Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalyst Activity
3. Materials and Methods
3.1. Preparation of Catalyst
3.2. Catalyst Performance Evaluation
3.3. Catalyst Characterization
3.3.1. N2 Physisorption
3.3.2. TPR
3.3.3. XRD
3.3.4. TGA
3.3.5. CO2-TPD
3.3.6. Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016, 6, 108668–108688. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, apanel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Hoehne, C.G.; Chester, M.V. Greenhouse gas and air quality effects of auto first-last mile use with transit. Transp. Res. Part D Transp. Environ. 2017, 53, 306–320. [Google Scholar]
- Al-Fatesh, A.S.; Arafat, Y.; Ibrahim, A.A.; Kasim, S.O.; Alharthi, A.; Fakeeha, A.H.; Abasaeed, A.E.; Giuseppe Bonura, G.; Francesco Frusteri, F. Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts 2019, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Al-Fatesh, A.S.; Kasim, S.O.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Alrasheed, R.; Ashamari, R.; Bagabas, A. Combined Magnesia, Ceria and Nickel catalyst supported over γ-Alumina Doped with Titania for Dry Reforming of Methane. Catalysts 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Tsolakis, A.; Wyszynski, M. Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming. Int. J. Hydrogen Energy 2011, 36, 397–404. [Google Scholar] [CrossRef]
- Kwon, B.W.; Oh, J.H.; Kim, G.S.; Yoon, S.P.; Han, J.; Nam, S.W.; Ham, H.C. The novel perovskite-type Ni-doped Sr0.92Y0.08TiO3 as a reforming biogas (CH4 + CO2) for H2 production. Appl. Energy 2018, 227, 213–219. [Google Scholar]
- IEA. World Energy Outlook 2015; OECD Publishing: Paris, France, 2015; Available online: https://doi.org/10.1787/weo-2015-en (accessed on 10 November 2015).
- Jiao, F.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; Miao, S.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef]
- Cui, G.; Liu, J.; Wei, M.; Feng, X.; Elsworth, D. Evolution of permeability during the process of shale gas extraction. J. Nat. Gas Sci. Eng. 2018, 49, 94–109. [Google Scholar] [CrossRef]
- Quéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Vieira, M.O.; Aquino, A.S.; Schütz, M.K.; Vecchia, F.D.; Ligabue, R.; Seferin, M.; Einloft, S. Chemical Conversion of CO2: Evaluation of Different Ionic Liquids as Catalysts in Dimethyl Carbonate Synthesis. Energy Procedia 2017, 114, 7141–7149. [Google Scholar] [CrossRef]
- Sheu, E.J.; Mokheimer, E.M.; Ghoniem, A.F. A review of solar methane reforming systems. Int. J. Hydrogen Energy 2015, 40, 12929–12955. [Google Scholar] [CrossRef] [Green Version]
- García-Diéguez, M.; Finocchio, E.; Larrubia, M. Ángeles; Alemany, L.J.; Busca, G. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. J. Catal. 2010, 274, 11–20. [Google Scholar] [CrossRef]
- Nawfal, M.; Gennequin, C.; Labaki, M.; Nsouli, B.; Aboukaıs, A.; AbiAad, E. Hydrogen production by methane steam reforming over Ru supported on NieMgeAl mixed oxides prepared via hydrotalcite route. Int. J. Hydrogen Energy 2015, 40, 1269–1277. [Google Scholar] [CrossRef]
- Al-Fatesh, A.; Singh, S.K.; Kanade, G.; Atia, H.; Fakeeha, A.H.; Ibrahim, A.A.; El-Toni, A.M.; Labhasetwar, N.K. Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming of CH4. Int. J. Hydrogen Energy 2018, 43, 12069–12080. [Google Scholar] [CrossRef]
