Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Characterization Results: Catalyst Structure and Surface Properties
2.1.1. Transmission Electron Microscopy
2.1.2. Nitrogen Physisorption
2.1.3. Scanning Electron Microscopy
2.1.4. Energy Dispersive X-ray Microanalysis
2.1.5. Pyridine Adsorption-Desorption with FTIR Spectroscopy
2.1.6. Characterization by X-ray Photoelectron Spectroscopy
2.2. Non-Catalytic and Catalytic Ozonation of Carbamazepine
2.2.1. Influence of Different Catalysts in the Degradation of Carbamazepine and its By-Products in the Presence of Ozone
2.2.2. Quantification of Catalytic and Non-Catalytic Ozonation Products
2.2.3. Leaching of Modified Metals and Aluminum from Catalysts
3. Materials and Methods
3.1. Chemicals
3.2. Catalyst Preparation
3.3. Physico-Chemical Characterization of Catalyst
3.4. Kinetic Experiments in a Semi-Batch Reactor
3.5. Quantification of CBZ, BQM and BQD
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ying, G.-G.; Jiang, Y.-X.; Yang, Y.-Y.; Yao, L.; Zhang, J.-N.; Liu, W.-R.; Zhao, J.-L.; Zhang, Q.-Q.; Liu, Y.-S.; Hu, L.-X. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci. Total Environ. 2017, 616–617, 816–823. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, M.; Onanong, S.; Snow, D.D.; Ray, C. Occurrence and removal of pharmaceutical compounds and steroids at four wastewater treatment plants in Hawai’i and their environmental fate. Sci. Total Environ. 2018, 631–632, 1360–1370. [Google Scholar]
- Tarpani, R.R.Z.; Azapagic, A. A methodology for estimating concentrations of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants and in freshwaters. Sci. Total Environ. 2018, 622–623, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Fu, Q.; Han, Y.; Xie, Y.F.; Gong, N.B.; Guo, F. Carbamazepine cocrystals with several aromatic carboxylic acids in different stoichiometries: Structures and solid state characterization. J. Mol. Struct. 2018, 1168, 145–152. [Google Scholar] [CrossRef]
- World Health Organization. WHO Model List of Essential Medicines, 20th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Ekpeghere, K.I.; Sim, W.J.; Lee, H.J.; Oh, J.E. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. Sci. Total Environ. 2018, 640–641, 1015–1023. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef]
- Björlenius, B.; Ripszám, M.; Haglund, P.; Lindberg, R.H.; Tysklind, M.; Fick, J. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters—Screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci. Total Environ. 2018, 633, 1496–1509. [Google Scholar] [CrossRef]
- Fattore, E.; Zuccato, E.; Castiglioni, S.; Davoli, E.; Riva, F. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 2018, 361, 103–110. [Google Scholar]
- Radović, T.; Grujić, S.; Petković, A.; Dimkić, M.; Laušević, M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 2015, 187, 4092. [Google Scholar] [CrossRef] [PubMed]
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jurado, A.; López-Serna, R.; Vázquez-Suné, E.; Carrera, J.; Pujades, E.; Petrovic, M.; Barceló, D. Occurrence of carbamazepine and five metabolites in an urban aquifer. Chemosphere 2014, 115, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Brezina, E.; Prasse, C.; Meyer, J.; Mückter, H.; Ternes, T.A. Investigation and risk evaluation of the occurrence of carbamazepine, oxcarbazepine, their human metabolites and transformation products in the urban water cycle. Environ. Pollut. 2017, 225, 261–269. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate. Chem. Eng. J. 2018, 336, 595–601. [Google Scholar] [CrossRef]
- Almeida, Â.; Calisto, V.; Esteves, V.I.; Schneider, R.J.; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Presence of the pharmaceutical drug carbamazepine in coastal systems: Effects on bivalves. Aquat. Toxicol. 2014, 156, 74–87. [Google Scholar] [CrossRef]
- Tsiaka, P.; Tsarpali, V.; Ntaikou, I.; Kostopoulou, M.N.; Lyberatos, G.; Dailianis, S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 2013, 22, 1208–1220. [Google Scholar] [CrossRef]
- Rajendran, K.; Sen, S. Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ. Nanotechnol. Monit. Manag. 2018, 9, 122–127. [Google Scholar] [CrossRef]
- Chtourou, M.; Mallek, M.; Dalmau, M.; Mamo, J.; Santos-Clotas, E.; Salah, A.B.; Walha, K.; Salvadó, V.; Monclús, H. Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf. Environ. Prot. 2018, 118, 1–9. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Carbamazepine degradation by gamma irradiation coupled to biological treatment. J. Hazard. Mater. 2017, 321, 639–646. [Google Scholar] [CrossRef]
- Tang, K.; Spiliotopoulou, A.; Chhetri, R.K.; Ooi, G.T.H.; Kaarsholm, K.M.S.; Sundmark, K.; Florian, B.; Kragelund, C.; Bester, K.; Andersen, H.R. Removal of pharmaceuticals, toxicity and natural fluorescence through the ozonation of biologically-treated hospital wastewater, with further polishing via a suspended biofilm. Chem. Eng. J. 2018, 359, 321–330. [Google Scholar] [CrossRef]
