Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.2. Fourier Transform Infrared (FTIR) Analysis
2.3. Field Emission Scanning Electron Microscopy (FESEM)/Energy Dispersive X-ray (EDX) Analysis
2.4. Transmission Electron Microscopy (TEM) Analysis
2.5. Nitrogen Adsorption-Desorption Analysis
2.6. Fenton Oxidation Activity of FeZ Composites
2.6.1. OFL Removal in Different Processes
2.6.2. Effect of Fe3O4 Loading on Zeolite
2.6.3. Effect of Catalyst Dosage
2.6.4. Effect of Initial Solution pH
2.6.5. Effect of Initial OFL Concentration
2.6.6. Effect of Different Oxidants
2.6.7. Effect of H2O2 Dosage
2.6.8. Effect of Reaction Temperature
2.6.9. Effect of Inorganic Salts
2.6.10. TOC Removal Studies
2.6.11. Hetero-Fenton Degradation Mechanism
2.6.12. Reusability and Stability Studies
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of FeZ Composites
3.3. Characterizations
3.4. Heterogeneous Fenton Degradation of OFL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Zhai, C.; Peng, Y.; Chao, K. A Nondestructive Detection Method for Mixed Veterinary Drugs in Pork Using Line-Scan Raman Chemical Imaging Technology. Food Anal. Methods 2019, 12, 658–667. [Google Scholar] [CrossRef]
- Sharma, S.; Bhandari, A.; Choudhary, V.; Rajpurohit, H.; Khandelwal, P. RP-HPLC method for simultaneous estimation of nitazoxanide and ofloxacin in tablets. Ind. J. Pharm. Sci. 2011, 73, 84. [Google Scholar] [CrossRef] [Green Version]
- Janos, F.; Robin, G.C. Analogue-based Drug Discovery, 1st ed.; Wiley-VCH: Hoboken, NJ, USA, 2006; ISBN 9783527607495. [Google Scholar]
- Sun, J.; Song, M.; Feng, J.; Pi, Y. Highly efficient degradation of ofloxacin by UV/Oxone/Co2+ oxidation process. Environ. Sci. Pollut. Res. 2012, 19, 1536–1543. [Google Scholar] [CrossRef]
- Chen, T.S.; Kuo, Y.M.; Chen, J.L.; Huang, K.L. Anodic degradation of ofloxacin on a boron-doped diamond electrode. Int. J. Electrochem. Sci. 2013, 8, 7625–7633. [Google Scholar]
- Elfiky, M.; Salahuddin, N.; Hassanein, A.; Matsuda, A.; Hattori, T. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem. J. 2019, 146, 170–177. [Google Scholar] [CrossRef]
- Peres, M.; Maniero, M.; Guimarães, J. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity. Photochem. Photobiol. Sci. 2015, 14, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Enick, O.V.; Moore, M.M. Assessing the assessments: Pharmaceuticals in the environment. Environ. Impact Assess. Rev. 2007, 27, 707–729. [Google Scholar] [CrossRef]
- Esposito, B.R.; Capobianco, M.L.; Martelli, A.; Navacchia, M.L.; Pretali, L.; Saracino, M.; Zanelli, A.; Emmi, S.S. Advanced water remediation from ofloxacin by ionizing radiation. Radiat. Phys. Chem. 2017, 141, 118–124. [Google Scholar] [CrossRef]
- Wuana, R.A.; Sha’Ato, R.; Iorhen, S. Aqueous phase removal of ofloxacin using adsorbents from Moringa oleifera pod husks. Adv. Environ. Res. 2015, 4, 49–68. [Google Scholar] [CrossRef]
- La Farre, M.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Dong, R.; Yu, G.; Guan, Y.; Wang, B.; Huang, J.; Deng, S.; Wang, Y. Occurrence and discharge of pharmaceuticals and personal care products in dewatered sludge from WWTPs in Beijing and Shenzhen. Emerg. Contam. 2016, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T. Antibiotics and resistance genes in wastewater treatment plants. AMR Control 2016, 9, 11–20. [Google Scholar]
