A High-Throughput Screening Approach to Identify New Active and Long-Term Stable Catalysts for Total Oxidation of Methane from Gas-Fueled Lean–Burn Engines
Abstract
:1. Introduction
1.1. Principle of ecIRT Measurement
2. Results
2.1. Design of Experiment
- Many industrial catalysts are based on a few substrates—e.g., Al2O3, TiO2 or SiO2.
- Doping with additional elements often increases performance or stability.
- PM or PM based species are the catalytic active species in many oxidation reactions.
2.2. Emission Corrected Infrared Thermography Results
2.3. Methane Conversion from Gas Phase Plug-Flow Reactor
2.4. Ageing Behavior Results
3. Discussion
4. Materials and Methods
4.1. Synthesis
4.1.1. List of Materials
- Aluminium nitrate nonahydrate—CAS 7784-27-2—Alfa Aesar 12360—98%
- Manganese(II) nitrate tetrahydrate—CAS 20694-39-7—Alfa Aesar A18521—98%
- Cerium(III) nitrate hexahydrate—CAS 10294-41-4—Alfa Aesar 11329—REacton 99.5% (REO)
- Platinum(II) nitrate—CAS 18496-40-7—Heraeus
- Rhodium(III) acetylacetonate—CAS 14284-92-5—Heraeus
- Propan-2-ol—Carl Roth—6752.2—Rotripuran ≥99.8% p.a. (IP)
- Propanoic acid—Carl Roth 6026.3—≥99% zur Synthese (PA)
- 4-Hydroxy-4-methylpentan-2-one—CAS 123-42-2—Alfa Aesar A16248— ≥98% (CA)
- Methanol—CAS 67-56-1—Fischer Scientific M/4058/17—HPLC Gradient grade (MeOH)
- Pentane-2,4-dione—CAS 123-54-6—Alfa Aesar A14117— 99% (Hacac)
- O2 99.5%
- N2 99.999%
- CO2 99.9995%
- He 99.999%
- 10 vol.% CH4/N2
- 8500 ppm CH4/He
- 250 ppm SO2/N2
- 1600 ppm CO, 37.5 vol.% CO2, 30 ppm SO2, 360 ppm NO/He
- 240 ppm NO2/He
4.1.2. General Procedure
4.1.3. Samples for ecIRT
4.1.4. Samples for Characterization in Conventional Plug-Flow Tube Reactor and Ageing Tests
4.2. Emission Corrected Infrared Thermography
4.2.1. Library Preparation
4.2.2. Experimental Setup for ecIRT
4.3. Catalytic Testing by Conventional Validation in a Gas Phase Plug-Flow Reactor Setup
4.4. Parallel Catalytic Ageing Test in Gas-Phase Plug-Flow Reactors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CA | 4-Hydroxy-4-methylpentan-2-one |
CHP | combined heat and power plant |
ecIRT | emission-corrected Infrared Thermography |
GC | gas chromatography/gas chromatogram |
HTS | high-throughput screening |
GHSV | gas hourly space velocity, , where is the volume flow at 0 °C and 101.325 kPa and the reaction volume (here: volume of catalyst) |
WHSV | weight hourly space velocity, , where is the volume flow and the mass of catalyst |
Hacac | pentane-2,4-dione |
IP | propan-2-ol |
MeOH | methanol |
PA | propionic acid |
PM | precious metal |
TCD | thermal conductivity detector |
References
- World Bank: Agricultural Methane Emissions (% of Total). Available online: https://data.worldbank.org/indicator/EN.ATM.METH.AG.ZS/?end=2008&start=1970&view=chart (accessed on 11 January 2019).
