Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium Porphyrin: A Theoretical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Dissociation over the TiO-por
2.2. First N2O Decomposition
2.3. Second N2O Decomposition
2.4. Overall Energetics of Photo-Assisted N2O Decomposition over Hydroxyl-Oxotitanium Porphyrin Catalysts
2.5. Effect of Water Molecule on the N2O Decomposition Barriers
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapteijn, F.; Rodriguez-Mirasol, J.; Moulijn, J.A. Heterogeneous catalytic decomposition of nitrous oxide. Appl. Catal. B Environ. 1996, 9, 25–64. [Google Scholar] [CrossRef]
- Konsolakis, M. Recent Advances on Nitrous Oxide (N2O) Decomposition over Non-Noble-Metal Oxide Catalysts: Catalytic Performance, Mechanistic Considerations, and Surface Chemistry Aspects. ACS Catal. 2015, 5, 6397–6421. [Google Scholar] [CrossRef]
- Liu, Z.; He, F.; Ma, L.; Peng, S. Recent Advances in Catalytic Decomposition of N2O on Noble Metal and Metal Oxide Catalysts. Catal. Surv. Asia 2016, 20, 121–132. [Google Scholar] [CrossRef]
- Leont’ev, A.V.; Fomicheva, O.A.; Proskurnina, M.V.; Zefirov, N.S. Modern chemistry of nitrous oxide. Russ. Chem. Rev. 2001, 70, 91–104. [Google Scholar] [CrossRef]
- Doi, K.; Noda, T.; Arai, T.L.N.; Tagawa, T.; Goto, S. Effects of Isoflurane on Kinetics of N2O Catalytic Decomposition over Rh/Al2O3 in Medical Operating Rooms. J. Chem. Eng. Jpn. 2003, 36, 322–327. [Google Scholar] [CrossRef]
- Doi, K.; Wu, Y.Y.; Takeda, R.; Matsunami, A.; Arai, N.; Tagawa, T.; Goto, S. Catalytic decomposition of N2O in medical operating rooms over Rh/Al2O3, Pd/Al2O3, and Pt/Al2O3. Appl. Catal. B Environ. 2001, 35, 43–51. [Google Scholar] [CrossRef]
- Wei, X.; Yang, X.-F.; Wang, A.-Q.; Li, L.; Liu, X.-Y.; Zhang, T.; Mou, C.-Y.; Li, J. Bimetallic Au–Pd Alloy Catalysts for N2O Decomposition: Effects of Surface Structures on Catalytic Activity. J. Phys. Chem. C 2012, 116, 6222–6232. [Google Scholar] [CrossRef]
- Hermes, A.C.; Hamilton, S.M.; Hopkins, W.S.; Harding, D.J.; Kerpal, C.; Meijer, G.; Fielicke, A.; Mackenzie, S.R. Effects of Coadsorbed Oxygen on the Infrared Driven Decomposition of N2O on Isolated Rh5+ Clusters. J. Phys. Chem. Lett. 2011, 2, 3053–3057. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Rodríguez-Domínguez, A.R. N2O dissociation on small Rh clusters: A density functional study. Comput. Mater. Sci. 2015, 97, 32–35. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Pan, S.; Florez, E.; Cabellos, J.L.; Merino, G. Structural Evolution of the Rhodium-Doped Silver Clusters AgnRh (n ≤ 15) and Their Reactivity toward NO. J. Phys. Chem. C 2017, 121, 19420–19427. [Google Scholar] [CrossRef]
- Russo, N.; Mescia, D.; Fino, D.; Saracco, G.; Specchia, V. N2O Decomposition over Perovskite Catalysts. Ind. Eng. Chem. Res. 2007, 46, 4226–4231. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Liang, F.; Werth, S.; Schiestel, T.; Caro, J. Direct Decomposition of Nitrous Oxide to Nitrogen by In Situ Oxygen Removal with a Perovskite Membrane. Angew. Chem. Int. Ed. 2009, 48, 2983–2986. [Google Scholar] [CrossRef] [PubMed]
- Sui, C.; Niu, X.; Wang, Z.; Yuan, F.; Zhu, Y. Activity and deactivation of Ru supported on La1.6Sr0.4NiO4 perovskite-like catalysts prepared by different methods for decomposition of N2O. Catal. Sci. Technol. 2016, 6, 8505–8515. [Google Scholar] [CrossRef]
