Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column
Abstract
:1. Introduction
2. Results
2.1. Characterization of Graphene before and after Using as a Catalyst
2.2. UV Exposure Enhances the Catalytic Effect of Graphene on Phenol Degradation
2.3. Continuous Degradation of Phenol Using a Graphene Column
2.4. Evaluation of Intermediates from the AOP of Phenol
3. Discussion
4. Materials and Methods
4.1. Synthesis and Characterization of Graphene
4.2. Degradation of Phenol Using Graphene Transferred on a Wafer or PI Film
4.3. Comparison with Fenton’s Reagent
4.4. Temperature Measurement
4.5. Graphene Column
4.6. Raman Spectroscopy
4.7. High-Performance Liquid Chromatography
4.8. Dihydroxybenzene Reaction with Fenton’s Reagent
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duan, W.; Meng, F.; Lin, Y.; Wang, G. Toxicological effects of phenol on four marine microalgae. Environ. Toxicol. Pharmacol. 2017, 52, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Hayati, F.; Isari, A.A.; Fattahi, M.; Anvaripour, B.; Jorfi, S. Photocatalytic decontamination of phenol and petrochemical wastewater through ZnO/TiO2 decorated on reduced graphene oxide nanocomposite: Influential operating factors, mechanism, and electrical energy consumption. RSC Adv. 2018, 8, 40035–40053. [Google Scholar] [CrossRef] [Green Version]
- Michałowicz, J.; Duda, W. Phenols–Sources and Toxicity. Pol. J. Environ. Stud. 2007, 16, 347–362. [Google Scholar]
- Solís-López, M.; Durán-Moreno, A.; Rigas, F.; Morales, A.A.; Navarrete, M.; Ramírez-Zamora, R.M. 9–Assessment of copper slag as a sustainable fenton-type photocatalyst for water disinfection. In Water Reclamation and Sustainability; Ahuja, S., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 199–227. [Google Scholar] [CrossRef]
- Su, P.; Zhou, M.; Lu, X.; Yang, W.; Ren, G.; Cai, J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B 2019, 245, 583–595. [Google Scholar] [CrossRef]
- Raut-Jadhav, S.; Bagal, M.V. 5–Advanced graphene-transition metal-oxide-based nanocomposite photocatalysts for efficient degradation of pollutants present in wastewater. In Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices; Vijay, B.P., Paresh, H.S., Bhanvase, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, H.; Wang, H.; Zhang, L.; Liu, P.; Feng, L. Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions. J. Colloid Interface Sci. 2014, 436, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, H.; Liu, Y.; Qu, J.; Li, J. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale 2015, 7, 1250–1269. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Hou, Y.; Abu-Reesh, I.M.; Chen, J.; He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review. Mater. Horiz. 2016, 3, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.M.; Park, B.; Kim, S.J.; Choi, Y.S.; Park, S.; Jeong, E.H.; Lee, H.; Hong, B.H. Catalytic degradation of phenols by recyclable CVD graphene films. Nanoscale 2018, 10, 5840–5844. [Google Scholar] [CrossRef]
- Rocha, R.P.; Gonçalves, A.G.; Pastrana-Martínez, L.M.; Bordoni, B.C.; Soares, O.S.G.P.; Órfão, J.J.M.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T.; Pereira, M.F.R. Nitrogen-doped graphene-based materials for advanced oxidation processes. Catal. Today 2015, 249, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Li, H.; Du, X.; Zhu, M.; Chen, W.; Shi, T.; Hao, N.; Liu, Q.; Wang, K. Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor. Biosens. Bioelectron. 2018, 111, 131–137. [Google Scholar] [CrossRef]
- Tian, G.-L.; Zhao, M.-Q.; Yu, D.; Kong, X.-Y.; Huang, J.-Q.; Zhang, Q.; Wei, F. Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. Small 2014, 10, 2251–2259. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, X.; Weng, J. High peroxidase catalytic activity of exfoliated few-layer graphene. Carbon 2013, 62, 51–60. [Google Scholar] [CrossRef]
- Wu, P.; Du, P.; Zhang, H.; Cai, C. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 6920–6928. [Google Scholar] [CrossRef]
- Garg, B.; Bisht, T.; Ling, Y.-C. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview. Molecules 2015, 20, 14155–14190. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.-C.; Juang, R.-S.; Huq, M.M.; Hsieh, C.-T. Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. J. Taiwan Inst. Chem. Eng. 2016, 67, 338–345. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Yang, J.-H.; Sun, Q.; Li, Q.; Yang, J. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Appl. Catal. B 2016, 192, 182–192. [Google Scholar] [CrossRef]