- Rodhe, H. A Comparison of the Contriubution of Various Gases to the Greenhouse Effect. Science 1990, 248, 1217–1219. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Chapter Anthropogenic and Natural Radiative Forcing; pp. 659–740. [Google Scholar]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B: Environ. 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Li, Z.; Hoflund, G.B. A Review on Complete Oxidation of Methane at Low Temperatures. J. Nat. Gas Chem. 2003, 12, 153–160. [Google Scholar]
- Ali, S.; Al-Marri, M.J.; Al-Jaber, A.S.; Abdelmoneim, A.G.; Khader, M.M. Synthesis, characterization and performance of Pd-based core-shell methane oxidation nano-catalysts. J. Nat. Gas Sci. Eng. 2018, 55, 625–633. [Google Scholar] [CrossRef]
- Auvray, X.; Lindholm, A.; Milh, M.; Olsson, L. The addition of alkali and alkaline earth metals to Pd/Al2O3 to promote methane combustion. Effect of Pd and Ca loading. Catal. Today 2018, 299, 212–218. [Google Scholar] [CrossRef]
- Banerjee, A.C.; McGuire, J.M.; Lawnick, O.; Bozack, M.J. Low-Temperature Activity and PdO-PdOx Transition in Methane Combustion by a PdO-PdOx/γ-Al2O3 Catalyst. Catalysts 2018, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Demoulin, O.; Navez, M.; Ruiz, P. The activation of a Pd/γ-alumina catalyst during methane combustion: Investigation of the phenomenon and of potential causes. Catal. Lett. 2005, 103, 149–153. [Google Scholar] [CrossRef]
- Doan, H.A.; Sharma, M.K.; Epling, W.S.; Grabow, L.C. From Active-Site Models to Real Catalysts: Importance of the Material Gap in the Design of Pd Catalysts for Methane Oxidation. ChemCatChem 2017, 9, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- Fridberg, I.; Sadokhina, N.; Olsson, L. Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapor. Appl. Catal. B: Environ. 2018, 231, 242–250. [Google Scholar] [CrossRef]
- Gélin, P.; Urfels, L.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: Influence of water and sulphur containing compounds. Catal. Today 2003, 83, 45–57. [Google Scholar] [CrossRef]
- Zhu, G. Kinetics of Complete Methane Oxidation on Palladium Model Catalysts. Ph.D. Thesis, Worchester Polytechnic Institute, Worcester, MA, USA, 2004. [Google Scholar]
- Guo, T.; Du, J.; Wu, J.; Wang, S.; Li, J. Structure and kinetic investigations of surface-stepped CeO2-supported Pd catalysts for low-concentration methane oxidation. Chem. Eng. J. 2016, 306, 745–753. [Google Scholar] [CrossRef]
- Guo, T.; Du, J.; Li, J. The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane. J. Mater. Sci. 2016, 51, 10917–10925. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Lei, Y.; Guan, S.; Zheng, X.; Pan, Y.; Wen, W.; Zhu, J.; Zhang, H.; Lin, Q. Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation. Catal. Lett. 2018, 148, 2799–2811. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T.; Yasuda, K. Environmental Catalysts for Complete Oxidation of Volatile Organic Compounds and Methane. Chem. Lett. 2011, 40, 780–785. [Google Scholar] [CrossRef]
- Khader, M.M.; Al-Marri, M.J.; Abdelmoneim, A.G. Active and Stable Methane Oxidation Nano-Catalyst with Highly-Ionized Palladium Species Prepared by Solution Combustion Synthesis. Catalysts 2018, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.B.; Jo, D.; Hong, S.B. Palladium-exchanged small-pore zeolites with different cage systemsas methane combustion catalysts. Appl. Catal. B: Environ. 2017, 219, 155–162. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Chen, C.; Fonda, E.; Gorte, R.J.; Fornasiero, P. Methane Catalytic Combustion over Hierarchical Pd@CeO2/Si−Al2O3: Effect of the Presence of Water. ChemCatChem 2015, 7, 2038–2046. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Melchionna, M.; Duchon, T.; Kus, P.; Tsud, N.; Prince, K.C.; Matolin, V.; Gorte, R.J.; Fornasiero, P. Phosphorus poisoning during wet oxidation of methane overPd@CeO2/graphite model catalysts. Appl. Catal. B: Environ. 2016, 197, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Monai, M.; Montini, T.; Gorte, R.J.; Fornasiero, P. Catalytic Oxidation of Methane: Pd and Beyond. Eur. J. Inorg. Chem. 2018, 2018, 2884–2893. [Google Scholar] [CrossRef]