- Liu, N.; Chen, P.; Li, Y.; Zhang, R. N2O Direct Dissociation over MgxCeyCo1−x−yCo2O4 Composite Spinel Metal Oxide. Catalysts 2017, 7, 10. [Google Scholar] [CrossRef]
- Kaczmarczyk, J.; Zasada, F.; Janas, J.; Indyka, P.; Piskorz, W.; Kotarba, A.; Sojka, Z. Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for N2O Decomposition: Resolving the Origins of Steady Turnover. ACS Catal. 2016, 6, 1235–1246. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Bawaked, S.M.; Kosa, S.A.; Ali, T.T.; Schwieger, W.; Aqlan, F.M. Effects of Nd-, Pr-, Tb- and Y-doping on the structural, textural, electrical and N2O decomposition activity of mesoporous NiO nanoparticles. Appl. Surf. Sci. 2017, 419, 399–408. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Papista, E.; Marnellos, G.E.; Tavares, P.B.; Maldonado-Hódar, F.J.; Konsolakis, M. Catalytic decomposition of N2O on inorganic oxides: Εffect of doping with Au nanoparticles. Mol. Catal. 2017, 436, 78–89. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Pérez-Ramírez, J. Mechanism and Kinetics of Direct N2O Decomposition over Fe−MFI Zeolites with Different Iron Speciation from Temporal Analysis of Products. J. Phys. Chem. B 2006, 110, 22586–22595. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, R.; Chen, B.; Li, Y.; Li, Y. Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)–BEA zeolites. J. Catal. 2012, 294, 99–112. [Google Scholar] [CrossRef]
- Uzunova, E.L.; Mikosch, H. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: The impact of framework acid-base properties. Phys. Chem. Chem. Phys. 2016, 18, 11233–11242. [Google Scholar] [CrossRef] [PubMed]
- Guesmi, H.; Berthomieu, D.; Bromley, B.; Coq, B.; Kiwi-Minsker, L. Theoretical evidence of the observed kinetic order dependence on temperature during the N2O decomposition over Fe-ZSM-5. Phys. Chem. Chem. Phys. 2010, 12, 2873–2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marnellos, G.E.; Efthimiadis, E.A.; Vasalos, I.A. Effect of SO2 and H2O on the N2O decomposition in the presence of O2 over Ru/Al2O3. Appl. Catal. B Environ. 2003, 46, 523–539. [Google Scholar] [CrossRef]
- Marnellos, G.E.; Efthimiadis, E.A.; Vasalos, I.A. Simultaneous Catalytic Reduction of NOX and N2O in an In/Al2O3−Ru/Al2O3 Dual-Bed Reactor in the Presence of SO2 and H2O. Ind. Eng. Chem. Res. 2004, 43, 2413–2419. [Google Scholar] [CrossRef]
- Hansen, N.; Heyden, A.; Bell, A.T.; Keil, F.J. A Reaction Mechanism for the Nitrous Oxide Decomposition on Binuclear Oxygen Bridged Iron Sites in Fe-ZSM-5. J. Phys. Chem. C 2007, 111, 2092–2101. [Google Scholar] [CrossRef]
- Heyden, A.; Hansen, N.; Bell, A.T.; Keil, F.J. Nitrous Oxide Decomposition over Fe-ZSM-5 in the Presence of Nitric Oxide: A Comprehensive DFT Study. J. Phys. Chem. B 2006, 110, 17096–17114. [Google Scholar] [CrossRef]
- Heyden, A.; Peters, B.; Bell, A.T.; Keil, F.J. Comprehensive DFT Study of Nitrous Oxide Decomposition over Fe-ZSM-5. J. Phys. Chem. B 2005, 109, 1857–1873. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Prechtl, P.M.; Renken, A.; Kiwi-Minsker, L. Water Vapor Effects in N2O Decomposition over Fe−ZSM-5 Catalysts with Low Iron Content. Ind. Eng. Chem. Res. 2007, 46, 4178–4185. [Google Scholar] [CrossRef]