- Arandiyan, H.; Peng, Y.; Liu, C.; Chang, H.; Li, J. Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH4 with CO2. J. Chem. Tech. Biotechnol. 2014, 89, 372–381. [Google Scholar] [CrossRef]
- El Hassan, N.; Kaydouh, M.; Geagea, H.; El Zein, H.; Jabbour, K.; Casale, S.; El Zakhem, H.; Massiani, P. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. Appl. Catal. A Gen. 2016, 520, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.; Chen, P.; Fang, H.; Zheng, X.; Yashima, T. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-)promoted Ni catalysts, Int. J. Hydrogen Energy 2006, 31, 555–561. [Google Scholar] [CrossRef]
- Usman, M.; Daud, W.M.A.W.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sust. Energ. Rev. 2015, 45, 710–744. [Google Scholar]
- Akri, M.; Shu Zhao, S.; Xiaoyu Li, X.; Zang, K.; Lee, A.F.; Isaacs, M.A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y.; et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181. [Google Scholar] [CrossRef] [Green Version]
- Goula, M.; Charisiou, N.; Siakavelas, G.; Tzounis, L.; Tsiaoussis, I.; Panagiotopoulou, P.; Goula, G.; Yentekakis, I.V. Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO 2 or La 2 O 3 catalysts. Int. J. Hydrogen Energy 2017, 42, 13724–13740. [Google Scholar] [CrossRef]
- Abba, M.O.; Gonzalez-Delacruz, V.M.; Colón, G.; Sebti, S.; Caballero, A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Appl. Catal. B Environ. 2014, 150, 459–465. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Al-Fatesh, A.S.; Khan, W.U.; Kasim, S.O.; Abasaeed, A.E.; Fakeeha, A.H.; Bonura, G.; Frusteri, F. Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. Int. J. Hydrogen Energy 2019, 44, 27784–27794. [Google Scholar] [CrossRef]
- Rostrupnielsen, J.; Hansen, J. CO2-Reforming of Methane over Transition Metals. J. Catal. 1993, 144, 38–49. [Google Scholar] [CrossRef]
- Abdullah, B.; Ghani, N.A.A.; Vo, D.-V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Di Bartolomeo, E.; Kesavan, J.K.; Kumar, S.S.; Selvakumar, K. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Li, M.; Van Veen, A.C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO 2- x interaction. Appl. Catal. B Environ. 2018, 237, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Kalai, D.Y.; Stangeland, K.; Tucho, W.M.; Jin, Y.; Yu, Z. Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion. J. CO2 Util. 2019, 33, 189–200. [Google Scholar] [CrossRef]
- Chong, C.C.; Teh, L.P.; Setiabudi, H.D. Syngas production via CO2 reforming of CH4 over Ni-based SBA-15: Promotional effect of promoters (Ce, Mg, and Zr). Mater. Today Energy 2019, 12, 408–417. [Google Scholar] [CrossRef]
- Pietraszek, A.; Koubaissy, B.; Roger, A.-C.; Kiennemann, A. The influence of the support modification over Ni-based catalysts for dry reforming of methane reaction. Catal. Today 2011, 176, 267–271. [Google Scholar] [CrossRef]
- Chein, R.-Y.; Fung, W.-Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy 2019, 44, 14303–14315. [Google Scholar] [CrossRef]