- Hansen, K.M.S.; Spiliotopoulou, A.; Chhetri, R.K.; Escolà Casas, M.; Bester, K.; Andersen, H.R. Ozonation for source treatment of pharmaceuticals in hospital wastewater—Ozone lifetime and required ozone dose. Chem. Eng. J. 2016, 290, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, S.K.; Price, W.E.; Kang, J.; Fujioka, T.; Long, D. Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalin. Water Treat. 2016, 57, 29340–29351. [Google Scholar] [CrossRef]
- Dwivedi, K.; Rudrashetti, A.P.; Chakrabarti, T. Transformation Products of Carbamazepine (CBZ) After Ozonation and their Toxicity Evaluation Using Pseudomonas sp. Strain KSH-1 in Aqueous Matrices. Indian J. Microbiol. 2018, 58, 193–200. [Google Scholar] [CrossRef]
- Hübner, U.; Seiwert, B.; Reemtsma, T.; Jekel, M. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment—Indications from column experiments. Water Res. 2014, 49, 34–43. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Wang, F.; Xiong, X.; Tian, K.; Sun, Y.; Yu, T. Application of heterogeneous catalytic ozonation for Refractory Organics in Wastewater. Catalysts 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Aghaeinejad-Meybodi, A.; Ebadi, A.; Shafiei, S.; Khataee, A.; Kiadehi, A.D. Degradation of Fluoxetine using catalytic ozonation in aqueous media in the presence of nano-γ-alumina catalyst: Experimental, modeling and optimization study. Sep. Purif. Technol. 2019, 211, 551–563. [Google Scholar] [CrossRef]
- Chedeville, O.; Di Giusto, A.; Delpeux, S.; Cagnon, B. Oxidation of pharmaceutical compounds by ozonation and ozone/activated carbon coupling: A kinetic approach. Desalin. Water Treat. 2016, 57, 18956–18963. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Waheed, S.; Joya, K.S.; Kazmi, M. Catalytic ozonation of paracetamol on zeolite A: Non-radical mechanism. Catal. Commun. 2018, 112, 15–20. [Google Scholar] [CrossRef]
- Saeid, S.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peltonen, J.; Peurla, M.; Mikkola, J.P.; Franz, A.; Salmi, T. Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl. Catal. B Environ. 2018, 230, 77–90. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Yoza, B.A.; Li, Q.X.; Kou, Y.; Tang, Y.; Ye, H.; Li, Y.; Chen, C. Catalytic ozonation of recalcitrant organic chemicals in water using vanadium oxides loaded ZSM-5 zeolites. Front. Chem. 2019, 7, 384. [Google Scholar] [CrossRef] [PubMed]
- Aho, A.; Salmi, T.; Murzin, D.Y. Catalytic Pyrolysis of Lignocellulosic Biomass. Role Catal. Sustain. Prod. Bio-Fuels Bio-Chem. 2013, 137–159. [Google Scholar] [CrossRef]
- Somathilake, P.; Dominic, J.A.; Achari, G.; Cooper, H. Degradation of Carbamazepine by Photo-assisted Ozonation: Influence of Wavelength and Intensity of Radiation Degradation of Carbamazepine by Photo-assisted Ozonation: Influence of Wavelength and Intensity of Radiation. Ozone Sci. Eng. 2018, 40, 113–121. [Google Scholar] [CrossRef]
- Cai, T.; Gao, Y.; Yan, J.; Wu, Y.; Di, J. Visual detection of glucose using triangular silver nanoplates and gold nanoparticles. RSC Adv. 2017, 7, 29122–29128. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Ma, M.; Li, N.; Hou, R.; Huang, C.; Oda, Y.; Wang, Z. Chlorination, chloramination and ozonation of carbamazepine enhance cytotoxicity and genotoxicity: Multi-endpoint evaluation and identification of its genotoxic transformation products. J. Hazard. Mater. 2018, 342, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Mcdowell, D.C.; Huber, M.M.; Wagner, M.; Von Gunten, U.; Ternes, T.A. Ozonation of carbamazepine in drinking water: Identification and kinetic study of major oxidation products. Environ. Sci. Technol. 2005, 39, 8014–8022. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water; Wiley-VCH: Weinheim, Germany, 2010; ISBN 9783527319626. [Google Scholar]
- Einaga, H.; Maeda, N.; Nagai, Y. Comparison of catalytic properties of supported metal oxides for benzene oxidation using ozone. Catal. Sci. Technol. 2015, 5, 3147–3158. [Google Scholar] [CrossRef]
- Rosal, R.; Rodríguez, A.; Gonzalo, M.S.; García-Calvo, E. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide. Appl. Catal. B Environ. 2008, 84, 48–57. [Google Scholar] [CrossRef]
- Kumar, N.; Mäki-Arvela, P.; Hajek, J.; Salmi, T.; Murzin, D.Y.; Heikkilä, T.; Laine, E.; Laukkanen, P.; Väyrynen, J. Physico-chemical and catalytic properties of Ru-MCM-41 mesoporous molecular sieve catalyst: Influence of Ru modification methods. Microporous Mesoporous Mater. 2004, 69, 173–179. [Google Scholar] [CrossRef]
- Iodometric Method for the Determination of Ozone in a Process Gas. Available online: www.otsil.net/articles.html%0D (accessed on 2 January 2020).