- Prasse, C.; Ford, B.; Nomura, D.K.; Sedlak, D.L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc. Natl. Acad. Sci. USA 2018, 115, 2311–2316. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Tran, T.M.H.; Ambrosi, A.; Pumera, M. Phenols as probes of chemical composition of graphene oxide. Phys. Chem. Chem. Phys. 2016, 18, 30515–30519. [Google Scholar] [CrossRef]
- Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R. Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 2011, 172, 1008–1015. [Google Scholar] [CrossRef]
- Magerusan, L.; Socaci, C.; Pogacean, F.; Rosu, M.C.; Biris, A.R.; Coros, M.; Turza, A.; Floare-Avram, V.; Katona, G.; Pruneanu, S. Enhancement of peroxidase-like activity of N-doped graphene assembled with iron-tetrapyridylporphyrin. RSC Adv. 2016, 6, 79497–79506. [Google Scholar] [CrossRef]
- M’hemdi, A.; Dbira, B.; Abdelhedi, R.; Brillas, E.; Ammar, S. Mineralization of Catechol by Fenton and Photo-Fenton Processes. CLEAN Soil Air Water 2012, 40, 878–885. [Google Scholar] [CrossRef]
- Coupé, F.; Petitjean, L.; Anastas, P.T.; Caijo, F.; Escande, V.; Darcel, C. Sustainable oxidative cleavage of catechols for the synthesis of muconic acid and muconolactones including lignin upgrading. Green Chem. 2020, 22, 6204–6211. [Google Scholar] [CrossRef]
- Li, W.; Jain, T.; Ishida, K.; Liu, H. A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse. Environ. Sci. Water Res. Technol. 2017, 3, 128–138. [Google Scholar] [CrossRef]
- Appiani, E.; Page, S.E.; McNeill, K. On the Use of Hydroxyl Radical Kinetics to Assess the Number-Average Molecular Weight of Dissolved Organic Matter. Environ. Sci. Technol. 2014, 48, 11794–11802. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Stucchi, M.; Pirola, C.; Cerrato, G.; Morandi, S.; Sacchi, B.; Vitali, S.; Michele, A.D.; Capucci, V. Micro-sized TiO2 catalyst in powder form and as coating on porcelain grès tile for the photodegradation of phenol as model pollutant for water phase. Adv. Mater. Sci. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Araki, S.; Yamamoto, H. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water. J. Water Process. Eng. 2015, 7, 54–60. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Phenol; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2008; pp. 149–172.
- Pogacean, F.; Socaci, C.; Pruneanu, S.; Biris, A.R.; Coros, M.; Magerusan, L.; Katona, G.; Turcu, R.; Borodi, G. Graphene based nanomaterials as chemical sensors for hydrogen peroxide–A comparison study of their intrinsic peroxidase catalytic behavior. Sens. Actuators B Chem. 2015, 213, 474–483. [Google Scholar] [CrossRef]
- Maliyekkal, S.M.; Sreeprasad, T.S.; Krishnan, D.; Kouser, S.; Mishra, A.K.; Waghmare, U.V.; Pradeep, T. Graphene: A Reusable Substrate for Unprecedented Adsorption of Pesticides. Small 2013, 9, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, J.; Chen, X.; Zhao, Q.; Ghaffar, A.; Chen, B. Application of graphene-based materials in water purification: From the nanoscale to specific devices. Environ. Sci. Nano 2018, 5, 1264–1297. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K.; Kwiecińska-Mydlak, A. Nanotechnology in water and wastewater treatment. Graphene–the nanomaterial for next generation of semipermeable membranes. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1515–1579. [Google Scholar] [CrossRef]
- Seo, D.H.; Pineda, S.; Woo, Y.C.; Xie, M.; Murdock, A.T.; Ang, E.Y.M.; Jiao, Y.; Park, M.J.; Lim, S.I.; Lawn, M.; et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, B.; Shin, D.H.; Yoo, J.M.; Lee, H.; Hong, B.H. Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column. Catalysts 2020, 10, 1251. https://doi.org/10.3390/catal10111251
Kim J, Park B, Shin DH, Yoo JM, Lee H, Hong BH. Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column. Catalysts. 2020; 10(11):1251. https://doi.org/10.3390/catal10111251
Chicago/Turabian StyleKim, Juhee, Baekwon Park, Dong Heon Shin, Je Min Yoo, Hyukjin Lee, and Byung Hee Hong. 2020. "Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column" Catalysts 10, no. 11: 1251. https://doi.org/10.3390/catal10111251
APA StyleKim, J., Park, B., Shin, D. H., Yoo, J. M., Lee, H., & Hong, B. H. (2020). Photocatalytic Degradation of Phenol Using Chemical Vapor Desposition Graphene Column. Catalysts, 10(11), 1251. https://doi.org/10.3390/catal10111251