Highly Efficient Synthesis of Glutathione via a Genetic Engineering Enzymatic Method Coupled with Yeast ATP Generation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Induced Expression of Glutathione Synthetase
2.2. The Permeability of the Yeast Cells and Coupling with Yeast ATP Generation
2.3. Effective Energy Supply Is Necessary in the Post-Addition CTAB Method Reaction System
2.4. Oxidative Stress Environments Can Promote the Synthesis of GSH
3. Materials and Methods
3.1. Plasmids, Strains, and Reagents
3.2. Construction of the pET28a-gshII Recombinant Plasmid
3.3. The Reaction System of Glutathione Synthetase Coupled with Yeast Energy Production
3.4. Glutathione Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef]
- Kaplowitz, N.; Aw, T.Y.; Ookhtens, M. The regulation of hepatic glutathione. Annu. Rev. Pharmacol. Toxicol. 1985, 25, 715–744. [Google Scholar] [CrossRef]
- Carmel-Harel, O.; Storz, G. Roles of the glutathione—And thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 2000, 54, 439–461. [Google Scholar] [CrossRef]
- Diaz-Vivancos, P.; de Simone, A.; Kiddle, G.; Foyer, C.H. Glutathione—Linking cell proliferation to oxidative stress. Free Radic. Biol. Med. 2015, 89, 1154–1164. [Google Scholar] [CrossRef]
- Behrens, K.A.; Jania, L.A.; Snouwaert, J.N.; Nguyen, M.; Moy, S.S.; Tikunov, A.P.; Macdonald, J.M.; Koller, B.H. Beyond detoxification: Pleiotropic functions of multiple glutathione S-transferase isoforms protect mice against a toxic electrophile. PLoS ONE 2019, 14, e0225449. [Google Scholar] [CrossRef] [Green Version]
- Dannenmann, B.; Lehle, S.; Hildebrand, D.G.; Kubler, A.; Grondona, P.; Schmid, V.; Holzer, K.; Froschl, M.; Essmann, F.; Rothfuss, O.; et al. High glutathione and glutathione peroxidase—2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem Cell Rep. 2015, 4, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Sappington, D.R.; Siegel, E.R.; Hiatt, G.; Desai, A.; Penney, R.B.; Jamshidi-Parsian, A.; Griffin, R.J.; Boysen, G. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Weschawalit, S.; Thongthip, S.; Phutrakool, P.; Asawanonda, P. Glutathione and its antiaging and antimelanogenic effects. Clin. Cosmet. Investig. Dermatol. 2017, 10, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, F.; Hashizume, E.; Chan, G.P.; Kamimura, A. Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: A double-blind and placebo-controlled clinical trial in healthy women. Clin. Cosmet. Investig. Dermatol. 2014, 7, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Will, Y. Overview of glutathione function and metabolism. Curr. Protoc. Toxicol. 2001. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Ketterer, B.; Coles, B.; Meyer, D.J. The role of glutathione in detoxication. Environ. Health Perspect. 1983, 49, 59–69. [Google Scholar] [CrossRef]
- Orlowski, M.; Meister, A. The gamma-glutamyl cycle: A possible transport system for amino acids. Proc. Natl. Acad. Sci. USA 1970, 67, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, G.; Chen, J. Glutathione: A review on biotechnological production. Appl. Microbiol. Biotechnol. 2004, 66, 233–242. [Google Scholar] [CrossRef]
- Vergauwen, B.; de Vos, D.; Van Beeumen, J.J. Characterization of the bifunctional gamma-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J. Biol. Chem. 2006, 281, 4380–4394. [Google Scholar] [CrossRef] [Green Version]
- Gopal, S.; Borovok, I.; Ofer, A.; Yanku, M.; Cohen, G.; Goebel, W.; Kreft, J.; Aharonowitz, Y. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J. Bacteriol. 2005, 187, 3839–3847. [Google Scholar] [CrossRef] [Green Version]
- Sakato, K.; Tanaka, H. Advanced control of glutathione fermentation process. Biotechnol. Bioeng. 1992, 40, 904–912. [Google Scholar] [CrossRef]
- Spector, D.; Labarre, J.; Toledano, M.B. A genetic investigation of the essential role of glutathione: Mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J. Biol. Chem. 2001, 276, 7011–7016. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Li, Y.; Du, G.; Chen, J. Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol. Lett. 2003, 25, 887–890. [Google Scholar] [CrossRef]
- Johnston, R.B.; Bloch, K. Enzymatic synthesis of glutathione. J. Biol. Chem. 1951, 188, 221–240. [Google Scholar]
- Li, W.; Li, Z.; Ye, Q. Enzymatic synthesis of glutathione using yeast cells in two-stage reaction. Bioprocess Biosyst. Eng. 2010, 33, 675–682. [Google Scholar] [CrossRef]
- Schmacht, M.; Lorenz, E.; Senz, M. Microbial production of glutathione. World J. Microbiol. Biotechnol. 2017, 33, 106. [Google Scholar] [CrossRef]
