Transformation of Contaminants of Emerging Concern (CECs) during UV-Catalyzed Processes Assisted by Chlorine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chlorination of CECs
2.2. Decomposition of CECs in UV-Catalyzed Chlorination Processes
2.3. Identification of Decomposition By-Products
2.4. Toxicological Assessment
3. Materials and Methods
3.1. Water Samples
3.2. Decomposition Processes
3.3. Analytical Procedure and Toxicity Assessment
4. Conclusions
Funding
Conflicts of Interest
References
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Grung, M.; Lin, Y.; Zhang, H.; Steen, A.O.; Huang, J.; Zhang, G.; Larssen, T. Pesticide levels and environmental risk in aquatic environments in China—A review. Environ. Int. 2015, 81, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- K’oreje, K.O.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. J. Environ. Manag. 2020, 254, 109752. [Google Scholar] [CrossRef]
- Christen, V.; Hickmann, S.; Rechenberg, B.; Fent, K. Highly active human pharmaceuticals in aquatic systems: A concept for their identification based on their mode of action. Aquat. Toxicol. 2010, 96, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Sanchez Perez, J.A.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef] [PubMed]
- Falas, P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T.A.; Joss, A. Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res. 2016, 95, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011, 45, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; von Gunten, U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants(hydroxyl radical). Water Res. 2010, 44, 555–566. [Google Scholar] [CrossRef]
- Kudlek, E. Decomposition of contaminants of emerging concern in advanced oxidation processes. Water 2018, 10, 955. [Google Scholar] [CrossRef] [Green Version]
- Rott, E.; Kuch, B.; Lange, C.; Richter, P.; Kugele, A.; Minke, R. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale. Int. J. Environ. Res. Public Health 2018, 15, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deborde, M.; von Gunten, U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef] [PubMed]
- Kudlek, E.; Dudziak, M. Toxicity and degradation pathways of selected micropollutants in water solutions during the O3 and O3/H2O2 process. Desalin. Water Treat. 2018, 117, 88–100. [Google Scholar] [CrossRef]
- Fang, J.; Fu, Y.; Shang, C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ. Sci. Technol. 2014, 48, 1859–1868. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.; Liungai, Z.; Hu, H.-Y.; Chen, C.; Qiao, J.; Lu, Y. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products. J. Hazard. Mater. 2016, 307, 119–126. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.; Fu, W.; Shang, C.; Li, Y.; Chen, Y.; Gan, W.; Fang, J. PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters. Water Res. 2016, 98, 309–318. [Google Scholar] [CrossRef]
- Hirakawa, T.; Nosaka, Y. Properties of O2•- and OH• formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 2002, 18, 3247–3254. [Google Scholar] [CrossRef]
- Legay, C.; Leduc, S.; Dubé, J.; Levallois, P.; Rodriguez, M.J. Chlorination by-product levels in hot tap water: Significance and variability. Sci. Total Environ. 2019, 651, 1735–1741. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of disinfection by-products and associated health effects. Curr. Environ. Health Rep. 2015, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Sivey, J.D.; Roberts, A.L. Assessing the reactivity of free chlorine constituents Cl2, Cl2O, and HOCl toward aromatic ethers. Environ. Sci. Technol. 2012, 46, 2141–2147. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Gaytán, A.M.; Vera-Avila, L.E.; De Llasera, M.G.; Covarrubias-Herrera, R. Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration. J. Environ. Sci. Health Part A 2010, 45, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Fang, J.; Shang, C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Res. 2016, 90, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dong, F.; Crittenden, J.C.; Luo, F.; Chen, X.; Zhao, T. Kinetics and mechanism of 17β-estradiol chlorination in a pilot-scale water distribution systems. Chemosphere 2017, 178, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Adams, C. Determination of monochloramine formation rate constants with stopped-flow spectrometry. Environ. Sci. Technol. 2004, 38, 1435–1444. [Google Scholar] [CrossRef]
