Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Catalytic Performance
3. Materials and Methods
3.1. Preparation of Neat g-C3N4
3.2. Preparation of Sulfated g-C3N4
3.3. Preparation of the Sulfated g-C3N4 Supported Rh Particle Catalyst
3.4. Sample Characterization
3.5. Catalytic Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hebrard, F.; Kalck, P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chem. Rev. 2009, 109, 4272–4282. [Google Scholar] [CrossRef]
- Franke, R.; Selent, D.; Borner, A. Applied hydroformylation. Chem. Rev. 2012, 112, 5675–5732. [Google Scholar] [CrossRef]
- Piras, I.; Jennerjahn, R.; Jackstell, R.; Spannenberg, A.; Franke, R.; Beller, M. A general and efficient Iridium-catalyzed hydroformylation of olefins. Angew. Chem. 2011, 123, 294–298. [Google Scholar] [CrossRef]
- Tao, L.; Zhong, M.M.; Chen, J.; Jayakumar, S.J.; Liu, L.N.; Li, H.; Yang, Q.H. Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion. Green Chem. 2018, 20, 188–196. [Google Scholar] [CrossRef]
- Li, C.Y.; Yan, L.; Lu, L.L.; Xiong, K.; Wang, W.L.; Jiang, M.; Liu, J.; Song, X.G.; Zhan, Z.P.; Jiang, Z.; et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 2016, 18, 2995–3005. [Google Scholar]
- Dong, K.W.; Fang, X.J.; Jackstell, R.; Beller, M. A novel Rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides. Chem. Commun. 2015, 51, 5059–5062. [Google Scholar] [CrossRef]
- Jagtap, S.A.; Bhanage, B.M. Rhodium/phosphine catalysed selective hydroformylation of biorenewable olefins. Appl. Organomet. Chem. 2018, 32, 4478–4486. [Google Scholar] [CrossRef]
- Schmitz, C.; Holthusen, K.; Leitner, W.; Franciò, G. Highly regio- and enantioselective hydroformylation of vinyl esters using bidentate phosphine, P-chiral phosphorodiamidite ligands. ACS Catal. 2016, 6, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- Makhubela, B.C.E.; Jardine, A.; Smith, G.S. Rh(I) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chem. 2012, 14, 338–347. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.F.; Liu, X.L.; Sheng, N.; Deng, F.; Meng, X.J.; Xiao, F.S. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 2015, 137, 5204–5209. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Zhang, X.M.; Sanjeevi, J.; Yang, Q.H. Hydroformylation of 1-octene in Pickering emulsion constructed by amphiphilic mesoporous silica particles. J. Catal. 2016, 334, 52–59. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, G.F.; Ji, Y.J.; Niu, Z.Q.; Wang, D.S.; Li, Y.D. Hydroformylation of alkenes over Rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 79, 1364–1369. [Google Scholar] [CrossRef]
- Peral, D.; Stehl, D.; Bibouche, B.; Yu, H.; Mardoukh, J.; Schomäcker, R.; Klitzing, R.V.; Vogt, D. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions. J. Colloid Interface Sci. 2018, 513, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Yan, L.; Li, C.Y.; Jiang, M.; Wang, W.L.; Ding, Y.J. Highly efficient porous organic copolymer supported Rh catalysts for heterogeneous hydroformylation of butenes. Appl. Catal. A Gen. 2018, 551, 98–105. [Google Scholar] [CrossRef]
- Chuai, H.Y.; Su, P.H.; Liu, H.C.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Alkali and alkaline earth cation-decorated TiO2 nanotube-supported Rh catalysts for vinyl acetate hydroformylation. Catalysts 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Su, P.H.; Liu, X.T.; Chen, Y.; Liu, H.C.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Synthesis and characterization of Rh/B-TNTs as a recyclable catalyst for hydroformylation of olefin containing -CN functional group. Nanomaterials 2018, 8, 755. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, D.; Safronova, D.; Kardasheva, Y.; Maximov, A.; Rosenbergand, E.; Karakhanov, E. New heterogeneous Rh-containing catalysts immobilized on a hybrid organic-inorganic surface for hydroformylation of unsaturated compounds. ACS Appl. Mater. Interfaces 2018, 10, 26566–26575. [Google Scholar] [CrossRef]