- Lino, A.V.P.; Calderon, Y.N.C.; Mastelaro, V.R.; Assaf, E.M.; Assaf, J.M.; Colmenares, Y.N. Syngas for Fischer-Tropsch synthesis by methane tri-reforming using nickel supported on MgAl2O4 promoted with Zr, Ce and Ce-Zr. Appl. Surf. Sci. 2019, 481, 747–760. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Song, W.; Liu, J.; Shen, W. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction. Appl. Catal. A Gen. 2008, 334, 321–329. [Google Scholar] [CrossRef]
- Li, H.; Wang, J. Study on CO2 reforming of methane to syngas over Al2O3–ZrO2 supported Ni catalysts prepared via a direct sol–gel process. Chem. Eng. Sci. 2004, 59, 4861–4867. [Google Scholar] [CrossRef]
- Li, Q.; Wu, G.; Cullen, D.A.; More, K.L.; Mack, N.H.; Chung, H.T.; Zelenay, P. Phosphate-Tolerant Oxygen Reduction Catalysts. ACS Catal. 2014, 4, 3193–3200. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Urakawa, A. Continuous CO2 capture and reduction in one process: CO2 methanation over unpromoted and promoted Ni/ZrO2. J. CO2 Util. 2018, 25, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Peng, J.; Sun, T.; Wang, S.; Wang, S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78. [Google Scholar] [CrossRef]
- Salker, A.V.; Naik, S.J. Mechanistic study of acidic and basic sites for CO oxidation over nano based Co2xFexWO6 catalysts. Appl. Catal. B Environ. 2009, 89, 246–254. [Google Scholar] [CrossRef]
- Singh, H.; Rai, A.; Yadav, R.; Sinha, A.K. Glucose hydrogenation to sorbitol over unsupported mesoporous Ni/NiO catalyst. Mol. Catal. 2018, 451, 186–191. [Google Scholar]
- Wang, C.; Sun, N.; Zhao, N.; Wei, W.; Zhao, Y. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane. Catal. Today 2017, 281, 268–275. [Google Scholar] [CrossRef]
- Alipour, Z.; Rezaei, M.; Meshkani, F. Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane. J. Energy Chem. 2014, 23, 633–638. [Google Scholar] [CrossRef]
- Ding, M.; Tu, J.; Zhang, Q.; Wang, M.; Tsubaki, N.; Wang, T.; Ma, L. Enhancement of methanation of bio-syngas over CeO 2 -modified Ni/Al 2 O 3 catalysts. Biomass-Bioenergy 2016, 85, 12–17. [Google Scholar] [CrossRef]
- Conner, W.C.; Falconer, J.L. Spillover in Heterogeneous Catalysis. Chem. Rev. 1995, 95, 759–788. [Google Scholar] [CrossRef]
- Monteiro, W.F.; Vieira, M.O.; Calgaro, C.O.; Perez-Lopez, O.W.; Ligabue, R.A. Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts. Fuel 2019, 253, 713–721. [Google Scholar] [CrossRef]
- Cao, K.; Gong, M.; Yang, J.; Cai, J.; Chu, S.; Chen, Z.; Shan, B.; Chen, R. Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. J. Catal. 2019, 373, 351–360. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, G.; Xu, Y.; Zhang, R. Dry reforming of methane over Co-Ce-M/AC-N catalyst: Effect of promoters (Ca and Mg) and preparation method on catalytic activity and stability. Int. J. Hydrogen Energy 2019, 44, 22972–22982. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, J.; Liu, J.; Wang, C.; Huang, Q.; Xu, X.; Peng, H.; Liu, W.; Wang, X.; Zhou, W. Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides. J. CO2 Util. 2018, 25, 242–253. [Google Scholar] [CrossRef]