- Peng, H.; Rao, C.; Zhang, N.; Wang, X.; Liu, W.; Mao, W.; Han, L.; Zhang, P.; Dai, S. Confined Ultrathin Pd-Ce Nanowires with Outstanding Moisture and SO2 Tolerance in Methane Combustion. Angew. Chem. Int. Ed. 2018, 57, 8953–8957. [Google Scholar] [CrossRef]
- Satsuma, A.; Tojo, T.; Okuda, K.; Yamamoto, Y.; Arai, S.; Oyama, J. Effect of preparation method of Co-promoted Pd/alumina for methane combustion. Catal. Today 2015, 242, 308–314. [Google Scholar] [CrossRef]
- Schwarz, S.; Friedrich, M.; Motz, G.; Kempe, R. Synthesis of Hierarchically Porous SiCN Materials and Pd Catalysts based on it for the Oxidation of Methane. Zeitschrift für anorganische und allgemeine Chemie 2015, 641, 2266–2271. [Google Scholar] [CrossRef]
- Senftle, T.P.; van Duin, A.C.T.; Janik, M.J. Methane Activation at the Pd/CeO2 Interface. ACS Catal. 2017, 7, 327–332. [Google Scholar] [CrossRef]
- Shi, C.; Yang, L.; Cai, J. Cerium promoted Pd/HZSM-5 catalyst for methane combustion. Fuel 2007, 86, 106–112. [Google Scholar] [CrossRef]
- Simpício, L.M.; Brandão, S.T.; Domingos, D.; Bozon-Verduraz, F.; Sales, E.A. Catalytic combustion of methane at high temperatures: Cerium effect on PdO/Al2O3 catalysts. Appl. Catal. A: Gen. 2009, 360, 2–7. [Google Scholar] [CrossRef]
- Toso, A.; Colussi, S.; Padigapaty, S.; de Leitenburg, C.; Trovarelli, A. High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Appl. Catal. B: Environ. 2018, 230, 237–245. [Google Scholar] [CrossRef]
- Wenge, L.; Deyong, G.; Xin, X. Research Progress of Palladium Catalysts for Methane Combustion. China Pet. Process. Petrochem. Technol. 2012, 14, 1–9. [Google Scholar]
- Xie, S.; Liu, Y.; Deng, J.; Zhao, X.; Yang, J.; Zhang, K.; Han, Z.; Dia, H. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. J. Catal. 2016, 342, 17–26. [Google Scholar] [CrossRef]
- Xiong, H.; Wiebenga, M.H.; Carrillo, C.; Gaudet, J.R.; Pham, H.N.; Kunwar, D.; Oh, S.H.; Qi, G.; Kim, C.H.; Datye, A.K. Design considerations for low-temperature hydrocarbon oxidation reactions on Pd based catalysts. Appl. Catal. B: Environ. 2018, 236, 436–444. [Google Scholar] [CrossRef]
- Yue, B.; Zhou, R.; Zheng, X.; Lu, W. Promotional effect of Ca on the Pd/Ce Zr/Al2O3 catalyst for low-temperature catalytic combustion of methane. Fuel Process. Technol. 2008, 89, 728–735. [Google Scholar] [CrossRef]
- Yue, B.; Zhou, R.; Zheng, X.; Lu, W. Remarkable improvement of yttrium on the activity and thermal stability of methane combustion over Pd/Ce-Zr/Al2O3 catalyst. Mater. Chem. Phys. 2009, 114, 722–727. [Google Scholar] [CrossRef]
- Zhou, R.; Zhao, B.; Yue, B. Effects of CeO2-ZrO2 present in Pd/Al2O3 catalysts on the redox behavior of PdOx and their combustion activity. Appl. Surf. Sci. 2008, 254, 4701–4707. [Google Scholar] [CrossRef]
- Zong, Y.; Li, S.; Niu, F.; Yao, Q. Direct synthesis of supported palladium catalysts for methane combustion by stagnation swirl flame. Proc. Combust. Inst. 2015, 35, 2249–2257. [Google Scholar] [CrossRef]
- Zou, X.; Rui, Z.; Song, S.; Ji, H. Enhanced methane combustion performance over NiAl2O4-interface promoted Pd/γ-Al2O3. J. Catal. 2016, 338, 192–201. [Google Scholar] [CrossRef]
- Zou, X.; Rui, Z.; Ji, H. Core-Shell NiO@PdO Nanoparticles Supported on Alumina as an Advanced Catalyst for Methane Oxidation. ACS Catal. 2017, 7, 1615–1625. [Google Scholar] [CrossRef]
- Bugosh, G.S.; Easterling, V.G.; Rusakova, I.A.; Harold, M.P. Anomalous steady-state and spatio-temporal features of methaneoxidation on Pt/Pd/Al2O3 monolith spanning lean and rich conditions. Appl. Catal. B: Environ. 2015, 165, 68–78. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Patil, V.P.; Jana, P.; Uphade, B.S. Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gases. Appl. Catal. A: Gen. 2008, 350, 186–190. [Google Scholar] [CrossRef]