- Ju, W.-S.; Matsuoka, M.; Iino, K.; Yamashita, H.; Anpo, M. The Local Structures of Silver(I) Ion Catalysts Anchored within Zeolite Cavities and Their Photocatalytic Reactivities for the Elimination of N2O into N2 and O2. J. Phys. Chem. B 2004, 108, 2128–2133. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Higashimoto, S.; Nishimoto, K.; Ono, T.; Anpo, M. Characterization of Fe-Oxide Species Prepared onto ZSM-5 Zeolites and Their Role in the Photocatalytic Decomposition of N2O into N2 and O2. Chem. Lett. 2000, 29, 1160–1161. [Google Scholar] [CrossRef]
- Rusu, C.N.; Yates, J.T. N2O Adsorption and Photochemistry on High Area TiO2 Powder. J. Phys. Chem. B 2001, 105, 2596–2603. [Google Scholar] [CrossRef]
- Sano, T.; Negishi, N.; Mas, D.; Takeuchi, K. Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition. J. Catal. 2000, 194, 71–79. [Google Scholar] [CrossRef]
- Kim, B.; Li, Z.; Kay, B.D.; Dohnálek, Z.; Kim, Y.K. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1 × 1. J. Phys. Chem. C 2014, 118, 9544–9550. [Google Scholar] [CrossRef]
- Obalová, L.; Reli, M.; Lang, J.; Matějka, V.; Kukutschová, J.; Lacný, Z.; Kočí, K. Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films. Catal. Today 2013, 209, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Kočí, K.; Krejčíková, S.; Šolcová, O.; Obalová, L. Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 2012, 191, 134–137. [Google Scholar] [CrossRef]
- Chatterjee, T.; Shetti, V.S.; Sharma, R.; Ravikanth, M. Heteroatom-Containing Porphyrin Analogues. Chem. Rev. 2017, 117, 3254–3328. [Google Scholar] [CrossRef]
- Zhang, W.; Lai, W.; Cao, R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem. Rev. 2017, 117, 3717–3797. [Google Scholar] [CrossRef]
- Gao, W.-Y.; Chrzanowski, M.; Ma, S. Metal-metalloporphyrin frameworks: A resurging class of functional materials. Chem. Soc. Rev. 2014, 43, 5841–5866. [Google Scholar] [CrossRef]
- Antonangelo, A.R.; Grazia Bezzu, C.; Mughal, S.S.; Malewschik, T.; McKeown, N.B.; Nakagaki, S. A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions. Catal. Commun. 2017, 99, 100–104. [Google Scholar] [CrossRef]
- Maitarad, P.; Namuangruk, S.; Zhang, D.; Shi, L.; Li, H.; Huang, L.; Boekfa, B.; Ehara, M. Metal–Porphyrin: A Potential Catalyst for Direct Decomposition of N2O by Theoretical Reaction Mechanism Investigation. Environ. Sci. Technol. 2014, 48, 7101–7110. [Google Scholar] [CrossRef] [PubMed]
- Guilard, R.; Latour, J.M.; Lecomte, C.; Marchon, J.C.; Protas, J.; Ripoll, D. Peroxotitanium (IV) porphyrins. Synthesis, stereochemistry, and properties. Inorg. Chem. 1978, 17, 1228–1237. [Google Scholar] [CrossRef]
- Woo, L.K.; Hays, J.A.; Goll, J.G. Oxo-transfer reactions of chromium and titanium porphyrins. Inorg. Chem. 1990, 29, 3916–3917. [Google Scholar] [CrossRef] [Green Version]
- Latour, J.-M.; Galland, B.; Marchon, J.-C. Retention of configuration at the titanium atom upon oxo-peroxo ligand substitution of titanium (IV) porphyrins. J. Chem. Soc. Chem. Commun. 1979, 13, 570–571. [Google Scholar] [CrossRef]
- Pirngruber, G.D. The surface chemistry of N2O decomposition on iron containing zeolites (I). J. Catal. 2003, 219, 456–463. [Google Scholar] [CrossRef]