- Varjani, S.J.; Sudha, M.C. Treatment Technologies for Emerging Organic Contaminants Removal from Wastewater. In Water Remediation; Springer Nature: Singapore, 2018; pp. 91–115. [Google Scholar]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Jaafarzadeh, N.; Kakavandi, B.; Takdastan, A.; Kalantary, R.R.; Azizi, M.; Jorfi, S. Powder activated carbon/Fe3O4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: Degradation mechanism and kinetic. RSC Adv. 2015, 5, 84718–84728. [Google Scholar] [CrossRef]
- Cleveland, V.; Bingham, J.P.; Kan, E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Sep. Purif. Technol. 2014, 133, 388–395. [Google Scholar] [CrossRef]
- Hua, Z.; Ma, W.; Bai, X.; Feng, R.; Yu, L.; Zhang, X.; Dai, Z. Heterogeneous Fenton degradation of bisphenol A catalyzed by efficient adsorptive Fe3O4/GO nanocomposites. Environ. Sci. Pollut. Res. 2014, 21, 7737–7745. [Google Scholar] [CrossRef]
- Mazilu, I.; Ciotonea, C.; Chirieac, A.; Dragoi, B.; Catrinescu, C.; Ungureanu, A.; Petit, S.; Royer, S.; Dumitriu, E. Synthesis of highly dispersed iron species within mesoporous (Al-) SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous Mesoporous Mater. 2017, 241, 326–337. [Google Scholar] [CrossRef]
- Krishna, L.S.; Soontarapa, K.; Asmel, N.K.; Kabir, M.A.; Yuzir, A.; Yaacob, W.Z.W.; Sarala, Y. Adsorption of acid blue 25 from aqueous solution using zeolite and surfactant modified zeolite. Desalin. Water Treat. 2019, 150, 348–360. [Google Scholar] [CrossRef]
- De Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 2018, 205, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Liu, S.; Chen, M.; Zhang, J.; Wang, X. Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 372–382. [Google Scholar] [CrossRef]
- Huang, R.; Fang, Z.; Yan, X.; Cheng, W. Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem. Eng. J. 2012, 197, 242–249. [Google Scholar] [CrossRef]
- Adimoolam, M.G.; Amreddy, N.; Nalam, M.R.; Sunkara, M.V. A simple approach to design chitosan functionalized Fe3O4 nanoparticles for pH responsive delivery of doxorubicin for cancer therapy. J. Magn. Magn. Mater. 2018, 448, 199–207. [Google Scholar] [CrossRef]
- Caglar, B.; Guner, E.K.; Keles, K.; Özdokur, K.V.; Cubuk, O.; Coldur, F.; Caglar, S.; Topcu, C.; Tabak, A. Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sci. 2018, 83, 122–136. [Google Scholar] [CrossRef]
- Zhao, H.; Weng, L.; Cui, W.W.; Zhang, X.R.; Xu, H.Y.; Liu, L.Z. In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst. Front. Mat. Sci. 2016, 10, 300–309. [Google Scholar] [CrossRef]
- Karami, B.; Hoseini, S.J.; Eskandari, K.; Ghasemi, A.; Nasrabadi, H. Synthesis of xanthene derivatives by employing Fe3O4 nanoparticles as an effective and magnetically recoverable catalyst in water. Catal. Sci. Technol. 2012, 2, 331–338. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Guo, X.; Jin, W.; Dang, A.; Li, H.; Li, T. Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite. Chem. Phy. Lett. 2016, 653, 202–206. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Wang, L.; Zhang, H.; Xu, P.; Duan, X.; Sun, H.; Wang, S. Three-dimensional BiOI/BiOX (X = Cl or Br) nanohybrids for enhanced visible-light photocatalytic activity. Nanomaterials 2017, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Sun, J.; Gao, L. Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 catalysts. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 95–100. [Google Scholar] [CrossRef]
- Hassan, H.; Hameed, B. Fe–clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chem. Eng. J. 2011, 171, 912–918. [Google Scholar] [CrossRef]
- Hu, X.; Liu, B.; Deng, Y.; Chen, H.; Luo, S.; Sun, C.; Yang, P.; Yang, S. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl. Catal. B Environ. 2011, 107, 274–283. [Google Scholar] [CrossRef]