- Fang, R.; Cui, Y.; Chen, S.; Shang, H.; Shi, Z.; Gong, M.; Chen, Y. A highly efficient Rh-modified Pd/Al2O3 close-coupled catalyst. Chin. J. Catal. 2015, 36, 229–236. [Google Scholar] [CrossRef]
- Gärtner, A.; Lenk, T.; Kiemel, R.; Casu, S.; Breuer, C.; Stöwe, K. High-Throughput Screening Approach to Identify New Catalysts for Total Oxidation of Methane from Gas Fueled Lean Burn Engines. Top. Catal. 2016, 59, 1071–1075. [Google Scholar] [CrossRef]
- Gremminger, A.T.; de Carvalho, H.W.P.; Popescu, R.; Grunwaldt, J.D.; Deutschmann, O. Influence of gas composition on activity and durability of bimetallic Pd-Pt/Al2O3 catalysts for total oxidation of methane. Catal. Today 2015, 258, 470–480. [Google Scholar] [CrossRef]
- Gremminger, A.; Lott, P.; Merts, M.; Casapu, M.; Grunwaldt, J.D.; Deutschmann, O. Sulfur poisoning and regeneration of bimetallic Pd-Pt methaneoxidation catalysts. Appl. Catal. B: Environ. 2017, 218, 833–843. [Google Scholar] [CrossRef]
- Rui, Z.; Wu, S.; Ji, H.; Liu, Z. Reactivation and Reuse of Platinum-Based Spent Catalysts for Combustion of Exhaust Organic Gases. Chem. Eng. Technol. 2015, 38, 409–415. [Google Scholar] [CrossRef]
- Dou, J.; Tang, Y.; Nie, L.; Andolina, C.M.; Zhang, X.; House, S.; Li, Y.; Yang, J.; Tao, F. Complete Oxidation of Methane on Co3O4/CeO2 Nanocomposite: A Synergic Effect. Catal. Today 2018, 311, 48–55. [Google Scholar] [CrossRef]
- Geng, H.; Yang, Z.; Ran, J.; Zhang, L.; Yan, Y.; Guo, M. Low-concentration methane combustion over a Cu/γ-Al2O3 catalyst: Effects of water. RSC Adv. 2015, 5, 18915–18921. [Google Scholar] [CrossRef]
- Isupova, L.A.; Kulikovskaya, N.A.; Saputina, N.F.; Gerasimov, E.Y. Catalytic Activity of La1−xCaxCoO3−δ Perovskites (x = 0 − 1) Prepared by the Pechini Method in the Reaction of Deep Methane Oxidation. Kinet. Catal. 2018, 59, 489–497. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, S.; Lu, J.; Luo, M. Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion. Chem. Res. Chin. Univ. 2016, 32, 808–811. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Xue, B. Catalytic combustion of methane over M (Ni, Co, Cu) supported on ceria-magnesia. Fuel Process. Technol. 2009, 90, 652–656. [Google Scholar] [CrossRef]
- Okal, J.; Zawadzki, M.; Braranowska, K. Methane combustion over bimetallic Ru-Re/γ-Al2O3 catalysts: Effect of Re and pretreatments. Appl. Catal. B: Environ. 2016, 194, 22–31. [Google Scholar] [CrossRef]
- Wasalathanthri, N.D.; Poyraz, A.S.; Biswas, S.; Meng, Y.; Kuo, C.H.; Kriz, D.A.; Suib, S.L. High-Performance Catalytic CH4 Oxidation at Low Temperatures: Inverse Micelle Synthesis of Amorphous Mesoporous Manganese Oxides and Mild Transformation to K2−xMn8O16 and ϵ-MnO2. J. Phys. Chem. C 2015, 119, 1473–1482. [Google Scholar] [CrossRef]
- Wu, H.; Pantaleo, G.; Di Carlo, G.; Guo, S.; Marci, G.; Concepción, P.; Venezia, A.M.; Liotta, L.F. Co3O4 particles grown over nanocrystalline CeO2: influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation. Catal. Sci. Technol. 2015, 5, 1888–1901. [Google Scholar] [CrossRef] [Green Version]
- Zasada, F.; Janas, J.; Piskorz, W.; Gorczyńska, M.; Sojka, Z. Total Oxidation of Lean Methane over Cobalt Spinel Nanocubes Controlled by the Self-Adjusted Redox State of the Catalyst: Experimental and Theoretical Account for Interplay between the Langmuir—Hinshelwood and Mars—Van Krevelen Mechanisms. ACS Catal. 2017, 7, 2853–2867. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Yi, T.; Sun, L.; Zhang, Y.; Hu, X.; Cui, W.; Yang, X. Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation. Chin. J. Catal. 2018, 39, 1228–1239. [Google Scholar] [CrossRef]
- German Biogas Association: Biogas market data in Germany 2017/2018. Available online: https://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/file/18-07-05_Biogasindustryfigures-2017-2018_english.pdf (accessed on 11 January 2019).