- Akri, M.; Pronier, S.; Chafik, T.; Achak, O.; Granger, P.; Simon, P.; Trentesaux, M.; Batiot-Dupeyrat, C. Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Appl. Catal. B Environ. 2017, 205, 519–531. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, S.M.; Won, J.M.; Yang, H.J.; Hong, S.C. Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2–TiO2 catalyst for dry reforming of methane. Chem. Eng. J. 2015, 280, 433–440. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.-D.; Hu, Z.-T.; Sun, Y.-M.; Webster, R.D.; Li, S.-Z.; Lim, T.-T. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Appl. Catal. B Environ. 2018, 225, 243–257. [Google Scholar] [CrossRef]
Catalyst | BET1 Surface Area (m2/g) | Av. Pore Diameter (nm) | Pore Volume (cm3/g) |
---|---|---|---|
10%NiO/8%PO4 + ZrO2 | 157.5 | 0.2 | 4.45 |
10%NiO + 1%Ce/8%PO4 + ZrO2 | 157.5 | 0.2 | 4.45 |
10%NiO + 1.5%Ce/8%PO4 + ZrO2 | 145.2 | 0.18 | 4.46 |
10%NiO + 2%Ce/8%PO4 + ZrO2 | 166.7 | 0.22 | 4.67 |
10%NiO + 2.5%Ce/8%PO4 + ZrO2 | 155.0 | 0.20 | 4.60 |
10%NiO + 3%Ce/8%PO4 + ZrO2 | 168.2 | 0.22 | 4.67 |
10%NiO + 5%Ce/8%PO4 + ZrO2 | 127.2 | 0.16 | 4.55 |
Catalysts | H2 Uptake (mmole/g) | TM1 (°C) | TM2 (°C) | TM3 (°C) | Reduction Degree (%) |
---|---|---|---|---|---|
10%Ni/8%PO4 + ZrO2 | 3.176 | - | 588 | 750 | 1.86 |
10%Ni + 1%Ce/8%PO4 + ZrO2 | 3.023 | - | 593 | 780 | 1.77 |
10%Ni + 2%Ce/8%PO4 + ZrO2 | 2.956 | 300 | 578 | 746 | 1.73 |
10%Ni + 3%Ce/8%PO4 + ZrO2 | 2.517 | 329 | 564 | 732 | 2.44 |
10%Ni + 5%Ce/8%PO4 + ZrO2 | 2.796 | 334 | 577 | 755 | 1.64 |
Sample | Weak Basic Sites (µmol/g) | Medium Basic Sites (µmol/g) | Strong Basic Sites (µmol/g) | Total Basicity (µmol/g) |
---|---|---|---|---|
10Ni/8%PO4 + ZrO2 | 18.027 | 19.957 | - | 37.984 |
10Ni + 2%Ce/8%PO4+ZrO2 | 18.019 | 40.213 | - | 58.232 |
10Ni + 3%Ce/8%PO4 + ZrO2 | 30.881 | 47.051 | - | 77.932 |
10Ni + 5%Ce/8%PO4 + ZrO2 | 24.456 | 24.353 | - | 48.809 |
Catalyst | CH4:CO2 | GHSV1 (mL/g/h) | T (°C) | % CH4 | References |
---|---|---|---|---|---|
10%Ni/8%PO4+ZrO2 | 1:1 | 13000 | 800 | 80 | [4] |
Ni-Zr/SBA-15 | 1:1 | 15000 | 800 | 88 | [30] |
Ni-HTNT | 1:1 | 12000 | 700 | 74 | [45] |
0.5% Co/ Ni/γ-Al2O3 | 1:1 | 12000 | 650 | 70 | [46] |
1Co-1Ce-1Ca/AC-N | 1:1 | 720 | 800 | 68 | [47] |
Ni-Ce/Mg-Al-O | 1:1 | 72000 | 800 | 86 | [48] |
10Ni15La/illite-clay | 5:4 | 60000 | 800 | 80 | [49] |
Ni/50% CeO2–50% TiO2 | 1:1 | 14400 | 750 | 90 | [50] |
10%Ni+3%Ce/8%PO4+ZrO2 | 1:1 | 28000 | 800 | 95 | Present work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.A.; Al-Fatesh, A.S.; Kumar, N.S.; Abasaeed, A.E.; Kasim, S.O.; Fakeeha, A.H. Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts 2020, 10, 242. https://doi.org/10.3390/catal10020242
Ibrahim AA, Al-Fatesh AS, Kumar NS, Abasaeed AE, Kasim SO, Fakeeha AH. Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts. 2020; 10(2):242. https://doi.org/10.3390/catal10020242
Chicago/Turabian StyleIbrahim, Ahmed A., Ahmed S. Al-Fatesh, Nadavala Siva Kumar, Ahmed E. Abasaeed, Samsudeen O. Kasim, and Anis H. Fakeeha. 2020. "Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts" Catalysts 10, no. 2: 242. https://doi.org/10.3390/catal10020242
APA StyleIbrahim, A. A., Al-Fatesh, A. S., Kumar, N. S., Abasaeed, A. E., Kasim, S. O., & Fakeeha, A. H. (2020). Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 10(2), 242. https://doi.org/10.3390/catal10020242