- Speight, J.G. Reaction Mechanisms in Environmental Engineering; Butterworth-Heinemann: Oxford, UK, 2018; pp. 231–267. [Google Scholar]
- Tomanová, K.; Precek, M.; Múčka, V.; Vyšín, L.; Juha, L.; Čuba, V. At the crossroad of photochemistry and radiation chemistry: Formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Phys. Chem. Chem. Phys. 2017, 19, 29402–29408. [Google Scholar] [CrossRef] [PubMed]
- Kudlek, E.; Dudziak, M.; Bohdziewicz, J. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix. Water 2016, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- da Silva, L.M.; Wilson, J.F. Trends and strategies of ozone application in environmental problems. Química Nova 2006, 29, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Mierzwa, J.C.; Rodrigues, R.; Teixeira, A.C.S.C. UV-Hydrogen Peroxide Processes. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Academic Press: Cambridge, MA, USA, 2018; pp. 13–48. [Google Scholar]
- Bourgin, M.; Borowska, E.; Helbing, J.; Hollender, J.; Kaiser, H.-P.; Kienle, C.; McArdell, C.S.; Simon, E.; von Gunten, U. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Res. 2017, 122, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Bolton, J.R.; Hofmann, R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water. Water Res. 2012, 46, 4677–4686. [Google Scholar] [CrossRef]
- Jin, J.; El-Din, M.G.; Bolton, J.R. Assessment of the UV/Chlorine process as an advanced oxidation process. Water Res. 2011, 45, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Song, D.; Chang, Y.; Liu, H.; Qu, J. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation. Chemosphere 2015, 141, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Soufan, M.; Deborde, M.; Legube, B. Aqueous chlorination of diclofenac: Kinetic study and transformation products identification. Water Res. 2012, 46, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Yuan, S.; Li, Z.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Res. 2014, 63, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Zhang, X.J.; Qin, H.W.; Su, L.M.; Qin, W.C.; Zou, M.Y.; Sheng, L.X.; Zhao, Y.H.; Abraham, M.H. Interspecies correlations of toxicity to eight aquatic organisms: Theoretical considerations. Sci. Total Environ. 2010, 408, 4549–4555. [Google Scholar] [CrossRef]
- Marugán, J.; Bru, D.; Pablos, C.; Catalá, M. Comparative evaluation of acute toxicity by Vibrio fischeri and fern spore based bioassays in the follow-up of toxic chemicals degradation by photocatalysis. J. Hazard. Mater. 2012, 213–214, 117–122. [Google Scholar]
- Du, Y.; Lv, X.-T.; Wu, Q.-Y.; Zhang, D.-Y.; Zhou, Y.-T.; Peng, L.; Hu, H.-Y. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review. J. Environ. Sci. 2017, 58, 51–63. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Torres Padron, M.E.; Santana Rodríguez, J.J. Methodologies for the extraction of phenolic compounds from environmental samples: New Approaches. Molecules 2009, 14, 298–320. [Google Scholar] [CrossRef] [Green Version]
- Donner, E.; Kosjek, T.; Qualmann, S.; Kusk, K.O.; Heath, E.; Revitt, D.M.; Ledin, A.; Andersen, H.R. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci. Total Environ. 2013, 443, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S.; Zillohu, A.U.; Abdelaziz, R.; Hedayati, M.K.; Elbahri, M. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants. Materials 2016, 9, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parent Compound | Identified Compound | Structural Formula | CAS-RN | Similarity, % | Molecular Weight |
---|---|---|---|---|---|
IBU | 1-Hydroxyibuprofen | C13H18O3 | 53949-53-4 | 96 | 222.28 |
1-(4-Isobutylphenyl)ethanol | C12H18O | 40150-92-3 | 84 | 178.27 | |
4’-Isobutylacetophenone | C12H16O | 38861-78-8 | 98 | 176.25 | |
4-Acetylbenzoic acid | C9H8O3 | 586-89-0 | 85 | 164.16 | |
4-Ethylbenzaldehyde | C9H10O | 4748-78-1 | 92 | 134.17 | |