- Hagemeyer, A.; Volpe, A.F. (Eds.) Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Bentham Science Publishers: Sharjah, UAE, 2014. [Google Scholar]
- Hammes, M.; Stöwe, K.; Maier, W.F. Cobalt based emission control catalysts with high resistance towards halide poisoning. Appl. Catal. B: Environ. 2012, 117–118, 397–405. [Google Scholar] [CrossRef]
- Hammes, M.; Valtchev, M.; Roth, M.B.; Stöwe, K.; Maier, W.F. A search for alternative Deacon catalysts. Appl. Catal. B: Environ. 2013, 132–133, 389–400. [Google Scholar] [CrossRef]
- Loskyll, J.; Stöwe, K.; Maier, W.F. Infrared Thermography as a High-Throughput Tool in Catalysis Research. ACS Comb. Sci. 2012, 14, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Maier, W.F.; Saalfrank, J.W. Discovery, combinatorial chemistry and a new selective CO-oxidation catalyst. Chem. Eng. Sci. 2004, 59, 4673–4678. [Google Scholar] [CrossRef]
- Borland, D.; Taylor, R.M. Rainbow Color Map (Still) Considered Harmful. IEEE Comput. Graph. Appl. 2007, 27, 14–17. [Google Scholar] [CrossRef]
- Green, D. A colour sheme for the display of astronomical intensity images. Bull. Astron. Soc. India 2011, 39, 289–295. [Google Scholar]
- Scheidtmann, J. Entwicklung und Anwendung kombinatorischer Methoden zur Entdeckung resistiver Gassensoren. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 2003. [Google Scholar]
- Loskyll, J.; Stöwe, K.; Maier, W.F. High-throughput technology for novel SO2 oxidation catalysts. Sci. Technol. Adv. Mater. 2011, 12, 054101. [Google Scholar] [CrossRef] [Green Version]
- Epling, W.S.; Hoflund, G.B. Catalytic Oxidation of Methane over ZrO2-Supported Pd Catalysts. J. Catal. 1999, 182, 5–12. [Google Scholar] [CrossRef]
- Ishihara, T.; Shigematsu, H.; Abe, Y.; Takita, Y. Effects of Additives on the Activity of Palladium Catalysts for Methane Combustion. Chem. Lett. 1993, 22, 407–410. [Google Scholar] [CrossRef]
- Ishihara, T.; Sumi, H.; Takita, Y. Palladium Ion-exchanged SAPO-5 as a Catalyst for Low Temperature Combustion of Methane. Chem. Lett. 1994, 23, 1499–1502. [Google Scholar] [CrossRef]
- Hardiyanto, W.; Koshi, S.; Koichi, E. Low-Temperature Oxidation of Methane over Pd Supported on SnO2-Based Oxides. Bull. Chem. Soc. Jpn. 1999, 72, 313–320. [Google Scholar] [CrossRef]
- Yasuda, K.; Masui, T.; Miyamoto, T.; Imanaka, N. Catalytic combustion of methane over Pt and PdO-supported CeO2-ZrO2-Bi2O3-γ-Al2O3 catalysts. J. Mater. Sci. 2011, 46, 4046–4052. [Google Scholar] [CrossRef]
- Scheidtmann, J.; Saalfrank, J.W.; Maier, W.F. Plattenbau-automated synthesis of catalysts and materials libraries. In Science and Technology in Catalysis 2002; Anpo, M., Onaka, M., Yamashita, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 145 Studies in Surface Science and Catalysis, pp. 13–20. [Google Scholar] [CrossRef]
