A.M. Procesamiento de lenguaje natural. Rev. Investig. Sist. Informática 2009, 6, 45–54. [Google Scholar]
- Mejía, J.M.M. Lingüística Computacional y de Corpus: Teorías, Métodos y Aplicaciones; Universidad de Antioquia: Medellín, Colombia, 2021; ISBN 978-958-50-1039-0. [Google Scholar]
- Blandón Andrade, J.C. Aplicaciones del Procesamiento de Lenguaje Natural. Entre Cienc. Ing. 2022, 16, 7–8. [Google Scholar] [CrossRef]
- Hanni, A.R.; Patil, M.M.; Patil, P.M. Summarization of customer reviews for a product on a website using natural language processing. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 2280–2285. [Google Scholar]
- Akella, K.; Venkatachalam, N.; Gokul, K.; Choi, K.; Tyakal, R. Gain Customer Insights Using NLP Techniques. SAE Int. J. Mater. Manuf. 2017, 10, 333–337. [Google Scholar] [CrossRef]
- Saranya, K.; Jayanthy, S. Onto-based sentiment classification using machine learning techniques. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–5. [Google Scholar]
- Ramaswamy, S.; DeClerck, N. Customer Perception Analysis Using Deep Learning and NLP. Procedia Comput. Sci. 2018, 140, 170–178. [Google Scholar] [CrossRef]
- Lam, S.; Chen, C.; Kim, K.; Wilson, G.; Crews, J.H.; Gerber, M.S. Optimizing customer-agent interactions with natural language processing and machine learning. In Proceedings of the 2019 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 26 April 2019. [Google Scholar]
- Sezgen, E.; Mason, K.J.; Mayer, R. Voice of airline passenger: A text mining approach to understand customer satisfaction. J. Air Transp. Manag. 2019, 77, 65–74. [Google Scholar] [CrossRef]
- Ogudo, K.A.; Nestor, D.M.J. Sentiment Analysis Application and Natural Language Processing for Mobile Network Operators’ Support on Social Media. In Proceedings of the 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD), Winterton, South Africa, 5–6 August 2019; pp. 1–10. [Google Scholar]
- Hagen, L.; Uzuner, Ö.; Kotfila, C.; Harrison, T.M.; Lamanna, D. Understanding Citizens’ Direct Policy Suggestions to the Federal Government: A Natural Language Processing and Topic Modeling Approach. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 2134–2143. [Google Scholar]
- Jungherr, A.; Jürgens, P. The Political Click: Political Participation through E-Petitions in Germany. Policy Internet 2010, 2, 131–165. [Google Scholar] [CrossRef]
- Mistler, M.; Schlueter, N.; Loewer, M.; Rafalczyk, V. Methodology for a Model-based Traceability of Requirements from Complaints in Business Networks Using e-DeCoDe. In Proceedings of the 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 13–16 December 2021; pp. 1255–1259. [Google Scholar]
- Kitchenham, B.; Pearl Brereton, O.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Jack, H. Engineering Design, Planning, and Management; Academic Press: New York, NY, USA, 2021; ISBN 978-0-12-824164-6. [Google Scholar]
- Medina Otalvaro, C.M.; Blandón Andrade, J.C.; Zapata Jaramillo, C.M.; RiosPatiño, J.I. IoT Best Practices and their components: A Systematic Literature Review. IEEE Lat. Am. Trans. 2022, 20, 2217–2228. [Google Scholar] [CrossRef]
- Todorov, T. Practical aspects of journal indexing in scientific databases. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 21–23 October 2021; pp. 233–236. [Google Scholar]
- Nieto-Chaupis, H. Interpretation of Scimago Ranking in Terms of Success Probabilities. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–4. [Google Scholar]