BE | Ethyl 4-hydroxybenzoate | C9H10O3 | 120-47-8 | 74 | 166.17 |
Ethyl 4-chlorobenzoate | C9H9ClO2 | 7335-27-5 | 84 | 184.62 | |
4-Chloroaniline | C6H6ClN | 106-47-8 | 86 | 127.57 | |
4-Chlorophenol | C6H5ClO | 106-48-9 | 99 | 128.55 | |
3,4-Dichlorophenol | C6H4Cl2O | 95-77-2 | 98 | 163.00 | |
Chlorohydroquinone | C6H5ClO2 | 615-67-8 | 75 | 144.55 | |
2,5-Dichlorohydroquinone | C6H4Cl2O2 | 824-69-1 | 80 | 179.00 | |
ACR | Acridone | C13H9NO | 578-95-0 | 70 | 195.22 |
Acridine-10-oxide | C13H9NO | 10399-73-2 | 75 | 195.22 | |
2-Hydroxyacridine | C13H9NO | 22817-17-0 | 90 | 195.22 | |
9-Chloroacridine | C13H8ClN | 1207-69-8 | 72 | 213.66 | |
Salicylic acid | C7H6O3 | 69-72-7 | 80 | 138.12 | |
E2 | 2-Hydroxyestradiol | C18H24O3 | 362-05-0 | 92 | 288.40 |
Estradiol-3,4-quinone | C18H22O3 | 144082-88-2 | 78 | 286.40 | |
4-(1-Hydroxyethyl)phenol | C8H10O2 | 2380-91-8 | 80 | 138.16 |
Compound | Identified Compound | Process | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cl2 | UV/Cl2/H2O2 | UV/Cl2/O3 | ||||||||
2 min | 10 min | 20 min | 2 min | 10 min | 20 min | 2 min | 10 min | 20 min | ||
IBU | 1-Hydroxyibuprofen | - * | - | - | - | - | - | + | - | - |
1-(4-Isobutylphenyl)ethanol | - | + | + | + | + | - | + | - | - | |
4’-Isobutylacetophenone | - | - | - | - | + | + | + | + | + | |
4-Acetylbenzoic acid | + | + | + | + | + | + | + | + | + | |
4-Ethylbenzaldehyde | + | + | + | - | + | + | + | + | + | |
BE | Ethyl 4-hydroxybenzoate | - | - | - | + | + | + | + | + | - |
Ethyl 4-chlorobenzoate | - | + | + | + | + | + | + | + | - | |
4-Chloroaniline | + | + | + | + | + | - | + | - | - | |
4-Chlorophenol | - | - | - | + | + | - | + | + | - | |
3,4-Dichlorophenol | - | - | - | + | + | - | + | + | - | |
Chlorohydroquinone | + | + | + | + | + | - | + | + | - | |
2,5-Dichlorohydroquinone | + | + | + | + | - | - | + | - | - | |
ACR | Acridone | - | - | - | + | + | + | - | + | + |
Acridine-10-oxide | - | - | - | + | + | + | - | + | + | |
2-Hydroxyacridine | - | - | - | + | + | + | - | + | - | |
9-Chloroacridine | - | + | + | + | + | - | + | + | - | |
Salicylic acid | - | + | + | + | - | - | + | - | - | |
E2 | 2-Hydroxyestradiol | - | - | - | + | + | - | + | + | - |
Estradiol-3,4-quinone | - | - | - | + | + | - | + | - | - | |
4-(1-Hydroxyethyl)phenol | + | + | + | + | + | + | + | + | - |
Compound | Structural Formula | Molecular Formula | Molecular Weight, g mol−1 | Solubility in Water, mg L−1 |
---|---|---|---|---|
IBU | C13H17NaO2 | 228.26 | 100 | |
BE | C9H11NO2 | 165.19 | 1310 | |
ACR | C13H9N | 179.22 | 38.4 | |
E2 | C18H24O2 | 272.38 | 3.6 |
Radiation Flux Ф, W | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wavelength λ, nm | 238/40 | 254 | 265 | 280 | 297 | 302 | 313 | 334 | 366 | 390 | 405/08 | 436 | 492 | 546 | 578 |
Direct lamp radiation | 1.0 | 4.0 | 1.4 | 0.7 | 1.0 | 1.8 | 4.3 | 0.5 | 6.4 | 0.1 | 3.2 | 4.2 | 0.1 | 5.1 | 4.7 |
Radiation passing through the sleeve | - | - | - | - | 0.1 | 0.5 | 2.5 | 0.4 | 5.8 | 0.1 | 2.9 | 3.6 | 0.1 | 4.6 | 4.2 |
Wavelength λ, nm | 297 | 302 | 313 | 334 | 366 | 390 | 405 | 406 | 407 | 408 | 436 | 492 | 546 | 578 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy of light reaching the water matrix, eV | 4.17 | 4.11 | 3.96 | 3.71 | 3.39 | 3.18 | 3.06 | 3.05 | 3.05 | 3.04 | 2.84 | 2.52 | 2.27 | 2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudlek, E. Transformation of Contaminants of Emerging Concern (CECs) during UV-Catalyzed Processes Assisted by Chlorine. Catalysts 2020, 10, 1432. https://doi.org/10.3390/catal10121432
Kudlek E. Transformation of Contaminants of Emerging Concern (CECs) during UV-Catalyzed Processes Assisted by Chlorine. Catalysts. 2020; 10(12):1432. https://doi.org/10.3390/catal10121432
Chicago/Turabian StyleKudlek, Edyta. 2020. "Transformation of Contaminants of Emerging Concern (CECs) during UV-Catalyzed Processes Assisted by Chlorine" Catalysts 10, no. 12: 1432. https://doi.org/10.3390/catal10121432
APA StyleKudlek, E. (2020). Transformation of Contaminants of Emerging Concern (CECs) during UV-Catalyzed Processes Assisted by Chlorine. Catalysts, 10(12), 1432. https://doi.org/10.3390/catal10121432