- Valtchev, M.; Hammes, M.; Richter, R.; Höltzen, H.; Stöwe, K.; Maier, W.F. Corrosion-Resistant Parallel Fixed-Bed Reactors for High-Throughput Screening of New Deacon Reaction Catalysts. Chem. Eng. Technol. 2014, 37, 1251–1260. [Google Scholar] [CrossRef]
Pt | Al | Mn | Ce | Positions x, y | ΔT [K] | |
---|---|---|---|---|---|---|
3 | 0 | 90 | 10 | 10,6 | 6.2 | 0.83967 |
3 | 20 | 0 | 80 | 3,12 | 13.6 | 1.09885 |
3 | 20 | 10 | 70 | 4,11 | 13.8 | 0.71143 |
3 | 40 | 40 | 20 | 10,11 | 8.1 | 0.56334 |
3 | 40 | 50 | 10 | 10,9 | 15.8 | 0.71950 |
3 | 50 | 50 | 0 | 11, 11 | 6.4 | 0.71375 |
Pt | Rh | Al | Mn | Ce | Positions x, y | ΔT [K] | |
---|---|---|---|---|---|---|---|
3 | 0 | 0 | 85 | 15 | 11,12 | 15,12 | 0.6133384 |
3 | 0 | 0 | 95 | 5 | 4,11 | 5,8 | 0.58115795 |
3 | 0 | 35 | 45 | 20 | 2,5 | 14,8 | 0.5890790 |
3 | 0 | 35 | 55 | 10 | 4,9 | 10,9 | 0.5766768 |
3 | 0 | 40 | 45 | 15 | 3,12 | 8,2 | 0.5942384 |
3 | 0 | 0 | 90 | 10 | 11,4 | 13,8 | 0.6687942 |
3 | 0 | 40 | 40 | 20 | 1,9 | 7,16 | 0.52137075 |
3 | 0 | 40 | 50 | 10 | 1,7 | 7,13 | 0.50107035 |
3 | 0 | 50 | 50 | 0 | 13,6 | 14,7 | 0.476475 |
1.5 | 1.5 | 0 | 90 | 10 | 9,7 | 13,3 | 0.75932845 |
1.5 | 1.5 | 5 | 80 | 15 | 6,3 | 14,6 | 0.77588210 |
1.5 | 1.5 | 40 | 60 | 0 | 10,10 | 12,4 | 0.75258380 |
Pt | Rh | Al | Mn | Ce | Positions x, y | ΔT [K] | |
---|---|---|---|---|---|---|---|
1.5 | 1.5 | 0 | 10 | 90 | 13,4 | 13,11 | 1.1125125 |
1.5 | 1.5 | 0 | 0 | 100 | 4,10 | 8,10 | 1.0587054 |
1.5 | 1.5 | 40 | 10 | 50 | 3,4 | 12,3 | 0.81132665 |
1.5 | 1.5 | 0 | 50 | 50 | 6,5 | 10,7 | 0.80998375 |
1.5 | 1.5 | 10 | 20 | 70 | 11,2 | 12,9 | 0.79629585 |
1.5 | 1.5 | 0 | 70 | 30 | 12,11 | 14,6 | 0.7935924 |
1.5 | 1.5 | 20 | 40 | 40 | 6,3 | 11,5 | 0.7457196 |
1.5 | 1.5 | 50 | 10 | 40 | 11,7 | 12,5 | 0.73195785 |
1.5 | 1.5 | 50 | 20 | 30 | 9,10 | 11,3 | 0.64947885 |
Catalyst & Synthesis | Gas Composition | Space Velocity | T50 [°C] | ||
---|---|---|---|---|---|
ZrO2 | CS | % CH4, % O2, N2 | 18,600 mL/(g h) | 350 | [66] |
% Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 338 | [66] |
% Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 284 | [66] |
2 Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 270 | [66] |
5 Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 253 | [66] |
10 Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 234 | [66] |
20 Pd@ZrO2 | IM | % CH4, % O2, N2 | 18,600 mL/(g h) | 233 | [66] |
Pd/SnO2 | IW | 1% CH4, Air | 48,000/h | 370 | [69] |
Pd/Al2O3 | CS | 1% CH4, Air | 100,000/h | 435 | [68] |