- Gamboa, J.O.A. Bases de datos y calidad de las revistas científicas: La aportación de Latindex. ESPACIO I+D Innovación Más Desarro. 2017, 6, 8–28. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University Technical Report TR/SE-0401; Keele University: Keele, UK, 2004; Volume 33. [Google Scholar]
- Qurat-Ul-Ain; Shaukat, A.; Saif, U. NLP based Model for Classification of Complaints: Autonomous and Intelligent System. In Proceedings of the 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi, Pakistan, 24–26 May 2022; pp. 1–6. [Google Scholar]
- Usui, M.; Aramaki, E.; Iwao, T.; Wakamiya, S.; Sakamoto, T.; Mochizuki, M. Extraction and Standardization of Patient Complaints from Electronic Medication Histories for Pharmacovigilance: Natural Language Processing Analysis in Japanese. JMIR Med. Inf. 2018, 6, e11021. [Google Scholar] [CrossRef]
- Alamsyah, D.P.; Arifin, T.; Ramdhani, Y.; Hidayat, F.A.; Susanti, L. Classification of Customer Complaints: TF-IDF Approaches. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–5. [Google Scholar]
- Singh, A.; Saha, S. GraphIC: A graph-based approach for identifying complaints from code-mixed product reviews. Expert Syst. Appl. 2022, 216, 119444. [Google Scholar] [CrossRef]
- Yance Nanlohy, L.; Mulyanto Yuniarno, E.; Mardi Susiki Nugroho, S. Classification of Public Complaint Data in SMS Complaint Using Naive Bayes Multinomial Method. In Proceedings of the 2020 4th International Conference on Vocational Education and Training (ICOVET), Malang, Indonesia, 19 September 2020; pp. 241–246. [Google Scholar]
- Hsu, J.-H.; Weng, T.-C.; Wu, C.-H.; Ho, T.-S. Natural Language Processing Methods for Detection of Influenza-Like Illness from Chief Complaints. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 7–10 December 2020; pp. 1626–1630. [Google Scholar]
- Anggraini, A.; Kusumaningtyas, E.M.; Barakbah, A.R.; Fiddin Al Islami, M.T. Indonesian Conjunction Rule Based Sentiment Analysis For Service Complaint Regional Water Utility Company Surabaya. In Proceedings of the 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 541–548. [Google Scholar]
- Assaf, S.; Srour, I. Using a data driven neural network approach to forecast building occupant complaints. Build. Environ. 2021, 200, 107972. [Google Scholar] [CrossRef]
- Fan, Q.; Han, H.; Wu, S. Credibility analysis of water environment complaint report based on deep cross domain network. Appl. Intell. 2022, 52, 8134–8146. [Google Scholar] [CrossRef]
- Farouk, R.A.; Khafagy, M.H.; Ali, M.; Munir, K.; Badry, R.M. Arabic Semantic Similarity Approach for Farmers’ Complaints. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 348–358. [Google Scholar] [CrossRef]
- HaCohen-Kerner, Y.; Dilmon, R.; Hone, M.; Ben-Basan, M.A. Automatic classification of complaint letters according to service provider categories. Inf. Process. Manage. 2019, 56, 102102. [Google Scholar] [CrossRef]
- Singh, A.; Saha, S.; Hasanuzzaman, M.; Dey, K. Multitask Learning for Complaint Identification and Sentiment Analysis. Cogn. Comput. 2022, 14, 212–227. [Google Scholar] [CrossRef]
- Tootooni, M.S.; Pasupathy, K.S.; Heaton, H.A.; Clements, C.M.; Sir, M.Y. CCMapper: An adaptive NLP-based free-text chief complaint mapping algorithm. Comput. Biol. Med. 2019, 113, 103398. [Google Scholar] [CrossRef]
- Zhong, B.; Xing, X.; Love, P.; Wang, X.; Luo, H. Convolutional neural network: Deep learning-based classification of building quality problems. Adv. Eng. Inform. 2019, 40, 46–57. [Google Scholar] [CrossRef]
- Rao, Z.; Zhang, Y. Research on Content of User Complaint Classification Based on Data Mining. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 1080–1085. [Google Scholar]