- Winter, E.R.S. The decomposition of nitrous oxide on the rare-earth sesquioxides and related oxides. J. Catal. 1969, 15, 144–152. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Zhang, R.; Li, Q.; Li, Y. Density Functional Theory Study of Mechanism of N2O Decomposition over Cu-ZSM-5 Zeolites. J. Phys. Chem. C 2012, 116, 20262–20268. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reaction Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7, 669–676. [Google Scholar] [CrossRef]
- Mom, R.V.; Cheng, J.; Koper, M.T.M.; Sprik, M. Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations. J. Phys. Chem. C 2014, 118, 4095–4102. [Google Scholar] [CrossRef]
- Enriquez, J.I.G.; Moreno, J.L.V.; David, M.Y.; Arboleda, N.B.; Lin, O.H.; Villagracia, A.R.C. DFT Investigation on the Electronic and Water Adsorption Properties of Pristine and N-Doped TiO2 Nanotubes for Photocatalytic Water Splitting Applications. J. Electron. Mater. 2017, 46, 3592–3602. [Google Scholar] [CrossRef]
- Hansen, J.A.; Ehara, M.; Piecuch, P. Aerobic Oxidation of Methanol to Formic Acid on Au8−: Benchmark Analysis Based on Completely Renormalized Coupled-Cluster and Density Functional Theory Calculations. J. Phys. Chem. A 2013, 117, 10416–10427. [Google Scholar] [CrossRef] [PubMed]
- Boekfa, B.; Pahl, E.; Gaston, N.; Sakurai, H.; Limtrakul, J.; Ehara, M. C–Cl Bond Activation on Au/Pd Bimetallic Nanocatalysts Studied by Density Functional Theory and Genetic Algorithm Calculations. J. Phys. Chem. C 2014, 118, 22188–22196. [Google Scholar] [CrossRef]
- Meeprasert, J.; Namuangruk, S.; Boekfa, B.; Dhital, R.N.; Sakurai, H.; Ehara, M. Mechanism of Ullmann Coupling Reaction of Chloroarene on Au/Pd Alloy Nanocluster: A DFT Study. Organometallics 2016, 35, 1192–1201. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09 Rev. B.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
Reaction Step | Activation Energy (kcal/mol) | |
---|---|---|
1TiOH-por | 3TiOH-por | |
1st N2O decomposition Ti(OH)2-por + N2O → TiO(OH)2-por + N2 | 63.57 | 27.57 |
Path A 2nd N2O decomposition and water desorption TiO(OH)2-por + N2O → Ti(OOH)2-por + N2 | 67.87 | 29.01 |
Path B water desorption and 2nd N2O decomposition TiO2-por + N2O → TiO3-por + N2 | 68.41 | 12.36 |
Oxygen formation TiO3-por → TiO-por + O2 | 5.12 | barrierless |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maitarad, P.; Promarak, V.; Shi, L.; Namuangruk, S. Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium Porphyrin: A Theoretical Study. Catalysts 2020, 10, 157. https://doi.org/10.3390/catal10020157
Maitarad P, Promarak V, Shi L, Namuangruk S. Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium Porphyrin: A Theoretical Study. Catalysts. 2020; 10(2):157. https://doi.org/10.3390/catal10020157
Chicago/Turabian StyleMaitarad, Phornphimon, Vinich Promarak, Liyi Shi, and Supawadee Namuangruk. 2020. "Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium Porphyrin: A Theoretical Study" Catalysts 10, no. 2: 157. https://doi.org/10.3390/catal10020157
APA StyleMaitarad, P., Promarak, V., Shi, L., & Namuangruk, S. (2020). Effect of Water Molecule on Photo-Assisted Nitrous Oxide Decomposition over Oxotitanium Porphyrin: A Theoretical Study. Catalysts, 10(2), 157. https://doi.org/10.3390/catal10020157