- Tan, M.H.; Ishikuro, Y.; Hosoi, Y.; Yamane, N.; Ai, P.P.; Zhang, P.P.; Yang, G.H.; Wu, M.B.; Yang, R.Q.; Tsubaki, N. PPh3 functionalized Rh/rGO catalyst for heterogeneous hydroformylation: Bifunctional reduction of graphene oxide by organic ligand. Chem. Eng. J. 2017, 330, 863–869. [Google Scholar] [CrossRef]
- Vu, T.V.; Kosslick, H.; Schulz, A.; Harloff, J.; Paetzold, E.; Lund, H.; Kragl, U.; Schneider, M.; Fulda, G. Influence of the textural properties of Rh/MOF-5 on the catalytic properties in the hydroformylation of olefins. Microporous Mesoporous Mater. 2012, 154, 100–106. [Google Scholar] [CrossRef]
- Shi, Y.K.; Hu, X.J.; Chen, L.; Lu, Y.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. Boron modified TiO2 nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene. New J. Chem. 2017, 41, 6120–6126. [Google Scholar] [CrossRef]
- Shi, Y.K.; Hu, X.J.; Zhu, B.L.; Wang, S.R.; Zhang, S.M.; Huang, W.P. Synthesis and characterization of TiO2 nanotube supported Rh-nanoparticle catalysts for regioselective hydroformylation of vinyl acetate. RSC Adv. 2014, 4, 62215–62222. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Han, L.; Dong, S.J. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interf. 2013, 5, 12533–12540. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Overbury, S.H.; Dudney, N.J.; Liand, M.J.; Veith, G.M. Gold particles supported on carbon nitride: Influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal. 2012, 2, 1138–1146. [Google Scholar] [CrossRef]
- Dong, G.H.; Zhao, K.; Zhang, L.Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 2012, 48, 6178–6180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Wang, Y.H.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J.G. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Huang, H.J.; Li, F.; Deng, K.M.; Wang, X. Palladium particles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. J. Mater. Chem. A 2014, 2, 19084–19094. [Google Scholar] [CrossRef]
- Wang, Q.J.; Che, J.G. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys. Rev. Lett. 2009, 103, 66802–66805. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, J.Y. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 2013, 29, 3821–3828. [Google Scholar] [CrossRef]
- Zhang, H.P.; Du, A.J.; Gandhi, N.S.; Jiao, Y.; Zhang, Y.P.; Lin, X.Y.; Lu, X.; Tang, Y.H. Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Appl. Surf. Sci. 2018, 455, 1116–1122. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.H.; Smith, S.C.; Chen, Z.G.; Lu, G.Q.; Cheng, H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.R.; Yao, J.; Wang, X.C.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011, 2, 446–450. [Google Scholar] [CrossRef]
- Raziq, F.; Humayun, M.; Ali, A.; Wang, T.T.; Khan, A.; Fu, Q.Y.; Luo, W.; Zeng, H.P.; Zheng, Z.P.; Khan, B.; et al. Synthesis of S-doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl. Catal. B Environ. 2018, 237, 1082–1090. [Google Scholar] [CrossRef]
- Zou, J.Y.; Yu, Y.Z.; Yan, W.J.; Meng, J.; Zhang, S.C.; Wang, J.G. A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. J. Mater. Sci. 2019, 54, 6867–6881. [Google Scholar] [CrossRef]