- Ke, Y.; Chen, L. Research on Text Classification and Data Analysis of Complaints by Shanghai Gas Company. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; Volume 5, pp. 1626–1630. [Google Scholar]
- Fan, Q.; Yang, K.; Qiu, C.; Wang, Z. Environmental Complaint Text Classification Scheme Combining Automatic Annotation and TextCNN. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 4731–4736. [Google Scholar]
- Tong, X.; Wu, B.; Wang, S.; Lv, J. A Complaint Text Classification Model Based on Character-Level Convolutional Network. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 507–511. [Google Scholar]
- Luo, J.; Qiu, Z.; Xie, G.; Feng, J.; Hu, J.; Zhang, X. Research on Civic Hotline Complaint Text Classification Model Based on word2vec. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 180–1803. [Google Scholar]
- Chen, Y.; Cai, Z.; Xu, T.; Lai, G. The Early-Warning and Control of Service Complaint Based on Time Series Forecasting Method and SPC Model-Take Ctrip as an Example. In Proceedings of the 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, China, 21–22 July 2018; pp. 1–6. [Google Scholar]
- Shin, J.; Son, S.; Cha, Y. Spatial distribution modeling of customer complaints using machine learning for indoor water leakage management. Sustain. Cities Soc. 2022, 87, 104255. [Google Scholar] [CrossRef]
- Achcar, J.A.; de Godoy, D.M. Quality of Services: An Application with Customer Complaint Data from a Telecommunication Company. Indep. J. Manag. Prod. 2021, 12, 928–944. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Zeng, H.; Cheng, Q.; Zhao, X.; Xu, H.; Zhou, T. Spatialized Analysis of Air Pollution Complaints in Beijing Using the BERT plus CRF Model. Atmosphere 2022, 13, 1023. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Rao, Z. Text Mining Strategy of Power Customer Service Work Order Based on Natural Language Processing Technology. In Proceedings of the 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 6–8 December 2019; pp. 335–338. [Google Scholar]
- Kim, J.; Lim, C. Customer complaints monitoring with customer review data analytics: An integrated method of sentiment and statistical process control analyses. Adv. Eng. Inform. 2021, 49, 101304. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Wang, Y.; Kawai, Y. A Product Recommendation System Based on User Complaint Analysis Using Product Reviews. In Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 15–18 October 2019; pp. 710–714. [Google Scholar]
- Chen, S.; Zhang, Y.; Song, B.; Du, X.; Guizani, M. An Intelligent Government Complaint Prediction Approach. Big Data Res. 2022, 30, 100336. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Long Beach, CA, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Blandón-Andrade, J.C.; Castaño-Toro, A.; Morales-Ríos, A.; Tangarife, N. Complaint Process Management in an Electric Power Company. Comput. Sist. 2024, 28, 1143–1154. [Google Scholar] [CrossRef]
Phase | Activity |
---|---|
Research questions | Definition of research questions. |
Search Process | Definition of search strings. |
Selection of Databases. | |
Inclusion and exclusion criteria | Definition of inclusion and exclusion criteria. |
Quality assessment | Definition of quality criteria. |
Data collection | Extraction of relevant information from each document. |
Data analysis | Answer the research questions. |
Information | Description |
---|---|
Title | Name of the article. |
Authors | Name of author(s). |
Year of publication | Year of publication available in the journal. |
Method | Method for extracting information from natural language complaints. |
Programming Languages | Programming languages or frameworks mentioned in the article. |