Pd/HY | IE | 1% CH4, Air | 100,000/h | 395 | [68] |
Pd/H-SAPO-5 | IE | 1% CH4, Air | 100,000/h | 430 | [68] |
Pd/Na-SAPO-5 | IE | 1% CH4, Air | 100,000/h | 410 | [68] |
Pd | IM | 1% CH4, Air | 100,000/h | 533 | [67] |
Pd/Mn3O4 | IM | 1% CH4, Air | 100,000/h | 450 | [67] |
Pd/Cr2O3 | IM | 1% CH4, Air | 100,000/h | 445 | [67] |
Pd/Fe2O3 | IM | 1% CH4, Air | 100,000/h | 460 | [67] |
Pd/PbO | IM | 1% CH4, Air | 100,000/h | 460 | [67] |
Pd/CoO | IM | 1% CH4, Air | 100,000/h | 435 | [67] |
Pd/CeO2 | IM | 1% CH4, Air | 100,000/h | 430 | [67] |
Pd/Ag2O | IM | 1% CH4, Air | 100,000/h | 410 | [67] |
Pd/PtO | IM | 1% CH4, Air | 100,000/h | 425 | [67] |
Pd/SnO2 | IM | 1% CH4, Air | 100,000/h | 430 | [67] |
Pd/NiO | IM | 1% CH4, Air | 100,000/h | 380 | [67] |
Pd/CuO | IM | 1% CH4, Air | 100,000/h | 465 | [67] |
Pd/RhO | IM | 1% CH4, Air | 100,000/h | 415 | [67] |
Pd/Al2O3 | IM | 500 ppm CH4, 8% O2, 5% H2O, 5% CO2, Ar | 28,000/h | 379 | [7] |
Au/Fe2O3 | PR | 1% CH4, Air | 60,000 mL/(g h) | 387 | [40] |
Co3O4/CeO2 | PR | % CH4, % O2, Ar | 9000 mL/(g h) | 475 | [46] |
Pd/Al2O3 | IM | 500 ppm CH4, 8% O2, 5% H2O, Ar | 30,000/h | 400 | [11] |
Pd/Al2O3 | IM | 2% CH4, 5% O2, He | 32,500 mL/(g h) | 320 | [12] |
Pt/Al2O3 | IM | 2% CH4, 5% O2, He | 32,500 mL/(g h) | 425 | [12] |
Cu/Al2O3 | IW | 3% CH4, 20% O2, N2 | no data given | 485 | [47] |
Pd-Pt/Al2O3 | CS | 3230 ppm CH4, 10% O2, 12% H2O, N2 | 30,000/h | 400 | [43] |
Pd-M@CeO2 | HT/IW | 1% CH4, 20% O2, N2 | 16,000 mL/(g h) to 110,000 mL/(g h) | 346 | [14] |
Pd@NiCo2O4 | HT/PR | 1% CH4, Air | 30,000 mL/(g h) | 275 | [16] |
PdO/CZB/Al2O3 † | IM | 1% CH4, Air | 20,100 mL/(g h) | 260 | [70] |
Pd-Zeolithe | IE | 1500 ppm CH4, 5% O2, 10% H2O, He | 100,000/h | 357 | [19] |
Pd@CeO2/Si-Al2O3 | IM | 0.5% CH4, 2.0% O2, Ar | 200,000 mL/(g h) | 350 | [20] |
Pd@CeO2/Si-Al2O3 | IM | 0.5% CH4, 2.0% O2, 15 H2O, Ar | 200,000 mL/(g h) | 480 | [20] |
Pd-Ce@SiO2 | PR | 1% CH4, 21% O2, N2 | 36,000 mL/(g h) | 290 | [23] |
Pd-Ce/HZSM-5 | IM | 2% CH4, 8% O2, N2 | 48,000/h | 336 | [27] |
Pd/TiO2 | FS | 2% CH4, 8% O2, N2 | no data given | 330 | [36] |
Conditions | Time | Source |
---|---|---|
pretreatment: 10% H2O, 10% O2, N2; 600 °C; measurement: 2000 ppm CH4, 5 vol.% O2, He; 32,500 mL/(g h) | 24 h | [12] |
2000 ppm CH4, 5 vol.% O2, 10% H2O, He; 32,500 mL/(g h) | 20 h | [12] |
2000 ppm CH4, 5 vol.% O2, 100 ppm H2S, He; 32,500 mL/(g h) | 16 h | [12] |
3230 ppm CH4, 10% O2, 12% H2O, N2; 450 °C, 30,000/h | 100 h | [43] |
3230 ppm CH4, 10% O2, 12% H2O, 6% CO2, N2; 450 °C, 30,000/h | 100 h | [43] |
3230 ppm CH4, 10% O2, 12% H2O, 500 ppm CO, 120 ppm NO, 30 ppm NO2, N2; 450 °C, 30,000/h | 100 h | [43] |