- Jiang, G.G.; Cao, J.W.; Chen, M.; Zhang, X.M.; Dong, F. Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Appl. Surf. Sci. 2018, 458, 77–85. [Google Scholar] [CrossRef]
- Hong, J.D.; Xia, X.Y.; Wang, Y.S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006–15012. [Google Scholar] [CrossRef]
- Patnaik, S.; Martha, S.; Madras, G.; Parida, K. The effect of sulfate pre-treatment to improve the deposition of Au-particles in a gold-modified sulfated g-C3N4 plasmonic photocatalyst towards visible light induced water reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 28502–28514. [Google Scholar] [CrossRef]
- Ge, L.; Zuo, F.; Liu, J.K.; Ma, Q.; Wang, C.; Sun, D.Z.; Bartels, L.; Feng, P.Y. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J. Phys. Chem. C 2012, 116, 13708–13714. [Google Scholar] [CrossRef]
- Sun, C.Z.; Zhang, H.; Liu, H.; Zheng, X.X.; Zou, W.X.; Dong, L.; Qi, L. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Appl. Catal. B Environ. 2018, 235, 66–74. [Google Scholar] [CrossRef]
- Dydio, P.; Reek, J.N.H. Supramolecular control of selectivity in hydroformylation of vinyl arenes: Easy access to valuable β-aldehyde intermediates. Angew. Chem. Int. Ed. 2013, 52, 3878–3882. [Google Scholar] [CrossRef]
- Shi, Y.K.; Hu, X.J.; Zhao, J.T.; Zhou, X.J.; Zhu, B.L.; Zhang, S.M.; Huang, W.P. CO oxidation over Cu2O deposited on 2D continuous lamellar g-C3N4. New J. Chem. 2015, 39, 6642–6648. [Google Scholar] [CrossRef]
Samples | g-C3N4 | 1%S-g-C3N4 | 2%S-g-C3N4 | 3%S-g-C3N4 | 4%S-g-C3N4 | 5%S-g-C3N4 | 6%S-g-C3N4 |
---|---|---|---|---|---|---|---|
SBET (m2 g−1) | 115.8 | 70.1 | 71.0 | 78.8 | 73.6 | 58.4 | 39.6 |
Entry | Catalyst | Conversion (%) | TOF (h−1) b | Selectivity (%) | |
---|---|---|---|---|---|
Aldehydes | B:L c | ||||
1 | Rh/g-C3N4 | 64.8 | 5800 | 100 | 54:46 |
2 | Rh/1%S-g-C3N4 | 87.4 | 7900 | 100 | 54:46 |
3 | Rh/2%S-g-C3N4 | 96.5 | 8700 | 100 | 50:50 |
4 | Rh/3%S-g-C3N4 | 99.9 | 9000 | 100 | 52:48 |
5 | Rh/4%S-g-C3N4 | 93.5 | 8400 | 100 | 54:46 |
6 | Rh/5%S-g-C3N4 | 82.0 | 7300 | 100 | 46:54 |
7 | Rh/6%S-g-C3N4 | 77.7 | 7000 | 100 | 54:46 |
Entry | Temperature (°C) | Pressure (MPa) | Conversion (%) | TOF (h−1) b | Selectivity (%) | |
---|---|---|---|---|---|---|
Aldehydes | B:L c | |||||
1 | 80 | 6.0 | 18.4 | 1700 | 100 | 73:27 |
2 | 90 | 6.0 | 56.1 | 5100 | 100 | 65:35 |
3 | 100 | 6.0 | 99.9 | 9000 | 100 | 53:47 |
4 | 100 | 5.0 | 91.8 | 8300 | 100 | 51:49 |
5 | 100 | 4.0 | 64.9 | 5900 | 100 | 48:52 |
Entry | Substrates | Conversion (%) | TOF (h−1) b | Selectivity (%) | |
---|---|---|---|---|---|
Aldehydes | B:L c | ||||
1 | styrene | 99.9 | 9000 | 100 | 53:47 |
2 | 1-hexene | 97.1 | 8000 | 99.7 | 56:44 |
3 | 1-octene | 94.9 | 6300 | 97.9 | 57:43 |
4 | cyclohexene | 62.9 | 6400 | 100 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Lu, Y.; Ren, T.; Li, J.; Hu, Q.; Hu, X.; Zhu, B.; Huang, W. Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation. Catalysts 2020, 10, 1359. https://doi.org/10.3390/catal10111359
Shi Y, Lu Y, Ren T, Li J, Hu Q, Hu X, Zhu B, Huang W. Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation. Catalysts. 2020; 10(11):1359. https://doi.org/10.3390/catal10111359
Chicago/Turabian StyleShi, Yukun, Yang Lu, Tongxin Ren, Jie Li, Qiqige Hu, Xiaojing Hu, Baolin Zhu, and Weiping Huang. 2020. "Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation" Catalysts 10, no. 11: 1359. https://doi.org/10.3390/catal10111359
APA StyleShi, Y., Lu, Y., Ren, T., Li, J., Hu, Q., Hu, X., Zhu, B., & Huang, W. (2020). Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation. Catalysts, 10(11), 1359. https://doi.org/10.3390/catal10111359