- Lan, H.; Wang, A.; Liu, R.; Liu, H.; Qu, J. Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. J. Hazard. Mat. 2015, 285, 167–172. [Google Scholar] [CrossRef]
- Tian, Y.; He, X.; Zhou, H.; Tian, X.; Nie, Y.; Zhou, Z.; Yang, C.; Li, Y. Efficient fenton-like degradation of ofloxacin over bimetallic Fe–Cu@ Sepiolite composite. Chemosphere 2020, 257, 127209. [Google Scholar] [CrossRef]
- Wang, X.; Jin, H.; Wu, D.; Nie, Y.; Tian, X.; Yang, C.; Zhou, Z.; Li, Y. Fe3O4@S-doped ZnO: A magnetic, recoverable, and reusable Fenton-like catalyst for efficient degradation of ofloxacin under alkaline conditions. Environ. Res. 2020, 186, 109626. [Google Scholar] [CrossRef]
- Liu, J.; Wu, X.; Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin degradation by Fe3O4-CeO2/AC Fenton-like system: Optimization, kinetics, and degradation pathways. Mole. Cat. 2019, 465, 61–67. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, C.; Cheng, X.; Xu, S.; Fan, Z.; Wang, G.; Wang, S.; Guan, X.; Sun, X. Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon. Sep. Purif. Technol. 2017, 189, 357–365. [Google Scholar] [CrossRef]
- Azizan, Z.; Azran, M.; Hassan, H.; Faraziehan, S.; Abu Hassan, N. Decolorization of Reactive Black 5 using Fe-areca nut as a heterogeneous Fenton catalyst. Proc. Appl. Mech. Mater. 2014, 661, 29–33. [Google Scholar] [CrossRef]
- Soon, A.N.; Hameed, B. Degradation of Acid Blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous Photo-Fenton catalyst. Appl. Catal. A Gen. 2013, 450, 96–105. [Google Scholar] [CrossRef]
- Shukla, P.; Wang, S.; Sun, H.; Ang, H.-M.; Tadé, M. Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem. Eng. J. 2010, 164, 255–260. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Phan, N.H.; Do, M.H.; Ngo, K.T. Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J. Hazard. Mat. 2011, 185, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, J.; Liang, Z.; Xu, W.; Chen, L.; Ye, D. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Sep. Purif. Technol. 2016, 171, 80–87. [Google Scholar] [CrossRef]
- Li, W.; Wan, D.; Wang, G.; Chen, K.; Hu, Q.; Lu, L. Heterogeneous Fenton degradation of Orange II by immobilization of Fe3O4 nanoparticles onto Al-Fe pillared bentonite. Korean J. Chem. Eng. 2016, 33, 1557–1564. [Google Scholar] [CrossRef]
- Tang, X.; Feng, Q.; Liu, K.; Li, Z.; Wang, H. Fabrication of magnetic Fe3O4/silica nanofiber composites with enhanced Fenton-like catalytic performance for Rhodamine B degradation. J. Mat. Sci. 2018, 53, 369–384. [Google Scholar] [CrossRef]
- Shi, X.; Tian, A.; You, J.; Yang, H.; Wang, Y.; Xue, X. Degradation of organic dyes by a new heterogeneous Fenton reagent-Fe2GeS4 nanoparticle. J. Hazard. Mat. 2018, 353, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Wu, J.; Liu, Q.; Zhang, H.; Jin, S. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar. Sustainability 2015, 7, 12947–12957. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.A.; He, X.; Khan, H.M.; Shah, N.S.; Dionysiou, D.D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82-/Fe2+ and UV/HSO5-/Fe2+ processes: A comparative study. Chem. Eng. J. 2013, 218, 376–383. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Xu, T.; Zheng, H.; Bao, J. Synergistic degradation of PNP via coupling H2O2 with persulfate catalyzed by nano zero valent iron. RSC Adv. 2019, 9, 20323–20331. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Wang, L.; Jiang, M.; Yang, Y.; Yang, P.; Lu, J.; Ferronato, C.; Chovelon, J.M. Ferrous-activated peroxymonosulfate oxidation of antimicrobial agent sulfaquinoxaline and structurally related compounds in aqueous solution: Kinetics, products, and transformation pathways. Environ. Sci. Pollut. Res. 2017, 24, 19535–19545. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, W.; Zhao, Y.; Zhang, G.; Zhang, W. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B Environ. 2017, 206, 642–652. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L. Novel bentonite clay-based Fe- nanocomposite as a heterogeneous catalyst for photo-fenton discoloration and mineralization of orange II. Environ. Sci. Technol. 2004, 38, 269–275. [Google Scholar] [CrossRef]
- Chen, F.; Xie, S.; Huang, X.; Qiu, X. Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J. Hazard. Mat. 2017, 322, 152–162. [Google Scholar] [CrossRef]
- Wen, X.J.; Niu, C.G.; Zhang, L.; Liang, C.; Zeng, G.M. An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts. J. Catal. 2017, 356, 283–299. [Google Scholar] [CrossRef]
- Tsuneda, S.; Ishihara, Y.; Hamachi, M.; Hirata, A. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process. Water Sci. Technol. 2002, 46, 33–38. [Google Scholar] [CrossRef]
- Dugandžić, A.M.; Tomašević, A.V.; Radišić, M.M.; Šekuljica, N.Ž.; Mijin, D.Ž.; Petrović, S.D. Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron. J. Photochem. Photobiol. A Chem. 2017, 336, 146–155. [Google Scholar] [CrossRef]
Sample | Al% | Si% | Na% | O% | Fe% |
---|---|---|---|---|---|
Zeolite | 16.76 | 18.69 | 14.40 | 50.15 | - |
FeZ-1.5 | 17.81 | 17.84 | - | 41.67 | 22.68 |
FeZ-3 | 15.20 | 15.77 | - | 40.00 | 29.03 |
FeZ-5 | 15.02 | 13.91 | - | 39.47 | 31.59 |
FeZ-8 | 4.12 | 4.39 | - | 38.88 | 52.62 |
FeZ-10 | 4.09 | 4.01 | - | 35.60 | 56.29 |
Samples | BET Surface Area (m2·g−1) | Pore Volume (cm3·g−1) |
---|---|---|
Zeolite | 1.52 | 0.001798 |
FeZ-1.5 | 70.91 | 0.202736 |
FeZ-3 | 251.60 | 0.317371 |
FeZ-5 | 251.53 | 0.276022 |
FeZ-8 | 220.52 | 0.273748 |
FeZ-10 | 211.96 | 0.262692 |
Samples | Conc. of OFL (mg·L−1) | Catalyst Dosage (g·L−1) | Time (min) | pH | H2O2 Conc. | % Removal | Ref. |
---|---|---|---|---|---|---|---|
D-FeCu@Sep | 10 | 3.0 | 120 | 5.0 | 0.03 M | ~100 | [34] |
A-FeCu@Sep | 10 | 3.0 | 120 | 5.0 | 0.03 M | ~40 | [34] |
S-doped ZnO | 10 | 0.25 | 120 | 6.5 | 5 mL·L−1 | 23 | [35] |
Fe3O4 | 10 | 0.25 | 120 | 6.5 | 5 mL·L−1 | ~60 | [35] |
Fe3O4@S-doped ZnO | 10 | 0.25 | 120 | 6.5 | 5 mL·L−1 | ~100 | [35] |
AC-Fe3O4 | 12 | 0.5 | 60 | 3.3 | 20.0 mM | ~75 | [36] |
Fe3O4-CeO2 | 12 | 0.5 | 60 | 3.3 | 20.0 mM | ~80 | [36] |
Fe3O4-CeO2/AC | 12 | 0.5 | 60 | 3.3 | 20.0 mM | ~98 | [36] |
Fe@Mpsi | 30 | 1.0 | 120 | Initial pH | 2000 mg·L−1 | 18 | [37] |
Cu@Mpsi | 30 | 1.0 | 120 | Initial pH | 2000 mg·L−1 | 51 | [37] |
Fe-Cu@SBA-15 | 30 | 1.0 | 120 | Initial pH | 2000 mg·L−1 | ~70 | [37] |
Fe-Cu@Mpsi | 30 | 1.0 | 120 | Initial pH | 2000 mg·L−1 | ~82 | [37] |
Fe3O4-zeolite | 20 | 1.0 | 120 | 9 | 5 mL·L−1 | 88 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhahawi Ahmad, A.R.; Imam, S.S.; Oh, W.D.; Adnan, R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts 2020, 10, 1241. https://doi.org/10.3390/catal10111241
Dhahawi Ahmad AR, Imam SS, Oh WD, Adnan R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts. 2020; 10(11):1241. https://doi.org/10.3390/catal10111241
Chicago/Turabian StyleDhahawi Ahmad, Alamri Rahmah, Saifullahi Shehu Imam, Wen Da Oh, and Rohana Adnan. 2020. "Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution" Catalysts 10, no. 11: 1241. https://doi.org/10.3390/catal10111241
APA StyleDhahawi Ahmad, A. R., Imam, S. S., Oh, W. D., & Adnan, R. (2020). Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts, 10(11), 1241. https://doi.org/10.3390/catal10111241