Application domain | The domain for which the computational method was developed. |
Number of documents processed | Number of documents processed by the computational method. |
Evaluation Criteria | Criterion that measures the effectiveness of the method presented. |
Database | Number of Items in the First Search | Percentage of Items in the First Search | Number of Items Resulting from the Application of the Criteria | Percentage of Items Resulting from the Application of the Criteria |
---|---|---|---|---|
IEEE Xplore Digital Library | 32 | 25.0% | 13 | 48.2% |
Science Direct | 38 | 29.7% | 6 | 22.2% |
Springer | 27 | 21.09% | 2 | 7.4% |
Web of Science | 31 | 24.21% | 6 | 22.2% |
Total | 128 | 100% | 27 | 100% |
Source | QA1 | QA2 | QA3 | QA4 | Total Score |
---|---|---|---|---|---|
Qurat-ul-ain et al. [25]. | Yes | No | Yes | Yes | 3 |
Usui et al. [26]. | Yes | No | Yes | Yes | 3 |
Alamsyah ket al. [27]. | Yes | No | Yes | Yes | 3 |
Singh and Saha [28]. | Yes | No | No | Yes | 2 |
Yance Nanlohy et al. [29]. | Yes | No | No | Yes | 2 |
Hsu et al. [30]. | Yes | No | No | Yes | 2 |
Anggraini et al. [31]. | Yes | No | Yes | No | 2 |
Assaf and Srour [32]. | Yes | No | Yes | No | 2 |
Fan et al. [33]. | Yes | Yes | No | No | 2 |
Farouk et al. [34]. | Yes | No | No | Yes | 2 |
HaCohen-Kerner et al. [35]. | Yes | No | No | Yes | 2 |
Singh et al. [36]. | Yes | No | No | Yes | 2 |
Tootooni et al. [37] | Yes | No | No | Yes | 2 |
Zhong et al. [38]. | Yes | No | No | Yes | 2 |
Rao and Zhang [39]. | Yes | No | No | Yes | 2 |
Ke and Chen [40]. | Yes | No | No | No | 1 |
Fan et al. [41]. | Yes | No | No | No | 1 |
Tong et al. [42]. | Yes | No | No | No | 1 |
Luo et al. [43]. | Yes | No | No | No | 1 |
Chen et al. [44]. | Yes | No | No | No | 1 |
Shin et al. [45]. | Yes | No | No | No | 1 |
Achcar y de Godoy [46]. | Yes | No | No | No | 1 |
Wang et al. [47]. | Yes | No | No | No | 1 |
Li et al. [48]. | Yes | No | No | No | 1 |
Kim and Lim [49]. | Yes | No | No | No | 1 |
Yoshikawa et al. [50]. | No | No | No | No | 0 |
Chen et al. [51]. | No | No | No | No | 0 |
Source | Year | Method | Category | Application Domain | Number of Documents Processed | Complaint Language | Evaluation Criteria | Programming Language |
---|---|---|---|---|---|---|---|---|
Qurat-ul-ain et al. [25] | 2022 | NLP and Machine Learning | Hybrid | Citizen complaints portal | 10,000 | English | Accuracy: 86%. | -- |
Usui et al. [26] | 2018 | Morphological analysis | NLP | Patient complaints in community pharmacy | 5000 | Japanese | Accuracy: 66%. Recall: 63%. | -- |
Alamsyah ket al. [27] | 2022 | Neural Networks and TF-IDFs | ML | Complaints Bank Rakyat Indonesia | 1 million documents | Indonesian | Accuracy: 85%. | -- |
Singh and Saha [28] | 2022 | Graph attention network (GAT) | ML | Complaints on web pages. | -- | English | Accuracy: 72.82%. Macro-F1: 71%. | -- |
Yance Nanlohy et al. [29] | 2020 | NLP—Multinomial Naive-Bayes | Hybrid | Complaints about the government | -- | Indonesian | Accuracy: 91.38%. Recall: 90.73%. | -- |
Hsu et al. [30] | 2020 | BERT | ML | Medical Complaints | -- | Chinese | Accuracy: 72.87%. | -- |
Anggraini et al. [31] | 2020 | Rule-based sentiment analysis and categorization | NLP | Complaints drinking water company | 100 | Indonesian | -- | -- |
Assaf y Srour [32] | 2021 | Multilayer Perceptron | ML | Complaints from building occupants | 6000 | English | -- | -- |
Fan et al. [33] | 2022 | Deep cross domain network | ML | Complaints water pollution | -- | Chinese | -- | Python |
