Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis of 2,3-Bis(4-Bromophenyl)Pyrido(3,4-b)Pyrazine
3.2. Synthesis of the CPP-P2
3.3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev. 2004, 104, 4791–4844. [Google Scholar] [CrossRef] [PubMed]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Science 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts. Adv. Mater. 2015, 27, 7204–7212. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Han, S.H.; Suh, M.P. Copper–organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2016, 55, 15301–15305. [Google Scholar] [CrossRef]
- Jaouen, F.; Proietti, E.; Lefevre, M.; Chenitz, R.; Dodelet, J.P.; Wu, G.; Chung, H.T.; Johnston, C.M.; Zelenay, P. Recent Advances in Non-precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuel cells. Energy Environ. Sci. 2011, 4, 114–130. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10, 444. [Google Scholar] [CrossRef]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active Sites of Nitrogen-doped Carbon Materials for Oxygen Reduction Reaction Clarified using Model Catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Singh, S.K.; Takeyasu, K.; Nakamura, J. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Adv. Mater. 2018. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.; Chung, D.Y.; Yoo, J.M.; Lee, H.S.; Kim, M.J.; Mun, B.S.; Kwon, S.G.; Sung, Y.E.; Hyeon, T. Design Principle of Fe-N-C Electrocatalysts: How to Optimize Multimodal Porous Structures? J. Am. Chem. Soc. 2019, 141, 2035–2045. [Google Scholar] [CrossRef]
- Lv, Q.; Si, W.; He, J.; Sun, L.; Zhang, C.; Wang, N.; Yang, Z.; Li, X.; Wang, X.; Deng, W.; et al. Selectively Nitrogen-doped Carbon Materials as Superior Metal-free Catalysts for Oxygen Reduction. Nat. Commun. 2018, 9, 3376. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Tong, X.; Zhang, G.; Qiao, J.; Gong, Q.; Sun, S. Nitrogen-doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts 2015, 5, 1574–1602. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Bandyopadhyay, A.; Das, M.; Ray, P.P.; Pati, S.K.; Maji, T.K. Redox-active and Semi-conducting Donor–acceptor Conjugated Microporous Polymers as Metal-free ORR catalysts. J. Mater. Chem. A 2018, 6, 5587–5591. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated Microporous Polymers: Design, Synthesis and Application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Pallavi, P.; Anil, A.G.; Patra, A. Fabrication of Porous Organic Polymers in the form of Powder, Soluble in Organic Solvents and Nanoparticles: A Unique Platform for Gas Adsorption and Efficient Chemosensing. Polym. Chem. 2015, 6, 3775–3780. [Google Scholar] [CrossRef] [Green Version]
- Slater, A.G.; Cooper, A.I. Porous Materials Function-led Design of New Porous Materials. Science 2015, 348, 6238. [Google Scholar] [CrossRef]
- Zhang, M.; Ming, J.; Zhang, W.; Xie, J.; Lin, P.; Song, X.; Chen, X.; Wang, X.; Zhou, B. Porous Organic Polymer-Derived Fe2P@N,P-Codoped Porous Carbon as Efficient Electrocatalysts for pH Universal ORR. ACS Omega 2020, 5, 7225–7234. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Li, W.; Dou, J.; Song, W.; Ming, J.; Bian, W.; Guo, Y.; Li, X.; Zhang, W.; Zhou, B. Porous Organic Polymers as Fire-Resistant Additives and Precursors for Hyperporous Carbon towards Oxygen Reduction Reactions. ChemistryOpen 2020, 9, 593. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Boukhvalov, D.W.; Nayakd, A.K.; Ha, S.R.; Shin, H.J.; Kwon, J.; Song, T.; Choi, H. Redox Active Nitrogen-containing Conjugated Porous Polymer: An Organic Heterogeneous Electrocatalysts for Oxygen Reduction Reaction. Dye Pigment. 2019, 170, 107557. [Google Scholar] [CrossRef]
- Trivedi, M.; Tallapragada, R.; Branton, A.; Trivedi, D.; Nayak, G.; Mishra, R.; Jana, S. Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl. Am. J. Chem. Eng. 2015, 3, 58–65. [Google Scholar] [CrossRef]
- Chang, D.W.; Choi, H.-J.; Baek, J.-B. Wet-chemical Nitrogen-doping of Graphene Nanoplatelets as Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A 2015, 3, 7659–7665. [Google Scholar] [CrossRef]
- Radovic, L.R.; Suarez, A.; Valleos-Burgos, F.; Sofo, J.O. Oxygen Migration on the Graphene Surface. 2. Thermochemistry of basal-plane Diffusion (hopping). Carbon 2011, 49, 4226. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Son, Y.-W. Oxygen Reduction Reactions on Pure and Nitrogen-doped Graphene: A First-principles Modeling. Nanoscale 2012, 4, 417. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Henkelman, G. Theoretical Resolution of the Exceptional Oxygen Reduction Activity of Au(100) in Alkaline Media. ACS Catal. 2019, 9, 5567. [Google Scholar] [CrossRef]
- Hansen, H.A.; Rossmeisl, J.; Nørskov, J. Surface PourbaixDiagrams and Oxygen Reduction Activity of Pt, Ag and Ni (111) Surfaces Studied by DFT. Phys. Chem. Chem. Phys. 2008, 10, 3722. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Romaán-Peérez, G.; Soler, J.M. Efficient Implementation of a Van der Waals Density Functional: Application to Double-wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102. [Google Scholar] [CrossRef] [Green Version]
- Troullier, O.N.; Martins, J.L. Efficient Pseudopotentials for Plane-wave Calculations. Phys. Rev. B 1991, 43, 1993. [Google Scholar] [CrossRef]
- Nørskov, J.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-cell Cathode. J. Phys. Chem. B 2004, 108, 17886. [Google Scholar] [CrossRef]
- Ao, Z.M.; Peeters, F.M. Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-doped Graphene. J. Phys. Chem. C 2010, 114, 14503. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandyopadhyay, S.; Ha, S.R.; Khan, M.A.; Lee, C.; Jeong, H.I.; Lokhandwala, S.; S. Tamboli, M.; Lee, B.R.; W. Boukhvalov, D.; Choi, H. Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts 2020, 10, 1224. https://doi.org/10.3390/catal10111224
Bandyopadhyay S, Ha SR, Khan MA, Lee C, Jeong HI, Lokhandwala S, S. Tamboli M, Lee BR, W. Boukhvalov D, Choi H. Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts. 2020; 10(11):1224. https://doi.org/10.3390/catal10111224
Chicago/Turabian StyleBandyopadhyay, Sujoy, Su Ryong Ha, M. Alam Khan, Cheongbeom Lee, Hong In Jeong, Snehal Lokhandwala, Mohaseen S. Tamboli, Bo Ram Lee, Danil W. Boukhvalov, and Hyosung Choi. 2020. "Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach" Catalysts 10, no. 11: 1224. https://doi.org/10.3390/catal10111224
APA StyleBandyopadhyay, S., Ha, S. R., Khan, M. A., Lee, C., Jeong, H. I., Lokhandwala, S., S. Tamboli, M., Lee, B. R., W. Boukhvalov, D., & Choi, H. (2020). Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts, 10(11), 1224. https://doi.org/10.3390/catal10111224