- Liao, X.Y.; Shen, W.; Chen, J.; Li, Y.; Du, G.C. Improved glutathione production by gene expression in Escherichia coli. Lett. Appl. Microbiol. 2006, 43, 211–214. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Markossian, K.A.; Kurganov, B.I. Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry (Moscow) 2004, 69, 971–984. [Google Scholar] [CrossRef]
- Thuy Le, A.T.; Schumann, W. A novel cold-inducible expression system for Bacillus subtilis. Protein Expr. Purif. 2007, 53, 264–269. [Google Scholar] [CrossRef]
- Murata, K.; Tani, K.; Kato, J.; Chibata, I. Continuous production of glutathione using immobilized microbial cells containing ATP generating system. Biochimie 1980, 62, 347–352. [Google Scholar] [CrossRef]
- Sekhar, S.; Bhat, N.; Bhat, S.G. Preparation of detergent permeabilized Bakers’ yeast whole cell catalase. Process. Biochem. 1999, 34, 349–354. [Google Scholar] [CrossRef]
- Raicu, V.; Gusbeth, C.; Anghel, D.F.; Turcu, G. Effects of cetyltrimethylammonium bromide (CTAB) surfactant upon the dielectric properties of yeast cells. Biochim. Biophys. Acta 1998, 1379, 7–15. [Google Scholar] [CrossRef]
- Abraham, J.; Bhat, S.G. Permeabilization of baker’s yeast with N-lauroyl sarcosine. J. Ind. Microbiol. Biotechnol. 2008, 35, 799–804. [Google Scholar] [CrossRef]
- Rollini, M.; Musatti, A.; Manzoni, M. Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process. Biochem. 2010, 45, 441–445. [Google Scholar] [CrossRef]
- Liao, X.; Deng, T.; Zhu, Y.; Du, G.; Chen, J. Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J. Appl. Microbiol. 2008, 104, 345–352. [Google Scholar] [CrossRef]
- Hara, K.Y.; Shimodate, N.; Hirokawa, Y.; Ito, M.; Baba, T.; Mori, H.; Mori, H. Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol. Lett. 2009, 297, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Richman, P.G.; Meister, A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J. Biol. Chem. 1975, 250, 1422–1426. [Google Scholar]
- Liu, J.; Li, H.; Xiong, H.; Xie, X.; Chen, N.; Zhao, G.; Caiyin, Q.; Zhu, H.; Qiao, J. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli. Biotechnol. Bioeng. 2019, 116, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Shang, F.; Wang, Z.; Tan, T. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 77, 1233–1240. [Google Scholar] [CrossRef]
- Rodrigues-Pousada, C.; Devaux, F.; Caetano, S.M.; Pimentel, C.; da Silva, S.; Cordeiro, A.C.; Amaral, C. Yeast AP-1 like transcription factors (Yap) and stress response: A current overview. Microb. Cell 2019, 6, 267. [Google Scholar] [CrossRef]
- Jamieson, D.J. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998, 14, 1511–1527. [Google Scholar] [CrossRef]
- Stephen, D.W.; Rivers, S.L.; Jamieson, D.J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 1995, 16, 415–423. [Google Scholar] [CrossRef]
- Wang, T.; Lu, W.; Lu, S.; Kong, J. Protective role of glutathione against oxidative stress in Streptococcus thermophilus. Int. Dairy J. 2015, 45, 41–47. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: Implication in redox and detoxification. Clin. Chim. Acta 2003, 333, 19–39. [Google Scholar] [CrossRef]
- Laughlin, M.R.; Thompson, D. The regulatory role for magnesium in glycolytic flux of the human erythrocyte. J. Biol. Chem. 1996, 271, 28977–28983. [Google Scholar] [CrossRef] [Green Version]
- Paroni, R.; De Vecchi, E.; Cighetti, G.; Arcelloni, C.; Fermo, I.; Grossi, A.; Bonini, P. HPLC with o-phthalaldehyde precolumn derivatization to measure total, oxidized, and protein-bound glutathione in blood, plasma, and tissue. Clin. Chem. 1995, 41, 448–454. [Google Scholar]
- Cereser, C.; Guichard, J.; Drai, J.; Bannier, E.; Garcia, I.; Boget, S.; Parvaz, P.; Revol, A. Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: Application to red blood cells and cultured fibroblasts. J. Chromatogr. B Biomed. Sci. Appl. 2001, 752, 123–132. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Yin, Z. Highly Efficient Synthesis of Glutathione via a Genetic Engineering Enzymatic Method Coupled with Yeast ATP Generation. Catalysts 2020, 10, 33. https://doi.org/10.3390/catal10010033
Huang C, Yin Z. Highly Efficient Synthesis of Glutathione via a Genetic Engineering Enzymatic Method Coupled with Yeast ATP Generation. Catalysts. 2020; 10(1):33. https://doi.org/10.3390/catal10010033
Chicago/Turabian StyleHuang, Chen, and Zhimin Yin. 2020. "Highly Efficient Synthesis of Glutathione via a Genetic Engineering Enzymatic Method Coupled with Yeast ATP Generation" Catalysts 10, no. 1: 33. https://doi.org/10.3390/catal10010033
APA StyleHuang, C., & Yin, Z. (2020). Highly Efficient Synthesis of Glutathione via a Genetic Engineering Enzymatic Method Coupled with Yeast ATP Generation. Catalysts, 10(1), 33. https://doi.org/10.3390/catal10010033