Farouk et al. [34] | 2021 | Latent Semantic Analysis approach | NLP | Complaints from Arab farmers | -- | Arabic | F-measure: 86.70%. | -- |
HaCohen-Kerner et al. [35] | 2019 | Unigrams, machine learning and filtering methods | Hybrid | Letters of complaint published on the Internet | -- | Hebrew | Accuracy: 84.5%. | -- |
Singh et al. [36] | 2022 | Sentiment classification and feature detection with AffectiveSpace | ML–DL | Customer Service Complaints business sector | -- | English | Accuracy: 83.63%. Macro-F1 score: 81.9%. | -- |
Tootooni et al. [37] | 2019 | Chief Complaint Mapper (CCMapper) | NLP | Patient complaints in the emergency department | -- | English | Sensitivity: 82.3%. Specificity: 99.1%. F-score: 82.3%. | -- |
Zhong et al. [38] | 2019 | Convolutional Neural Networks (CNN) | ML | Complaints about building quality | -- | Chinese | Accuracy: 72.6%. Recall: 47%. F1-Score: 53.4%. | -- |
Rao and Zhang [39] | 2020 | Bayes and K-means | Hybrid | Online complaints about Chinese websites | -- | Chinese | Accuracy: 92.93%. Recall: 93.90%. | -- |
Ke and Chen [40] | 2021 | N-grams and Naive-Bayes algorithm | Hybrid | Gas service complaints | -- | Chinese | -- | -- |
Fan et al. [41] | 2021 | TextCNN | ML | Environmental Complaints | -- | Chinese | -- | -- |
Tong et al. [42] | 2018 | CNN at character level | ML | Complaints on web platforms | -- | Chinese–English | -- | -- |
Luo et al. [43] | 2018 | FastText, TextCNN, TextRNN, and RCNN | ML | Haikou online complaints 12,345 | -- | Chinese | -- | -- |
Chen et al. [44] | 2018 | LDA (Latent Dirichlet Allocation) Model | ML | Tourism Complaints | -- | Chinese | -- | -- |
Shin et al. [45] | 2022 | ML: XGBoost and LightGBM | ML | Complaints of urban problems | -- | Korean | -- | -- |
Achcar and de Godoy [46] | 2021 | Multiple linear regression models and Poisson regression models | Statistician | Quality of service Telecommunications company | -- | Portuguese | -- | -- |
Wang et al. [47] | 2022 | BERT + CRF | ML | Air pollution complaints | -- | Chinese | -- | -- |
Li et al. [48] | 2019 | NLP and KNN, SVM, CNN, RNN, LSTM | Hybrid | Energy company complaints | -- | Chinese | -- | -- |
Kim and Lim [49] | 2021 | Sentiment analysis and SPC analysis | Hybrid | Quality of Service Complaints | -- | English | -- | -- |
Yoshikawa et al. [50] | 2019 | Information extraction | NLP | E-Commerce Complaints | -- | Japanese | -- | -- |
Chen et al. [51] | 2022 | Text classification with ML (Label Correction) | ML | Government Complaints | -- | Chinese | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blandón Andrade, J.C.; Castaño Toro, A.; Morales Ríos, A.; Orozco Ospina, D. Computational Methods for Information Processing from Natural Language Complaint Processes—A Systematic Review. Computers 2025, 14, 28. https://doi.org/10.3390/computers14010028
Blandón Andrade JC, Castaño Toro A, Morales Ríos A, Orozco Ospina D. Computational Methods for Information Processing from Natural Language Complaint Processes—A Systematic Review. Computers. 2025; 14(1):28. https://doi.org/10.3390/computers14010028
Chicago/Turabian StyleBlandón Andrade, J. C., A. Castaño Toro, A. Morales Ríos, and D. Orozco Ospina. 2025. "Computational Methods for Information Processing from Natural Language Complaint Processes—A Systematic Review" Computers 14, no. 1: 28. https://doi.org/10.3390/computers14010028
APA StyleBlandón Andrade, J. C., Castaño Toro, A., Morales Ríos, A., & Orozco Ospina, D. (2025). Computational Methods for Information Processing from Natural Language Complaint Processes—A Systematic Review. Computers, 14(1), 28. https://doi.org/10.3390/computers14010028