3230 ppm CH4, 10% O2, 12% H2O, 500 ppm CO, 120 ppm NO, 30 ppm NO2, 5 ppm SO2, N2; 450 °C, 30,000/h | 100 h | [43] |
3200 ppm CH4, 10% O2, 12% H2O, 2.5 ppm SO2, N2; 400 °C, 30,000/h | 25 h | [44] |
3200 ppm CH4, 10% O2, 12% H2O, 5 ppm SO2, N2; 450 °C, 30,000/h | 25 h | [44] |
1% CH4, 20% O2, N2; 450 °C, 16,000 mL/(g h) | 20 h | [14] |
1% CH4, 10% H2O, air; 390 °C, 30,000 mL/(g h) | 35 h | [16] |
1% CH4, air; 320 mL/(g h), 20,100 mL/(g h) | 7day | [70] |
0,5% CH4, 3% O2, N2; 400 °C, 12,000 mL/(g h) | 12 h | [49] |
1500 ppm CH4, 5% O2, 10% H2O, He; 450 °C, 100,000/h | 50 h | [19] |
0.8% CH4, air; 500 °C, 60,000 mL/(g h) | 80 h | [51] |
1% CH4, 21% O2, N2; 310, 375, 445 and 800 °C, 36,000 mL/(g h) | 25, 50 h | [23] |
2% CH4, 8% O2, N2; 370 °C, 48,000/h | 36 h | [27] |
2% CH4, 8% O2, 4% H2O, N2; 370 °C, 48,000/h | 36 h | [27] |
0,5% CH4, 2% O2, 10% H2O, He; 450 °C, 90,000 mL/(g h) | 24 h | [29] |
1% CH4, 20% O2, N2; 400 °C to 450 °C, 30,000 mL/(g h) | 50 h | [38] |
1% CH4, 20% O2, 6% H2O, N2; 400 °C to 450 °C, 30,000 mL/(g h) | 12 h | [38] |
Element | Precursor | Solvent | c [mol/L] | CA |
---|---|---|---|---|
Al | Al(NO3)3·9H2O | IP/PA | 0.25 | Yes |
Ce | Ce(NO3)3·6H2O | IP/PA | 0.25 | Yes |
Mn | Mn(NO3)2·4H2O | IP/PA | 0.25 | Yes |
Pt | Pt(NO3)2 | MeOH | 0.05 | Yes |
Rh | Rh(acac)3 | MeOH/Hacac | 0.05 | No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenk, T.; Gärtner, A.; Stöwe, K.; Schwarz, T.; Breuer, C.; Kiemel, R.; Casu, S. A High-Throughput Screening Approach to Identify New Active and Long-Term Stable Catalysts for Total Oxidation of Methane from Gas-Fueled Lean–Burn Engines. Catalysts 2020, 10, 159. https://doi.org/10.3390/catal10020159
Lenk T, Gärtner A, Stöwe K, Schwarz T, Breuer C, Kiemel R, Casu S. A High-Throughput Screening Approach to Identify New Active and Long-Term Stable Catalysts for Total Oxidation of Methane from Gas-Fueled Lean–Burn Engines. Catalysts. 2020; 10(2):159. https://doi.org/10.3390/catal10020159
Chicago/Turabian StyleLenk, Thomas, Adrian Gärtner, Klaus Stöwe, Thomas Schwarz, Christian Breuer, Rainer Kiemel, and Santiago Casu. 2020. "A High-Throughput Screening Approach to Identify New Active and Long-Term Stable Catalysts for Total Oxidation of Methane from Gas-Fueled Lean–Burn Engines" Catalysts 10, no. 2: 159. https://doi.org/10.3390/catal10020159
APA StyleLenk, T., Gärtner, A., Stöwe, K., Schwarz, T., Breuer, C., Kiemel, R., & Casu, S. (2020). A High-Throughput Screening Approach to Identify New Active and Long-Term Stable Catalysts for Total Oxidation of Methane from Gas-Fueled Lean–Burn Engines. Catalysts, 10(2), 159. https://doi.org/10.3390/catal10020159