- Lin, W.C.; Chen, H.C.; Ding, W.H. Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography-mass spectrometry. J. Chromatogr. A 2005, 1065, 279–285. [Google Scholar] [CrossRef]
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 969, 162–170. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst | Average Particle Size Distribution (nm) |
---|---|---|
1 | Pt-MCM-41-IS | 13.39 |
2 | Ru-MCM-41-IS | 13.29 |
3 | Pd-H-Y-12-EIM | 6.47 |
4 | Pt-H-Y-12-EIM | 5.72 |
5 | Pd-H-Beta-300-EIM | 6.11 |
6 | Cu-MCM-41-A-EIM | 7.82 |
Entry | Catalyst | Specific Surface Area (m2/g) | Pore Specific Volume (cm3/g) | ||
---|---|---|---|---|---|
Fresh | Spent | Fresh | Spent | ||
1 | Pt-MCM-41-IS | 429 | 555 | 0.409 | 0.552 |
2 | Ru-MCM-41-IS | 747 | 677 | 0.491 | 0.456 |
3 | Pd-H-Y-12-EIM | 667 | 732 | 0.237 | 0.259 |
4 | Pt-H-Y-12-EIM | 857 | 344 | 0.304 | 0.506 |
5 | Pd-H-Beta-300-EIM | 808 | 657 | 0.287 | 0.233 |
6 | Cu-MCM-41-A-EIM | 612 | 104 | 0.765 | 0.314 |
Entry | Catalyst | Average Crystal Size (nm) | Metal Concentration (wt%) |
---|---|---|---|
1 | Pt-MCM-41-IS | 219.23 | 7.12 |
2 | Ru-MCM-41-IS | 202.39 | 1.55 |
3 | Pd-H-Y-12-EIM | 257.12 | 5.34 |
4 | Pt-H-Y-12-EIM | 119.62 | 1.67 |
5 | Pd-H-Beta-300-EIM | 272.45 | 1.95 |
6 | Cu-MCM-41-A-EIM | 88.23 | 3.46 |
Catalysts | Brønsted Acidity (µmoL/g) | Lewis Acidity (µmoL/g) | ||||
---|---|---|---|---|---|---|
250 °C | 350 °C | 450 °C | 250 °C | 350 °C | 450 °C | |
Pt-MCM-41-IS | 7 | 2 | 0 | 1 | 1 | 0 |
Ru-MCM-41-IS | 18 | 0 | 0 | 9 | 0 | 0 |
Pd-H-Y-12-EIM | 237 | 24 | 0 | 52 | 6 | 0 |
Pt-H-Y-12-EIM | 96 | 28 | 0 | 3 | 13 | 0 |
Pd-H-Beta-300-EIM | 58 | 18 | 0 | 9 | 7 | 0 |
Cu-MCM-41-A-EIM | 44 | 10 | 0 | 56 | 9 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeid, S.; Kråkström, M.; Tolvanen, P.; Kumar, N.; Eränen, K.; Mikkola, J.-P.; Kronberg, L.; Eklund, P.; Peurla, M.; Aho, A.; et al. Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts 2020, 10, 90. https://doi.org/10.3390/catal10010090
Saeid S, Kråkström M, Tolvanen P, Kumar N, Eränen K, Mikkola J-P, Kronberg L, Eklund P, Peurla M, Aho A, et al. Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts. 2020; 10(1):90. https://doi.org/10.3390/catal10010090
Chicago/Turabian StyleSaeid, Soudabeh, Matilda Kråkström, Pasi Tolvanen, Narendra Kumar, Kari Eränen, Jyri-Pekka Mikkola, Leif Kronberg, Patrik Eklund, Markus Peurla, Atte Aho, and et al. 2020. "Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process" Catalysts 10, no. 1: 90. https://doi.org/10.3390/catal10010090
APA StyleSaeid, S., Kråkström, M., Tolvanen, P., Kumar, N., Eränen, K., Mikkola, J. -P., Kronberg, L., Eklund, P., Peurla, M., Aho, A., Shchukarev, A., & Salmi, T. (2020). Advanced Oxidation Process for Degradation of Carbamazepine from Aqueous Solution: Influence of Metal Modified Microporous, Mesoporous Catalysts on the Ozonation Process. Catalysts, 10(1), 90. https://doi.org/10.3390/catal10010090